Freshman Seminar Assignment Problem
Final Report

Keenan Gao Binghui Ouyang Hanwen Zhang Yiming Zong

Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

As the number of college students increases, an optimization algorithm that
can automatically assign students to classes becomes a pressing need in many
universities. In attempts of solving the problem, various questions arose. What is
the objective function to optimize? What aspects need to be considered? In this
final report, we will deliver solutions to the Freshman Seminar Assignment Prob-
lem, our team’s final project for Operations Research II, Fall 2014. We will first
briefly describe the real-world problem and create a basic mathematical model
based on the data. Then, we will feed the pre-processed data into several different
algorithms with various objective functions and run-time constraints, and compare
their final results. Eventually, we will discuss some generalizations of our current
problem and propose potential algorithms for solving them. Our algorithms im-
prove the quality of assignment significantly in terms of student preference com-
pared to the traditional approach of manually assigning students.

1 Problem Overview

The assignment problem we are solving in this project was initially broached by Dietrich Col-
lege of Humanities and Social Sciences at Carnegie Mellon University. The main goal is to assign
freshmen to mandatory seminars in a way such that all seminars are filled, and that students are
assigned to the seminars that they are interested in. In the real-world dataset we are provided with,
there are 308 students and 22 seminars. Each seminar can have at most 16 students, and each student
must enroll in exactly one seminar.

To facilitate the matching process, students are asked to rank one “first-choice” seminar and
three “second-choice” seminars. We associate costs with assigning a student to a seminar based on
the student’s preference for the seminar. To find the optimal assignment, we approached the problem
in two ways — minimizing the total cost across all seminars and smoothing out enrolled students’
preference for each seminar.

2 Mathematical Model

Based on the problem description in Section I, we can build a mathematical model for it in
order to describe an algorithm for solving the problem with any valid input data.

2.1 General Input
e n: Number of students (n > 0);
e m: Number of seminars (m > 0);
e k: Maximum number of selections that a student can make (1 < k < m);

e s, ;: The j™ selection of i™ student, where 1 < i < nand 1 < j < k. s;; = 0 when the
Student ¢ makes no corresponding choice for Rank j;

e g;.: The quota for kth seminar, where 1 < k < m.

2.2 Input Constraints
e Positivity: n,m,k > 0,Vk € {1,--- ,m},qr > 0;
e Number of selections for student is bounded by number of available seminars: k < m;

o Student rankings are valid and unique: V(7,5),1 < s; ; < m. And, for each i, all non-zero
entries s; ;’s take unique values.

2.3 Decision Variables
e Y; ;: Indicator variables for whether Student ¢ is assigned to Seminar j, where 1 < i < n
and1 < j <k;

2.4 Data Pre-Processing

In order to deal with cases when a student is only willing or allowed to rank &’ < m seminars,
we automatically set all “unassigned” priorities to a large value M. Also, we change the representa-
tion of students’ preference from (student, ranking) — seminar to (student, seminar) — ranking to
make further calculations easier, i.e.6

X, - {l if Student 4 ranked j as [option, or s;; = j forsome [€ {1,--- ,k}
" M if Seminar j is not on Student ¢’s list, or s;; # j foralll € {1,--- ,k}’

where M is an arbitrarily large value in order to discourage the algorithm from assigning a student
to a seminar that s/he did not list.

2.5 General Constraints

e Y, ;’s are indeed indicator variables: V(i, j) € [n] x [k],Y; ; € {0,1};

e Each student is assigned to precisely one seminar: Vi € [n], >, Y, = 1;

e Each seminar is within enrollment quota: Vj € [m], >, Y1 ; < ¢;;

3 Approach for Various Heuristic Functions

Due to the flexibility of the original problem, we are proposing different objective functions
for optimization, including minimizing the total “ranks” given by the students, and minimizing the
variance of student preference across different seminars. In the following sub-sections we briefly
introduce our approach for each heuristic.

3.1 Minimize Total Rank of Students

In this case, our goal is to minimize the sum of all student rankings for their assigned seminars.
To do so, our objective is to minimize W = 77", 7™, X; ;V; ;. This would guarantee that
students are as satisfied as they can be overall.

3.2 Minimize Variance of Students Preference across Seminars

In addition to minimizing the total rank of students, it would also be helpful if we could “bal-
ance out” students’ preference of their assigned seminar for each seminar. For example, we do not
want to have an assignment where some seminar has all students listing it as their first choice, yet
some other seminar has none of the students listing it in their choices at all. In order to approxi-
mate the optimal solution, for each seminar we may enforce a hard limit on the number of students
enrolled that ranked it as first tier, second tier, etc.

Meanwhile, the hard limits can clearly interfere with the optimal solution that minimizes the
total rank of students in the final assignment. Therefore, care needs to be taken when picking the
hard limits, such that there is a balance between maximizing overall satisfaction and minimizing
variance of satisfaction across seminars.

