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Abstract 
  

 In this paper we will discuss the steps towards setting up the framework for a securities 
investment algorithm. The paper will go over various prediction algorithms, as well a portfolio 
allocation strategy based on a genetic algorithm. Reasonable evidence is given that the 
algorithms presented are effective on their own. However, they also leave room for more 
algorithms and heuristics to be integrated into the overall strategy.  

Introduction 
  

 The idea for this project is a marriage of two ideas: a stock movement prediction 
algorithm, and a portfolio allocation algorithm. The portfolio allocation algorithm takes the 
predicted movements of a set of stocks and accordingly assigns a percentage of the portfolio to 
allocate to each stock. In Operations Research terminology, we are solving the constrained 
problem of maximizing return on investment, while minimizing the variance of the portfolio. We 
want an algorithm that is expected to make money, and do so with relatively high certainty. We 
will go through the prediction algorithms and portfolio allocation algorithms separately, before 
consolidating them and showing our results. 

 Some may argue that our attempt at an investment strategy is futile, since many are 
currently in existence. However, the key is that these algorithms rely on others not knowing how 
they work! As a result, these algorithms are kept in secret and it is essentially up to individuals or 
coalitions of people to come up with an investment strategy. This paper will present a basic 
investment strategy. As would be the case with any such strategy, there is virtually infinite room 
for refinement. Our goal was to bring our algorithm to a point at which it was useful as is, but 
still leave room for refinements. This paper can provide virtually anyone interested in creating an 
investment strategy with a starting off point.  

  

Prediction 

The following is an overview of our various prediction algorithms. Although we do 
suggest the modified regression approach, we will present the evolution of our prediction 
algorithms used. Each algorithm works on the same concept: take closing values of the previous 
n periods, and predict the closing value of the (n+1)st period. The parameter of n can easily be 
adjusted in our code (see appendix). If we define a ‘period’ as more than one day (e.g., one 
month), then we take the average of all closing values over that period. Therefore number of 
input values and span of applicability for the prediction output can both be adjusted in 
accordance with the purposes of an allocation algorithm.  
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Moving Average: 
 Moving averages a very basic forecasting technique. We will go through two types of 
moving averages, with the second one more accurate than the first.  

Moving Average 1:    Simple Moving Average 

 In this approach, we take the previous n closing values (or averages of closing values), 
average them, and use this value as our prediction for the (n+1)st time period. The advantage of 
this algorithm is that it is very easy to implement, and can yield reasonable results for small 
periods and small values of n. However, the main disadvantage is that the input data lags. For 
example, with n=20, we would not want the value from 20 days ago to have as much of an effect 
on our prediction as the value from 1 day ago. But with a simple average, this is indeed the case.  

The following is a spreadsheet depicting how the simple moving average algorithm predicted 
values of the Dow Jones Industrial Average since the beginning of 2000. (n=10, period = 1 day). 
It is evident from the graph that the predictor suffers from lag, since the predicted  
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Moving Average 2:   Weighted Moving Average 

 This approach takes a step towards rectifying the lag effect of the simple moving average 
by applying appropriate weights to each value and taking a weighted average. For example, with 
n=20, the value from 20 days ago will have a weight of 1, the value from 19 days ago will have a 
weight of 2, and so forth until the value from yesterday has a weight of 20. Note that this 
weighting system can also be modified many ways, and weights do not even have to be linear. 
We simply chose this heuristic, but as all heuristics go, it can be subject to modification. 

The following is a spreadsheet depicting how the weighted moving average algorithm predicted 
values of the Dow Jones Industrial Average since the beginning of 2000. (n=10, period = 1 day) 



 5 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

1 104 207 310 413 516 619 722 825 928 1031 1134 1237 1340 1443 1546 1649 1752 1855 1958 2061

Adj Close

PA2

 

Modified Regression: 

Our third approach combines typical linear data modeling techniques such as 
extrapolative forecasting with our own logic-based heuristics. This method takes an input of the 
closing values of previous two time periods, as well as the high and low values of the previous 
day.  

