
21-393 Operations Research II
17 December 2013

Jae Cho
Kenneth Poon

Vaughn Ridings

Optimizing the Premier League Schedule

Background

The Premier League is the highest professional football league in England that consists
of 20 football clubs. It is the primary football competition in England and is also the most
watched football league in the world. The competition runs every year from August to May.
Each team plays two matches against every team in the league, once at home and once away.
Each team therefore plays a total of 38 matches which sums to 380 matches in a league every
season.

The competition ranks all 20 teams by the number of points they acquire through the
38 games they play in a season. Each team receives three points for a win, one point for a
draw, and zero points for a loss. At the end of the season, the team with the most points
is declared the winner. If two or more teams have same number of points, then the league
ranks them by goal differential (goals scored minus goals conceded).

Objective

In this project, our goal is to find the optimal schedule for the English Premier League.
More precisely, we want to find the most “fair” schedule for all teams in the league. Fre-
quently, there are complaints and concerns with the fairness of the schedule in the Premier
League. Some teams argue that they have to travel further in consecutive games and some
teams complain about how many days of rest they receive compared to their opponents.
Of course, our procedure to make a“fair” schedule will be different from how the league
actually schedules the matches. For example, the league has to take into account constraints
for other competitive matches, municipal requests to avoid certain days due to other events,
commercial concerns, television preferences, and many more.

Data Collected

We collected several data for our optimization model. We obtained the records for all
the wins and losses for every match from the previous season, including which team was the
home team, which one was the away team, the goals scored by the home team, and the goals
conceded by the home team. We also collected data for all the distances between every pair
of stadia. The data was derived from the website Football-Data.co.uk which keeps records
of every Premier League match back to 1992.

1

Creating a Model

There are several methods that could be used to help create a “fair” schedule for a league.
In our optimization problem, we decided to maximize the schedule advantage for the weakest
team first, then the next weakest team, then the next, until we completed the scheduling with
the strongest team. To do this, we obviously begin by creating the schedule for the weakest
team by maximizing their advantage. Next we construct the schedule for the next weakest
team. However, we must keep in mind that this team is constrained by the prior team’s
schedule. To illustrate this, consider the weakest team to be team A and the next weakest
team to be team B. After the first step, we have already set team A’s schedule so team B
must play team A according to team A’s schedule. Furthermore, when scheduling team B’s
opponents, team A and team B cannot play the same opponent at the same time. This of
course places constraints on which opponents team B can play. As mentioned previously,
we continue this algorithm until the final (strongest) team. By this process we obtain a full
league schedule.

However, we have a problem when it comes to measuring the advantage a team has. First
off, what is an “advantage”? What is considered a “good” schedule to have? Does the order
of opponents matter? Is it good to pattern your games home and away or is it better to
have a run of home games and then a run of away games? Are there other variables that
influence advantage when we create a league schedule?

To begin to answer these question, we first define exactly what advantage is. Although
there were several valid ways to define it, we label advantage as the expected goal differential
a team will have in a game. A goal differential is the number of goals a given team scores
in a game minus the number of goals that their opponent scores in a game. Therefore this
can be a positive or negative number. To illustrate, if your team wins 3-1, then you win by
a +2 goal differential, or by our definition, a +2 goal advantage. The same is if you win 2-0,
or 4-2. However, if you lose 5-3, then you will have a -2 goal advantage, as your opponent
scored two more goals than you did. Ties, of course, would be a 0 goal advantage. Defining
advantage in this way is very useful. It gives us an indication of not only which team is
likely to win, but also by how much they will win. In sum, we want to maximize a teams
advantage over an entire season. In other words, we want to give them the best strength of
schedule.