4 Exact Algorithm for Minimizing Total Rank

If we only consider the objective function in Section 3.1, the problem can be reduced to an
Assignment Problem when we include “dummy seminars” and “dummy students”. After applying
Hungarian Algorithm, we can obtain an absolute optimal solution that minimizes the total “cost” of
students. Details about the algorithm are as follows:

4.1 Data Pre-Processing

We start with the matrix X ; as obtained in Section 2.4. For each column that represents
Seminar j, we create extra (j — 1) dummy seminars by duplicating the same column g¢; times. After
that, we make our cost matrix square by adding zero rows (i.e. dummy students) at the bottom of
the cost matrix. This gives us a matrix that we may feed into Hungarian Algorithm.

4.2 Hungarian Algorithm

Given the square cost matrix from previous section, Hungarian Algorithm returns a student-
dummy seminar assignment with minimal total cost in polynomial time [1]. From the result, we
may simply assign each student to the actual seminar that the dummy seminar in the augmented cost
matrix corresponds to.

5 Approximation Algorithm for Constraining Variance

While the previous exact algorithm minimizes the sum of ranks of students across all seminars,
it does not balance out the preference of students in different seminars. In order to do so, a heuristic
for approximation is to place an artificial hard quota, @ € (0, 1], on the proportion of students in any

seminar that place it as their first option. While the exact optimal solution for different values of Q
can be obtained by running Hungarian algorithm with different combinations of dummy seminars,
its runtime (more than one hour for n = 300) makes it undesirable.

In this case, our solution is to use a randomized balanced algorithm with user-defined number
of iterations, and then return the best solution to the user. This algorithm allows us to determine a
desired distribution of student interest and minimize its ensuing variance. Following is the detail of
the algorithm:

5.1 Balanced Algorithm

For the balanced algorithm, we fix a value of Q. For each seminar j, we randomly select up to
Q-g; students who have selected it as their first choice, and assign them to that seminar. If the number
of students who have ranked it first is smaller than Q - g;, then all of those students are assigned to
that seminar. After each seminar has been filled with up to Q - g; first choice students, we randomly
fill the remaining (g; — Q - ¢;) seats in the seminar with the students who have ranked that seminar
as their second choice. If there are students remaining after this second round of assignments, we
then randomly assign them each a seminar.

Due to the random nature of the algorithm, it is best to run it multiple times in order to select
an assignment that gives minimum total cost. Each iteration of the algorithm is outlined as follows:

Algorithm 1 Balanced Algorithm

UnassignedStudent + {1,2,--- ,n}
Roster; < @ for each j € [m]
for j=1tomdo
FirstChoiceSet; <— RandomSubset({i € [n] | X; ; = 1} N UnassignedStudent, Q - ¢;)
Roster; <— Roster; U FirstChoiceSet;
UnassignedStudent <— UnassignedStudent \ FirstChoiceSet;
for j=1tomdo
SecondChoiceSet; <— RandomSubset({i € [n] | X; ; = 1} N UnassignedStudent, ¢; — |Roster;|)
Roster; < Roster; U SecondChoiceSet;
UnassignedStudent <— UnassignedStudent \ SecondChoiceSet;

for s in UnassignedStudent do
Assign s to a random available seminar

Output: Roster; < list of students in Seminar j based on balanced algorithm for each j € [m]

6 Summary of Results

So far we have implemented the two algorithms above to solve the seminar assignment prob-
lem, namely the Exact Algorithm which applies the Hungarian Algorithm, and the Approximation
Algorithm which utilizes randomization. Both algorithms are tested on the real data for the incom-
ing class of Dietrich College for Year 2013 (n = 308, m = 22). The cost for assigning a student to
a seminar is defined as g(z) = 222, where z is the tier that student ranks the seminar; if the student
does not rank the seminar, the cost would be g(x) = 10,000, which is a huge constant inspired by
Big-M method in linear programming.

6.1 Exact Algorithm

We use the Hungarian Algorithm to find the student-seminar assignment with the minimal total
cost. The algorithm gives a very satisfactory assignment within five minutes. To be specific, among
all the 308 students, 207 of them are assigned to their first choice of seminars, consisting of 67.2%
of the population; and 82 are assigned to their second choice of classes, consisting of 26.6% of the
population. Therefore, a total of 93.8% of the students are assigned to either their first or second
choice of seminars. The remaining 19 students do not provide any preference of seminars, so they
are randomly assigned to seminars which are not full. We also get a satisfying balance among

seminar enrollments. Among all the 22 existing seminars, 18 of them get full enrollment of 16
students (16 was the highest enrollment allowed in 2013); one of the seminar gets 15 students; one
gets 5 students; and the other two seminars left get O students enrolled. For the seminars with zero
enrollment, we would simply cancel it. The total cost of the optimal solution is 1, 900, 164.