In order to eventually understand this algorithm, one should first picture a simple 
extrapolation. The closing values of the two previous days make a line. Extrapolating the line to 
tomorrow yields a prediction for tomorrow’s value. However, there was a significant amount of 
randomness in the randomness of the closing value of tomorrow. Throughout the day, the value 
of the stock fluctuated between its high and low values. As a result, the value that the stock 
winds up closing can be viewed as a random number between that high and low.  

Our modified regression approach takes this randomness into account by adjusting the 
simple extrapolation by pulling the line of extrapolation closer to the midpoint between the high 
and the low values. Mathematically, it can be described as follows (all variables italicized): 

• Take the closing values of the previous two days and find their difference [their 
difference = net] 

• Introduce variable pchange, which will be between 0 and 1, and defined:  

• If yesterday’s closing value (pt) > yesterday’s midpoint (mdpt) 

 pchange = (pt/mdpt) 

• If yesterday’s closing value < yesterday’s midpoints (mdpt) 
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 pchange = [1 – (pt/mdpt)] 

• Predicted close value = (pchange * net) + pt 

To summarize, extrapolate the line of yesterday’s closing value with today’s closing 
value. Also extrapolate the line of yesterday’s closing value with the midpoint value of today 
(the average of today’s high and today’s low values). By introducing pchange, the algorithm 
takes into account the randomness of yesterday’s closing value, and algorithmically produces an 
extrapolation line somewhere between the two aforementioned lines. 

The following is a spreadsheet depicting how the weighted moving average algorithm predicted 
values of the Dow Jones Industrial Average since the beginning of 2000. (n=10, period = 1 day). 
As you can see, the line representing the real closing values and the line representing our 
predictions are virtually overlapping. 
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Portfolio Optimization  
 

So now we have the results for our predictor algorithm, and the question becomes: how to 
allocate a sum of cash we have to effectively make the best investment choice. The data we will 
use will include both the predictor algorithm and the fundamental analysis, to demonstrate the 
differences in the portfolio allocations based on the expected value inputs. Another reason would 
be to use expected values that are obtained by an industry-standard method, and by a new 
method that is not widespread in its use. 
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The main defining property of stocks is the fact that they are risky securities, meaning 
that the returns are in no way guaranteed and the stock price is very likely to drop in value, 
giving a negative return to the shareholder. Given a certain degree of confidence in the expected 
return of a security, the variance of the realized return vs. the expected return would serve as an 
adequate measure of risk. Using these measures, one can implement an algorithm to pick the 
stocks that have the highest returns for given risk, and vice versa. The algorithms to accomplish 
such a task are described as a part of the Modern Portfolio Theory, which deals with optimizing a 
collection of defined assets. 

  A Nobel-Prize winning paper by Harry Markowitz created a notion of an optimized 
portfolio, a collection of stocks that carries the least amount of risk. This risk was defined as the 
previous variances of stock returns, and the covariances of pairs of securities. The constraints to 
the problem include a set expected portfolio return, and the condition that stock proportions add 
up to 1. The main optimization problem is presented as such: 

Minimize:  W = ∑∑wiwj� ij 

Constraints:  ∑wi = 1 

  0 < wi < 1 

Given:  wi – weight of asset in portfolio, a proportion of total money invested in a security  

  � ij – covariance between assets i and j 

 

The main problem is augmented by the condition that various investors have a varying 
taste for risk; hence a λ-value will denote the investor’s risk preference. The λ value will modify 
the objective function value by multiplying the sum of expected returns, and the inverse of λ will 
multiply sum of variances: 

Minimize: W = λ [∑∑wiwj� ij] + (1 - λ) [∑wiµi] 

Constraints:  ∑wi = 1      for i = 1…N 

  0 < wi < 1   for i = 1…N 

  0 < µi < 1    for i = 1…N 

Given:  wi – proportion of asset in portfolio 

  µi – expected return of an asset 

  λ – measure of risk averseness 
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The given optimization problem is solved by quadratic programming, involving systems 
of equations. This method is an effective solution, giving a result in polynomial time, and giving 
the absolute optimal portfolio.  The obvious problem occurs when we increase the size of our 
portfolio to look at a broad spectrum of assets, thus increasing our time complexity by a higher 
order than O(h3) In addition we have to resort to mixed-integer programming if the optimization 
problem is faced with a constraint limiting the number of present assets in the collection:  