Now that we have defined advantage, we need to deduce which variables help influence
advantage. To help determine this, we used the statistical program R to help us determine
exactly what variables change a team’s advantage. For simplicity, we only used the data from
the 2012/2013 season to help model expected advantage. There were plenty of variables to
choose from including the opponents for each game, whether a game was played at home
or away, the number of home games in a row or the number of away games in a row, the
ranking of the opponent based off their finish from last season, the distance traveled for
each team, and the scoreline for every game. From this data we linearly regressed several
combinations for variables against expected goal advantage to determine the impact of each
variable. In the end, we decided to take the model with the following variables: whether
the match was home or away (which we named HomeAwayBin), how many home games a
team in question had played up until the current matchday (which we called HomeString),
how many away games a team in question had played up until the current match day (called
AwayString), and the logarithm of the sum of the ranks of the current opponent and previous

2

two opponents (called LogRank). The R output is shown below:

This regression gives us the following formula we desire:

Advantage = 0.7456HomeAwayBin+0.2652HomeString+0.1204AwayString+0.7692LogRank

These variables were determined to be the most significant influences on advantage and
they give interesting insights. First note that the regression predicts the advantage each
team has per game. Since each team plays 38 games per season, each team will have 38
predicted advantage values over a season. The sum of these advantages gives a team its
entire season advantage or strength of schedule as defined beforehand. As seen from the
R output, the more home or away games a team has in a row, the more significant their
game advantage is. Therefore, it is not ideal for a team to play home / away / home /
away but rather have a couple home games in a row then a couple away games in a row (i.e.
home / home / away / away). This will be explained in more detail later. Furthermore,
since we created a linear model, it does not matter when a team plays an opponent at home
or when they play them away (in fact, due to the structure of the league, you must play
every team home and away by necessity). This renders the HomeAwayBin variable useless
for our optimization objectives and thus we do not need to optimize on it. However, how
many home and away games you have in a row does matter, so we will still optimize on
the HomeString and AwayString variables. Since the model is additive, this means we can
schedule the opponents and then schedule when the teams play home or away.

The model does indicate that the order of the teams you play does matter. The vari-
able responsible for this, LogRank, merits closer inspection. Often in sports, it is seen as
disadvantageous to play several high-ranked teams in a row. The rankings of teams is de-
termined by the previous season’s results. The winner from the previous season would have
a ranking of 1, second place would have a ranking of 2, all the way down to the the weakest
team have a ranking of 20. The last variable listed above, LogRank, takes the rank of the
opponent currently being played plus the ranks of the previous two teams played and then
takes the natural logarithm of that sum to obtain LogRank. The R output indicates that
having a higher LogRank increases a teams advantage. From here it might seem intuitive
that it would be better to play all the weaker teams at once since that would increase the
LogRank value and thus increase a teams advantage. While this will indeed increase the
team’s advantage for the individual game, it will not help the team’s strength of schedule
for an entire season.

Take the following example as an illustration. Suppose you play teams 17, 18, and 19 (in
terms of ranking) all together at one part of the season and teams 1, 2, and 3 in another part

3

of the season. This means the log rank of the first set will be log(54) and the log rank of the
second set will be log(6). Since we sum up each game advantage to obtain the strength of
schedule over an entire season, the sum of these will be log(54) + log (6) = 5.7807. However,
if we flip team 19 with team 1 such that we play 17, 18, and 1 at one part of a season and
then teams 19, 2, and 3 in another part, we obtain the sum log(36) + log(24) = 6.7616 >
5.7807. From this example, we see that optimizing on the log function helps encourage a
more balanced schedule in terms of the preseason ranking of teams.

As mentioned before, we can schedule the order of opponents and then the home and away
matches separately. Therefore, we can begin constructing a season schedule by denoting the
order of opponents for each team. Recall that each team plays each other twice throughout
the entire season. To help simplify the problem, we will optimize on the first half of the
season where each team has played each other once, then repeat this order for the second
half of the season. This technique is frequently used in sports scheduling and is often called
“mirroring”. Later on when we schedule when teams play home and away, the mirroring
technique will again come in handy.

Optimizing the League Schedule

Although in the Premier League there are 19 opponents for each team, we will reduce
our scenario down to 10 teams where there are only 9 opponents for each team. This is
because our optimization software, standard Microsoft Excel R©, cannot adequately compile
a solution for 20 teams. (In fact, Excel approaches the problem quite crudely by trying all
n! permutations, seeing which ones violate the constraints, and then taking the maximum
value of the ones that do not). Do note however, that the following process is exactly the
same for a larger scale problem.