6.2 Approximation Algorithm

The Approximation Algorithm returns a quite satisfying result with 10,000 iterations in under
two and a half minutes. Among the 308 freshmen students, 151 of them are assigned to their first
choices, which consists of 49.0% of the total population of students; 132 are assigned to their second
choices, which consists of 42.9% of the population; 5 students are assigned to their later choices;
and 19 of them do not show any preference of seminars and are assigned to a random available
seminar. Therefore, a total of 91.9% of the students who indicated preferences are assigned to either
their first or second choice. Regarding the balance of enrollments among the seminars, 15 of the
seminars get full enrollment of 16 students; 3 of the seminars get pretty good enrollments of 15,
14 and 13 students respectively; and 3 of the seminars are poorly enrolled with 7, 5 and 2 students
respectively. The total cost of the optional solution is 2, 200, 270.

6.3 Comparison & Analysis

According to the results of the Exact Algorithm and the Approximation Algorithm, both are
able to provide us with quite satisfying assignments. More than 90% of the students are able to get
in their first or second choices of seminars. In addition, the class enrollments are balanced.

However, both algorithms have their own pros and cons. The Approximation Algorithm has
a faster and scalable performance compared to the Exact Algorithm because it uses randomization
instead of calculating the best result. Therefore, when the dataset becomes very large, it is better
to choose the Approximation Algorithm. However, the relative performance of the Approximation
Algorithm cannot be guaranteed compared to the Exact Algorithm, and it is absolutely not as good
as the Exact Algorithm which always gives the minimum total cost. Therefore, when the dataset is
not huge and the runtime from using the Exact Algorithm is realistic, the Exact Algorithm should
be a better choice as it provides us with the best solution.

6.4 Limitations

As mentioned above, despite the satisfactory performance of the exact algorithm, its run-time
complexity O(n?) makes the algorithm undesirable for n > 1000. Therefore, further work should
be focused on more effective heuristics for the approximation algorithm in order to improve the
quality of result under a reasonable time constraint.

7 Further Work & Enhancements

7.1 Allowing flexible input parameters

For our implementation, the main test case is for seminars with the same enrollment quota, and
that each student makes one “first-choice” and three “second-choices”. However, our implementa-
tion of the algorithms in Sections 4-5 also supports seminars with various quotas and also students
that rank arbitrary number of seminars in arbitrary number of tiers. This makes our implementation
applicable to much more real-world cases because in general the course sizes need not be the same,
and students should be given the opportunity to make flexible selections.

7.2 Supporting bi-directional preference/cost parameters with Stable Marriage Algorithm

One of the features we could implement in the future might be that the final assignment does not
only depends on the students’ rankings on seminars but also the seminars’ rankings of students. For
example, if a certain seminar is very major-oriented and prefers history major students, then we will
want to enhance our algorithm by accommodating for these bi-directional preferences. Algorithms
like the Stable Marriage Algorithm would be useful to reference, or we may simply use the sum

of cost in both students’ and seminars’ perspectives as parameters in the algorithms specified in
Sections 4-5.

7.3 Stable Assignment Optimization

Similar to the principle of Stable Marriage Problem, in the final seminar assignment we do not
want to have two students A and B, such that A prefers B’s section, and also vice versa (we call those
two students rogue pair). This can be done by scanning each pair of students and fixing every rogue
pair. The algorithm is outlined as follows:

Algorithm 2 Rogue-Pair Fixing Algorithm

Input: asgn, < current seminar assignment for Student ¢
Output: (i,j) if we found a rogue pair, otherwise null
function FINDROGUEPAIR(asgn)
for i=1 to n do
for j=i+1 ton do

if Student ¢ and j prefer each other’s seminar then return (i,j)
return null

Input: asgn, < seminar assignment for Student ¢ based on greedy algorithm
Output: asgn,: rogue pair-free assignment for Student ¢
p < FindRoguePair(asgn)
while p not null do
(i) < p
asgn, <> asgn
p < FindRoguePair(asgn)

7.4 Parallelize Approximation Algorithm

Since the approximation algorithm in Section Five depends on a user-defined number of inde-
pendent trials, we can actually parallelize the algorithm by using multiple threads, such that each
worker is able to make trials and aggregate the result to the Master node. For a modern machine
with multiple CPU cores, this is able to reduce the algorithm runtime by at least 50%.

Acknowledgements

The authors would like to thank Professor Alan Frieze for proposing the Hungarian algorithm
in Section 5 and for holding weekly meetings to track our progress. Also, we thank Professor
Brian W. Junker, Professor Joseph E. Devine, and Gloria P. Hill for providing us with the real
seminar assignment data for Year 2013. Finally, the thanks goes to Brian Clapper for his Python
implementation of Hungarian algorithm, and to Eric Wood, who implemented the excel-to-IATEX
utility.