Thus the problem we want to consider is such: 

Minimize: W = λ [∑∑wiwj� ij] + (1 - λ) [∑wiµi] 

Constraints:  ∑wi = 1      for i = 1…N 

  0 < wi < 1   for i = 1…N 

  0 < µi < 1    for i = 1…N 

  ∑I(wi) = K I = indicator function = 1 if asset is present in portfolio 

Given:  wi – proportion of asset in portfolio 

  µi – expected return of an asset 

  λ – measure of risk averseness 

 

We will consider a genetic algorithm to solve this problem, because unlike the QP method, it has 
a O(1) complexity. Let us look at the algorithm: 

Genetic Algorithm: 

For all λ values that we want to consider: 

1. Create a solution set consisting of randomly created solutions 

2. Iterate the following until desired accuracy 

a. Get a pair of solutions by binary tournament 

b. Cross their properties to produce a new solution 

c. Evaluate the objective function of child 

d. Compare the child to the worst solution in the solution set 

e. If the child is better, replace the worst solution with child 

3. Plot out the efficient frontier  
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Binary tournament: 

1. Randomly input 2 sets containing 2 solutions each 

2. In each set: 

a. Pick the best solution by evaluating the objective function 

3. Return a pair of solutions 

Crossing genes: 

Rules: 

1. If an asset is present: 

a. in both parents: it is present in the child, weight is randomly assigned from either 
of the parents 

b. in one parent: 50% chance of being present in child with same weight 

c. in neither: the asset is not present in child 

2. Mutate genes: 

a. 50% chance of increasing weight by 10% 

b. 50% chance of decreasing weight by 10% 

 

The testing framework: 
To see how effectively the algorithm performs, we established an 11-asset portfolio that 

would be used for creating an efficient frontier. The number of assets used is typical for a 
portfolio optimization scenario, and would reflect a real-life problem faced by wealth managers 
on a day-to-day basis.  

 The test portfolio consists of stocks ranging in their capitalization, and volatility, thus 
creating a perfect test case. The stocks in our portfolio are: 

DJI, GOOG, S&P500, ESLR, FSLR, MSFT, XOM, TM, SFEG, LUV, SBUX 

 We used historical daily closing price data to calculate the covariance matrix. Among the 
assets, the least volatile stock was Exxon Mobil Corporation, one of the biggest oil companies, 
which avoided huge losses even as the price of oil jumped and dropped dramatically over the 
course of the past two years  

 For the expected returns of stocks, we used two conjectures to predict the price. The first 
method used our predictor algorithms from the first part of the paper and created a vector of 
predicted returns. The predictor is based on technical analysis, and thus uses previous historic 
data to predict the future movements. This method of analyzing stocks has a number of followers, 
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and has been proven to work to a certain degree of profitability. We will use this data to create an 
optimized portfolio based on this theory. 

 However, there exists a different philosophy regarding stock prices, and that has to do 
with the underlying value of the stock at any given time. This theory is called fundamental 
analysis, and emphasizes that stocks will generally follow the movement in the underlying value 
of the company, thus an investor would need to look at the company earnings, cashflows, and 
capital acquisitions to make an informed decision dealing with the movement of the stock in the 
future.  The projections for each company were based on the availability of cash, and the 
recurring cashflows, projected revenue, and projected expenses. The emphasis was put on cash 
availability, due to the recent developments in the credit/debt markets it becomes apparent that 
cash is king and companies that are financially secure will return the highest profit. 

 Overall the predictor values gave a grim outlook on the basis of the previous losses, 
especially in the year 2008. There is no denying that the current economic situation is terrible, 
and may get worse, therefore this prediction can be attributed to a bearish outlook on the market 
in the future. The fundamental analysis evaluation gave a more promising outlook on the stock 
market, given that the current prices are depressed a significant amount. Since fundamental 
analysis figures out the intrinsic value by taking the (Current Valuation) / (Shares Outstanding) 
some of the stocks had been below their value, and the expected turn of events is the realization 
of that value.  