As outline above, we begin with the worst team (the 10th best team according to the
end-of-season rankings from last season) and optimize their schedule first. Since we are using
mirroring, we only need to schedule the first 9 games. The last 9 games will follow the exact
same pattern we established for the first 9 games. Denote each game as G1, G2, , G9. Each
Gi ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9 } and Gi 6= Gj for all i 6= j. As detailed above we want to
maximize the log sum of the last three opponents for each game. In other words: we want
to maximize the value:

max ln(G1) + ln(G1 + G2) + ln(G1 + G2 + G3) + ln(G2 + G3 + G4) + ln(G3 + G4 + G5)+
ln(G4 + G5 + G6) + ln(G5 + G6 + G7) + ln(G6 + G7 + G8) + ln(G7 + G8 + G9)

s.t. Gi ∈ {1, 2, ..., 9} for all i = 1, 2, ..., 9
Gi 6= Gj for all i 6= j

Plugging the appropriate constraints into Excel, we obtain this schedule for team 10:

4

So team 10 will play teams 9, 6, 3, 7, 5, 4, 8, 2, 1 in that order. Note that team 10 does
not ever play 3 difficult opponents in a row, nor do they play three easy opponents in a row,
as intended. Moving on, we can now optimize team 9’s schedule. However, there are a few
more additional constraints for team 9’s schedule optimization. First, they must play team
10 the first week. Second, they can not play team 6 the second week, nor can they play team
3 the third week, etc. because team 10 is already playing those opponents. Adding in these
constraints, we now optimize the schedule for team 9 to obtain the following:

So team 9 will play teams 10, 5, 4, 8, 3, 6, 7, 1, 2 in that order. By design, team 9 does
not play any of team 10’s opponents on the same day and team 9 plays team 10 on the day
determined by team 10’s schedule optimization. We can now continue with team 8. Again,
the constraints increase because team 8 must now play team 10 on matchday 7 and must
play team 9 on matchday 4. Of course, team 8 cannot play any of team 9 or 10’s opponents
on the same matchday. This type of greedy algorithm continues in this vein until we get the
following scheduling table:

5

Keep in mind that we use the mirroring technique to schedule the second half of the
season as well, so the order of the opponents in the second half of the season will be the
same as the first half. Now all we have remaining for the scheduling process is to determine
when teams will be at home and when they will be away. Again the mirroring technique
will be used, except in this instance, if a team plays at home against an opponent in the
first half of the season, that team will play the same opponent away in the second half of the
season and vice versa. Here, we will put an additional restriction on scheduling home/away
matches that are often used when formatting Premier League seasons. No team may have
more than two home or away games in a row throughout the season.

Unlike the scheduling of opponents, scheduling when a team plays home or away can be
done manually due to its relative simplicity. Recall that the linear model created earlier has
these two terms: 0.2652HomeString+0.1204AwayString. Of course, the HomeString and
AwayString variables are the number of home or away games that have been played in a
row up to the current matchday, as defined above. Due to our restriction that there can be
no more than two home or away games in a row, these variables can only take the values 0, 1,
and 2. Both coefficients for the variables are positive, so we want to maximize these values as
much as possible to increase advantage. Furthermore, notice that the HomeString variable
has a higher weighting on it. This indicates that given the choice between scheduling two
home games in a row or two away games in a row, we would want to choose home games
over away games.

To illustrate, consider the possible home and away combinations if we played four games
where two games are home and two are away. Clearly, we have

(
4
2

)
= 6 ways of doing this.

The possible combinations are HHAA, AAHH, HAHA, AHAH, HAAH, and AHHA where
A is away and H is home. Consider the first option: HHAA. The first game would be the
first home game in a row, and zeroth away games in a row. The second game would be the
second home game in a row and the zeroth away game in a row. The third game would
be the zeroth home game in a row and the first away game in a row. Finally, the fourth
home game would be the zeroth home game in a row and the second away game in a row.
Therefore, the HomeString vector is (1,2,0,0) and the AwayString vector is (0,0,1,2). This
means that the advantage corresponding to this schedule is 0.2652(3) + 0.1204(3) = 1.1568.
The advantage for the AAHH schedule is the same (it is simply the opposite schedule of the
first). The advantage for HAHA and AHAH are both 0.7712. The advantage for HAAH is

6

0.8916 and the advantage for AHHA is 1.0364. As illustrated by this example, it is clear
that pairing the home and away games together increases a teams seasonal advantage. The
same results are obtained on a larger scale.