References

[1] Martello, Silvano, and Paolo Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. Chichester: J. Wiley & Sons, 1990. Print.

Appendices

Appendix A: Raw Data And Results for Seminar Assignment Problem

Student Selection:

. . . . Assigned by Hand: Assigned by Assigned by

Student ID: | Identify l(setXCh(;‘ci ?n(i 53 Zzn)d choices Notes: if blank, none assigned | Exact Algorithm: | Approx Algorithm:
1 8: 14,20, 3 3 3
2 14: 20, 12,2 14 14
3 17: 13,2 17 17
4 14: 6,19, 13 13 13
5 12: 9, 20, 14 12 20
6 12: 20, 6, 3 12 12
7 14:2,12,11 14 14
8 12: 20, 6,7 12 20
9 2:10,6,3 3 3
10 2:7,6,4 2 7
11 1 1 1 1
12 1 1 1 1
13 1 1 1 1
14 1: 15,6, 13 1 1 1
15 1: 8 1 1 1
16 1 1 1 1
17 1 16 5
18 15:8,1,9 1 15 15
19 1: 16, 15,21 1 1 1
20 1: 17,16, 10 1 1 16
21 1: 4, 18,7 1 1 1
22 20: 18,1, 12 1 20 20
23 1:2,9,8 1 1 1
24 1 1 1 1
25 2 16 13
26 18: 14,13,9 2 18 18
27 2: 14 2 2 2
28 14:7,2,12 2 14 2
29 14: 6,2,12 2 14 14
30 2:10,9,3 2 3 3
31 2:14,4,19 2 19 4
32 14: 2,11, 10 2 14 11
33 7:9,14,8 2 7 7
34 14:2,10,6 2 14 10
35 2: 14,15, 8 2 15 2
36 2: 14,12, 16 2 16 16
37 8: 20, 3, 18 2 3 3
38 9:14,21,4 2 9 9
39 2: 11,7, 10, 14: 17, 12,21 2 2 2
40 8:9,4,20 3 8 8
41 2:3,6,12. 3 3 3
42 2:3,10,21 3 21 21
43 14: 2,12, 13 3 13 13
44 18: 15,20, 13 3 18 18
45 21: 14,10, 6 3 21 21
46 9:13,5,8,12,17,21 3 9 17
47 6: 12,18, 8 3 6 12
48 12: 13,2, 18 3 12 13
49 2:3,10,14, 3 3 3
50 8: 9,10, 18 3 8 10

51 10: 8,12, 14 3 10 12
52 4 16 1
53 4:10,2,8 4 4 4
54 6:12,17,9 4 17 17
55 1: 10, 3, 8 4 1 3
56 20: 15, 19, 16 4 20 20
57 10: 4,2, 14 4 10 10
58 10: 4,21,9 4 10 10
59 6: 1,14, 18 4 1 18
60 6:2,4,8 4 6 6
61 4: 10, 21 4 4 4
62 19: 18,9, 8 4 19 19
63 8: 4,10 4 8 4
64 2:14,7,6 4 2 14
65 6 16 3
66 6 16 5
67 6: 10, 21, 14 6 21 21
68 6: 5, 10,7 6 6 6
69 6:11,9,7 6 6 6
70 6 16 10
71 6:8,4,10 6 6 4
72 6: 8,7 6 6 7
73 20: 7,6, 12 6 20 20
74 6: 20, 8 6 6 8
75 6:9,3,7 6 3 7
76 6:18,9,5 6 6 5
77 9:20,12,6 6 9 9
78 7 17 19
79 14: 2,20,9 7 14 14
80 8:6,9 7 8 9
81 2: 12,14, 8 7 2 2
82 2:11,6,7 7 2 7
83 7:2,19, 14 7 7 7
84 15:7,18,9 7 15 15
85 6:7,8,3 7 3 6
86 8: 6,9, 10, 20, 15,12, 16 7 16 16
87 3:6,8,5 7 3 3
88 12: 14 ,21,2 7 12 12
89 8:9,6, 18 7 8 18
90 8:6,18,7 8 7 7
91 1: 20, 6, 18 8 1 18
92 8:9,6,12 8 8 12
93 8:6,20,8 8 8 8
94 11 8 11 11
95 6: 8, 14,2 8 6 8
96 8:2,14,15 8 15 15
97 8:7,6,10 8 7 8
98 8:10, 11, 18 8 8 11
99 12: 9,8, 14 8 12 12
100 18: 8, 15,9 8 18 18
101 8:10, 14, 4 8 8 4
102 8:11,6,3 8 3 3
103 8:7,6,9,20 8 7 7
104 9 17 3
105 9: 18, 15, 16 9 9 16
106 8:9,20,13 9 13 13

107 9:6,10,8 9 9 8
108 9:6,8,4 9 9 4
109 9:8, 15, 10 9 9 9
110 9:7,14, 18 9 9 5
111 8:18,6,9 9 8 9
112 9:12,20,7 9 9 9
113 8:9,15,18 9 15 8
114 11: 9,2, 14 9 11 11
115 4:9,17, 18 9 4 4
116 9: 18, 16, 15 9 9 9
117 10: 4, 3,7 10 10 7
118 12: 14,21, 18 10 12 21
119 10: 15, 18, 3 10 10 10
120 8:10,6 10 8 6
121 10: 3,1, 8 10 10 10
122 10: 21, 3, 1 10 10 21
123 19: 16,9, 10 10 19 19
124 2: 10, 14, 20 10 2 20
125 10: 1,21, 20 10 10 10
126 8: 18, 14, 16 10 16 8
127 10: 2,11, 4 10 10 10
128 11: 2, 14,20 11 11 14
129 11 11 11 11
130 11: 14,20, 12 11 11 11
131 11: 10,2, 17 11 17 17
132 11: 2,14, 20 11 11 11
133 11 11 11 1
134 11: 2,14, 12 11 11 12
135 11: 6, 1, 10, 19, 14, 15, 21 11 1 11
136 11: 14,20, 9 11 11 20
137 2: 11,14, 12 11 2 11
138 11: 2,14, 18 11 18 3
139 11 11 11 11
140 11:5,2,4. 11 11 5
141 2:11,10,7,5, 14,21, 18, 20 11 21 7
142 11: 12,14, 8 11 11 8
143 11: 2,7, 18 11 7 11
144 20: 16, 6, 8 12 20 20
145 2: 14,13, 12 12 13 13
146 12: 6,17, 10 12 17 17
147 12: 9,20, 6 12 12 12
148 1: 3,6, 10, 12, 16, 19, 21 12 1 16
149 2: 11, 14, 15 12 15 15
150 20: 8,6, 13 12 20 20
151 14: 10,21, 4 12 21 14
152 13:2,12,20 12 13 13
153 12: 21, 18, 14 12 12 21
154 6:9,8 12 6 6
155 12: 10, 2, 20 12 12 12
156 20: 14,8, 12 12 20 20
157 11: 12,2, 14 12 11 11
158 12: 10, 3,2 12 12 2
159 11: 2,14, 13 12 13 11
160 9:8,6,11 13 9 9
161 14: 12, 16, 21 13 16 16
162 10: 11, 3, 20, 4 13 10 10

163 11: 12, 14,2 13 11 14
164 8:20, 14,9 13 8 20
165 12: 13,20, 2 13 13 13
166 13:4,8,17 13 13 13
167 17: 12, 14, 15 13 17 17
168 6: 10, 14, 8 13 6 14
169 4: 18, 8, 10 13 4 4
170 13 17 19
171 7:4,2,20,12, 14 13 7 7
172 14: 20, 18, 12 13 14 12
173 2:6,7,9 13 2 7
174 13 19 21
175 14 19 22
176 11: 13, 14, 20 14 13 13
177 9:21,17, 14 14 9 17
178 12: 17,21, 19 14 19 12
179 13:12,2,9 14 13 13
180 2: 4,10, 14 14 2 4
181 2:14,7,8 14 2 7
182 6: 4,8, 15 14 6 15
183 2:12,14,4 14 2 4
184 14: 9,2, 19 14 19 14
185 14: 8, 20, 2 14 14 2
186 2: 14,17, 18, 20 14 17 17
187 12: 14,8, 6 14 12 14
188 14: 18,6, 8 14 14 8
189 2: 14,15, 10 14 15 2
190 9:6,12, 15 15 9 9
191 10: 8,6, 3 15 10 3
192 15: 18,9 15 15 15
193 15: 10, 18, 21 15 15 15
194 17: 14, 15, 21 15 17 17
195 4: 10, 2, 8 15 4 4
196 15:7,8,2 15 15 15
197 15:8,9,6 15 15 15
198 16: 15,20 15 16 16
199 12: 13,20,7 15 13 12
200 21: 15,6, 14 15 21 21
201 3: 16, 15,3 15 3 3
202 18: 15,9, 8 15 18 18
203 15: 18,8,9 15 15 15
204 16 19 13
205 16 19 16
206 8:7,14,20 16 7 14
207 6: 14,17 16 17 17
208 19: 13,14, 16 16 19 19
209 8: 20, 18 16 8 20
210 8: 15, 16, 20 16 16 8
211 8:3,6, 14 16 3 8
212 10: 4,23, 14 16 10 4
213 2:7,9,4 17 2 2
214 17: 14,21, 18 17 17 17
215 9:11,2,13 17 13 13
216 18: 15,7, 8 17 18 15
217 16: 19, 13,12 17 16 16
218 6: 14,12, 3 17 3 3