We now return to the scheduling. As before, we begin with scheduling the 10th placed
team first. Since we want to maximize the number of home pairings and away pairings, we
obtain a schedule that looks like this:

After filling in the this teams home/away schedule, we must denote the status of the
corresponding fixtures. Obviously, if the 10th placed team plays an opponent at home on
a given matchday, that opponent must be playing the 10th placed team away on that same
matchday. After accounting for this, we can move onto the 9th placed teams scheduling by
again maximizing home pairing and away pairings. Obviously, we must keep in mind that
we must maximize the number of home/away pairings while considering the match against
team 10 is already set. The resulting schedule, again accounting for corresponding fixtures,
looks like this:

7

While it may be tempting to move onto the next team and create their home/away
schedule, we must address a potential problem. Had we moved on to the next team, we
could create inconsistencies in the rules established due to the corresponding fixtures. For
example, we may inadvertently force a team to play three away matches in a row due to the
fact we already set the schedules for the teams above it. Therefore, after scheduling for the
9th placed team, we must look through the rest of the schedule and mark which matches are
now forced to be home and away. Take the instance where a team currently has the following
home/away schedule: H, , H. Because a team may not play three home matches in a row,
the blank must be an away match (and thus the team they are playing must also be at
home for that corresponding fixture). Another example would be , A, A, . Both blanks
must be home matches due to the same rule (and again, the opponents which these blanks
correspond to must play away for those fixtures). A final, yet vital consideration involves
the mirroring technique. Since we are only scheduling for the first nine games, we must keep
in mind that the home/away scheduling for the next nine games are the exact opposite; if
a game for a team on matchday 1 is at home, then it must be away on matchday 10. The
2-game max consecutive home/away rule therefore prohibits, for example, a team starting
their season with two home games with their ninth game away. Due to the mirroring, this
would force games ten and eleven to both be away and thus create a string of three away
games which is not allowed. Ironically, even after scheduling for the first two teams, the
rules established forces the schedules to look like this:

8

After this we can move onto scheduling the blank spaces for the next lowest ranked
available team (in this case team 8). Of course, we need to make sure we maintain our rule
on sets of home and away games. The final schedule is as follows:

Finished Scheduling

This is the resulting schedule of our formulation. Upon visual inspection, several in-
teresting trends become quite apparent. First and most importantly, lower strength teams
received preference in this scheduling formulation. As team strength increased, the strength
of opponents varied less and less from game to game. This moved higher-ranked teams
away from having a balanced schedule. This was intentional since they were given the least
preference. It should also be noted that while the overall advantage for each team tends

9

to decline from the stronger teams to the weaker teams, it does so by small intervals. This
indicates that teams are actually all receiving roughly equitable schedules, so there is not an
unreasonable amount of advantage given to any one team that could lead to complaints of
blatant unfairness.

Interestingly, all team schedules begin with a game against a team with similar rank,
indicating that the formulation attempts to give the current team the easiest start to the
season possible. On the opposite end, each team finishes the schedule playing the team with
opposite rank (10 against 1, 9 against 2, and so on). So to a weaker team, it may appear
that they will be stuck with a hard end to their season, while strong teams get an easy end.
Though the formulation tells us that this scheduling is the most fair, individual teams may
perceive this to be unfair. This is because a special emphasis is often placed at the end of
season, when many teams look to increase their goal counts or try to make a final push to
increase their league rank. Some might be unhappy with the psychological effect that this
perception could incur. Accounting for this would likely lead to a more complicated model,
one that would be outside the capabilities of our solver used.

Further Applications

Our formulation explored the best scheduling for a theoretical half-sized Premier League.
With a more efficient calculation algorithm and/or more powerful solver, our formulation
could easily be scaled up to the full 20-team, 38-fixture problem. In addition to the opti-
mizations we already have, other factors could be added to the model, such as number of
days of rest between games and distance traveled. These variables do not seem to have as
much impact or significance as the ones presently considered although they are shown to
contribute. If these factors were accounted for, they would be implemented in a very similar
fashion to the methods we have already established.

Though our simulated league does not have them, a real-life scheduling of games could
contain many restrictions that must be translated into constraints. For example, a certain
city may not be able to accommodate a game on a certain date. Additional constraints could
range from city mandates, team requests, or individual holidays. Nevertheless, our model
offers a solid basis for producing a fair schedule with the techniques made available to us.

10