10

219 18: 12,15, 17 17 18 17
220 9:8,6,7 17 9 9
221 17: 9,8, 18 17 17 17
222 17 19 21
223 11: 18, 12,9 17 18 9
224 20: 8,6, 15 17 20 20
225 6:9,8, 18 17 6 9
226 9:6,13,17 17 17 17
227 16: 21, 15 17 16 16
228 18 19 22
229 18 19 1
230 12: 9, 18, 4 18 12 12
231 8:9,18,7 18 7 8
232 11: 2,8, 14 18 11 2
233 18: 8,15,6 18 18 18
234 18: 15, 14, 8 18 18 18
235 10: 12,5 18 10 10
236 18: 21,14, 8 18 18 18
237 12: 20, 14,2 18 12 2
238 18: 14, 20, 2 18 18 18
239 8:9,18,15 18 15 15
240 8:12, 14,2 18 8 8
241 2: 8,14, 18 18 2 2
242 18: 15,7, 8 18 18 18
243 13: 12, 20, 14 18 13 13
244 20:12 19 20 20
245 2: 10,6 19 2 10
246 2: 12,14, 16 19 16 16
247 14: 19, 21, 10 19 19 21
248 6: 10, 12, 16 19 16 6
249 2:8,21,17 19 21 17
250 14: 19, 15,20 19 19 14
251 6: 8,9, 15,12, 18 19 15 15
252 14;11,4,2 19 14 4
253 8:7,9,18 19 7 18
254 10: 6, 4, 18, 15, 20, 19 19 10 15
255 8:14,2,7 19 7 8
256 19: 16, 12, 18 19 19 19
257 9: 20, 15,6 19 9 9
258 3:2,20,19 19 3 3
259 9:2,18,13 20 13 13
260 6: 12, 20,7 20 7 12
261 20 21 15
262 14: 10, 8, 18 20 14 18
263 20: 21, 18, 17 20 20 20
264 7:20,9,17 20 7 7
265 20: 6, 14,2 20 20 6
266 9:2,17 20 17 9
267 8:7,20,6 20 8 6
268 20: 9,8, 15 20 20 20
269 6: 8,2, 10, 13, 12, 20, 18 20 13 18
270 14: 2,8, 11 20 14 11
271 18: 14, 12,9 20 18 18
272 14: 12,20, 15 20 15 14
273 21: 17,18, 10 21 21 21
274 8: 20,21, 14 21 21 21

11

275 14:2,6,4 21 14 14
276 12: 14, 13,20 21 13 12
277 8;6,7,20 21 20 6
278 12: 14, 15,2 21 12 15
279 10: 3,21 21 10 10
280 10; 11, 12,21 21 21 10
281 21 21 10
282 9:20,8,6 21 9 6
283 21: 14,1,10 21 21 21
284 2:6,7,21,17,14,12 21 21 2
285 17: 13, 21,8 21 17 17
286 10: 21, 15 21 21 21
287 14: 3,11 21 3 11
288 82-188/S14 21 16
289 14:2,8,4 82-188/S14 14 4
290 7:2,8,10 82-188/S14 7 7
291 10: 14,8 82-188/S14 10 8
292 2:7,8,4 82-188/S14 7 2
293 2:4,7,9 82-188/S14 7 2
294 12: 20, 19 82-188/S14 20 19
295 6: 8, 14, 10 82-188/S14 6 6
296 20: 12,13, 14 82-188/S14 20 13
297 2: 11,12, 14 82-188/S14 2 11
298 14:2,8,3 82-188/S14 14 14
299 12: 14,2, 10 82-188/S14 12 12
300 9:7,20,10 82-188/S14 20 7
301 11: 4,2, 10 82-188/S14 11 4
302 12: 20,9, 8 82-188/S14 20 9
303 6: 8, 10, 14 82-188/S14 6 6
304 6:7,8,15 82-188/S14 15 6
305 6:8,9,10 85-131/S14 6 6
306 9:2,6,18 85-131/S14 18 2
307 6: 8,9,18 85-131/514 18 9
308 8:6,9,10 85-131/S14 8 6

12

Appendix B: Source Code for Exact Algorithm with Hungarian
Dependencies:

e Python numpy package: available at http://www.numpy.org/;
e Python Munkres package: available at https://pypi.python.org/pypi/munkres/;
from munkres import Munkres, print_matrix

import numpy, Sys
import re

def getCost(tier):
return 2 % tier * tier

Given a column number for augmented matrix, find its seminar number.
def getSeminar (index, q):

s =0
for i in xrange(len(q)):
s += q[i]

if index < s:
return 1 + 1
return —1 # Shouldn’t happen!

Parse an input line to (seminar, tier) pairs
def parseLine(line):
tierStrings = re.split(’:
splitTier = [x.split(”.,”
splitTierResult = list ()
for tier in xrange(len(splitTier)):
splitTierResult.append(list())
for selection in splitTier[tier]:
sanitizedSelection = re.sub(”\D”, 77, selection)
if re.sub(”\D”, 7”7, sanitizedSelection) != 7"
splitTierResult[tier].append(int(sanitizedSelection))
result = dict ()
for i in xrange(len(splitTierResult)):
for s in splitTierResult[i]:
if not(l <= s and s <=m):
print ”“Warning:._Student_entered _out—of—bound_Seminar._ID: .
J%s” % line
elif s in result:
print “Warning:._Student_has_.multiple_entry.for_.%d_on_line
Js” % (s, line)

7, line)
) for X in tierStrings]

else:
result[s] = getCost(i)

return result

#

!—— Entry point ——!

#

Specify input file name.
inputPath = “data/Fall2014”

Ask for parameters from user
m = int(raw_input(”Enter_.number_.of_.seminars.(Seminar_ID._starts .from._1):.
)
qq = raw._ input(”Enter quotas._for %d._seminars:.” % m)
if len(qq.split()) == 1:
q = [int(qq. spllt() [0]) for 1 in xrange (m)]
elif len(qq.split()) == m:
q = [int(qq.split()[i]) for i in xrange (m)]
else:
print “Invalid_quota_input!”

13

http://www.numpy.org/
https://pypi.python.org/pypi/munkres/

sys.exit(l)

Load student selections from input file.
print "Parsing._input._file_‘%s ‘...” % inputPath
with open(inputPath, ’'r’) as f:
userlnput = f.readlines ()
if userInput[—1].startswith ("END”):
userlnput = userlnput[:—1]
else:
raise Exception(”Last_line_of_file_must_be_END!")
sys.exit(l)
A = [parseLine(line) for line in userlnput] # Parse input lines
n = len(A)
print "Number_of_students:.%s” % n
if sum(q) < n:
print “Quota_cannot._fit_all_students!”
sys.exit(1l)

Transfer array to Student—Seminar.
B =[]
MCOST = 100000
for i in xrange(n):
B.append ([A[i][j] if j in A[i] else MCOST for j in xrange(l, m+1)])
Duplicate columns for hungarian
B = numpy.array (B, dtype=’int32")
Slices = list ()
for i in xrange(m):
Slices .append (numpy. tile (numpy. transpose ([B[:,i1]]), ql[i]))
C = numpy.concatenate (tuple (Slices), axis=1)
Add zero rows for dummy students
for i in xrange(sum(q) — n):
C = numpy. vstack ([C, numpy.zeros (sum(q), dtype="int327)])
C = C.astype(int)

Apply Munkres library to calculate Hungarian.
print “Running_Hungarian_algorithm _.on_matrix .of_dimension”, C.shape
C =C.tolist ()
m = Munkres ()
indexes = m.compute (C)
total = 0
print ”Student.ID, _ Assigned.Seminar,.Cost”
for row, column in indexes:
if row >= n: continue # Skip dummy students
value = C[row][column]
total += value
print "%d, %d, _%d’ % (row, getSeminar(column, q), value)
print *Total_Cost: . %d’ % total

14

Appendix C: Source Code for Randomized Approximation Algorithm
Dependencies:

e Python numpy package: available at http://www.numpy.org/;

import math, numpy, sys
import re

import copy

import random

def getCost(tier):
return 2 x tier * tier

Parse an input line to (seminar, tier) pairs
def parseLine(line):
tierStrings = re.split(’:|; ", line)
splitTier = [x.split(”,”) for x in tierStrings]
splitTierResult = list ()
for tier in xrange(len(splitTier)):
splitTierResult.append(list())
for selection in splitTier[tier]:
sanitizedSelection = re.sub(”\D”, 77, selection)
if re.sub(”\D”, 7, sanitizedSelection) != 77:
splitTierResult[tier].append(int(sanitizedSelection))

result = dict ()
for i in xrange(len(splitTierResult)):
for s in splitTierResult[i]:
if not(l <= s and s <=m):
print “Warning:._Student_entered _out—of—bound._Seminar._ID: .
%s” % line
elif s in result:
print “Warning:_Student_has_.multiple_entry._.for_.%d_on_line
98” % (s, line)
else:
result[s] = getCost(i)

return result

Main function for running randomized assignment.
def randomAsgn(quotaRatio):
roster = [list() for i in xrange(m+1)]
currCost = 0
currAsgn = dict ()
availStudents = set(range(n))
Stage One: Assign first choices, up to set quota.
for s in xrange(l, m+1):
tmp = randomSub(set(R[s][0]) & availStudents ,
int (math. floor (float(q[s—1]) * quotaRatio)))
roster[s] += tmp
currCost += getCost(0) * len(tmp)
for student in tmp:
currAsgn|[student] = s
availStudents = availStudents.difference (set(tmp))
Stage Two: Assign second choices, as many as possible.
for s in randomly (xrange (1, m+1)):
tmp = randomSub(set(R[s][1]) & availStudents, q[s—1] — len(roster
[s1))
roster[s] += tmp
currCost += getCost(1) * len(tmp)
for student in tmp:
currAsgn[student] = s
availStudents = availStudents.difference (set(tmp))
Stage Three: Enroll remanining students in Round—robin fashion.

15

http://www.numpy.org/

s =1
while len(availStudents) > O:
if len(roster[s]) < q[s—1]:
student = availStudents.pop()
roster [s].append(student)
currCost += MCOST
currAsgn|[student] = s
s =1 if s == m else s+1
return (currCost, currAsgn, roster)

Getting random sublist of a set with length 1
def randomSub(L, 1):
return random.sample(list (L), min(len(list(L)), 1))

Gives random iterator of a list
def randomly (seq):
shuffled = list(seq)
random . shuffle (shuffled)
return iter (shuffled)

#

!—— Entry point ——!

#

Specify input file name.
inputPath = “data/Fall2014”

Ask for parameters from user

m = int(raw_input(”Enter_number_of_seminars._(Seminar_ID_starts _from_1):."
)

qq = raw_input(”Enter_quotas._for._%d_seminars:.” % m)

if len(qq.split()) == 1:
q = [int(qq.split()[0]) for i in xrange (m)]

elif len(qq.split()) == m:
q = [int(qq.split()[i]) for i in xrange (m)]

else:
print “Invalid _quota_input!”
sys.exit(l)

iters = int(raw_input(”Enter_number_of_iterations.to.run.randomized.
assignment:.”))

Load student selections from input file.
print “Parsing._input_file_‘%s ‘...” % inputPath
with open(inputPath, ’'r’) as f:
userlnput = f.readlines ()
if userInput[—1].startswith ("END”):
userlnput = userlnput[:—1]
else:
raise Exception(”Last_line_of_file_must_be_END!")
sys.exit(l)
A = [parseLine(line) for line in userInput] # Parse input lines
n = len(A)
print "Number_of_students:.%s” % n
if sum(q) < n:
print “Quota_cannot_fit_all_students!”
sys.exit(1l)

Transfer input to (student,seminar) —> ranking mapping.
Initialize (seminar, ranking) —> student mapping.
B =[]
R = [([1, [D]
MCOST = 100000
for i in xrange(n):
B.append ([A[i][j] if j in A[i] else MCOST for j in xrange(l, m+1)])
for i in xrange(l, m+l):

16

rankedFirst = list ()
rankedSecond = list ()
for s in xrange(n):
if i in A[s] and A[s][i] == getCost(0):
rankedFirst.append(s)
elif 1 in A[s] and A[s][i] == getCost(l):
rankedSecond . append(s)
R.append ((rankedFirst, rankedSecond))

Mainloop for iterations

bestCost = sys.maxint
bestAsgn = list ()
roster = list ()

bestRatio = 0.0
for i in xrange(iters):
for j in xrange(l, max(q)+1):

(currCost, currAsgn, currRoster) = randomAsgn(j % 1.0 / max(q))
if currCost < bestCost:
print “Current_optimal.cost:.%d ... _.[Run.%d_out_of %d]” % (
currCost, i+1, iters)
bestCost = currCost

bestAsgn = copy.deepcopy(currAsgn)
bestRoster = copy.deepcopy(currRoster)
bestRatio = j * 1.0 / max(q)

print 7Best_.Cost: %d.__(with_first —choice_quota_-%f)” % (bestCost,
bestRatio)

print “Assignment_as._follows:”

for i in xrange(n):
print "%d.—>_%d” % (i, bestAsgn[i])

print ” ”

print “Seminar_roster:”

for i in xrange(l, m+1):
print “Seminar %d:” % i, bestRoster[1i]

17

	Problem Overview
	Mathematical Model
	General Input
	Input Constraints
	Decision Variables
	Data Pre-Processing
	General Constraints

	Approach for Various Heuristic Functions
	Minimize Total Rank of Students
	Minimize Variance of Students Preference across Seminars

	Exact Algorithm for Minimizing Total Rank
	Data Pre-Processing
	Hungarian Algorithm

	Approximation Algorithm for Constraining Variance
	Balanced Algorithm

	Summary of Results
	Exact Algorithm
	Approximation Algorithm
	Comparison & Analysis
	Limitations

	Further Work & Enhancements
	Allowing flexible input parameters
	Supporting bi-directional preference/cost parameters with Stable Marriage Algorithm
	Stable Assignment Optimization
	Parallelize Approximation Algorithm