 We will use the two sets of data to create a two optimal portfolios with K = 7, meaning 
we will restrict our portfolios to have exactly 7 assets. The results will be shown in the form of 
the efficient frontier. 
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The covariance matrix and the two expected predictions are as follows: 

DJI GOOG S&P500ESLR FSLR MSFT XOM TM SFEG LUV SBUX
DJI 0.0118 0 0 0 0 0 0 0 0 0 0
GOOG 0.01540.0379 0 0 0 0 0 0 0 0 0
S&P5000.01270.01620.0141 0 0 0 0 0 0 0 0
ESLR 0.02640.0578 0.0290.1316 0 0 0 0 0 0 0
FSLR -0.04150.1751-0.06670.27628.3522 0 0 0 0 0 0
MSFT 0.00960.01820.0103 0.033 0.02 0.0116 0 0 0 0 0
XOM 0.00640.0132 0.0060.01880.1228 0.0060.0084 0 0 0 0
TM 0.0120.0104 0.0140.0238-0.20690.00870.00210.0185 0 0 0
SFEG -0.0029-0.0157-0.0006-0.0084-0.1883-0.0045-0.01030.00860.0357 0 0
LUV 0.00610.00430.00740.0062-0.08420.0029-0.00050.00850.00430.0108 0
SBUX 0.01540.01080.01830.0246-0.40090.01070.00040.0249 0.0120.01280.0384

Using Proprietary Predictor Using Economic Indicators and Fundamental Analysis
Company Predicted Value ($)E[return] Company Predicted Value ($)E[return]
DJI 6261.18419.10.7437 DJI 8623.48419.11.0243
GOOG 210.79275.110.7662 GOOG 290.43275.111.0557
S&P500624.23848.810.7354 S&P500857.29848.81 1.01
ESLR 1.28 2.47 0.5182 ESLR 1.2 2.47 0.4858
FSLR 107.49116.120.9257 FSLR 123.56116.121.0641
MSFT 16.29 19.150.8507 MSFT 22.32 19.151.1655
XOM 72.09 77.610.9289 XOM 86.21 77.611.1108
TM 35.75 61.950.5771 TM 75.44 61.951.2178
SFEG 0.49 0.59 0.8305 SFEG 0.73 0.59 1.2373
LUV 8.04 8.33 0.9652 LUV 10.23 8.33 1.2281  

 

The algorithm came up with two sets of solutions for varying degrees of risk appetite. The results 
are displayed in the form of four graphs: two graphs are showing the efficient frontier for the 
problem, and the two following graphs show the composition of the portfolio for varying values 
of lambda. 
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Efficient frontier – Fundamental Analysis 

LAMBDA RETURN 
 
          

0 123718.5          
0.066667 123713.6          
0.133333 123651.5          

0.2 123391.2          
0.266667 123246.6          
0.333333 123190.4          

0.4 123133.7          
0.466667 123083.9          
0.533333 123072.8          

0.6 123019          
0.666667 122940.1          
0.733333 122773.9          

0.8 122767.6          
0.866667 122079.5          
0.933333 119827.7          

1 116207.8          
 

Efficient frontier – OR Predictor Analysis 

LAMBDA RETURN 
 
         

0 96505.71858         
0.0666667 96505.25097         
0.1333333 96492.32008         

0.2 96505.56866         
0.2666667 96494.3681         
0.3333333 96505.26967         

0.4 96500.67211         
0.4666667 96505.34093         
0.5333333 96492.68344         

0.6 96500.37555         
0.6666667 96119.01049         
0.7333333 95702.15838         

0.8 95288.62184         
0.8666667 94983.36136         
0.9333333 94192.78974         

1 89759.42402         
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Analysis: 
As we can see the efficient frontier is downward-sloping function, because high values of 
lambda convey a high degree of risk averseness. Therefore, the smaller the lambda value is, the 
higher the expected return of the portfolio. It is also worth reiterating that the efficient frontier 
outputs un-dominated portfolios, meaning, for a given measure of risk, the resulting solution 
gives the portfolio with the highest possible expected value. In the OR predictor model, we can 
see that for any measure of risk, we are still expecting to lose at least 4% off our portfolio, which 
means that it makes no sense to keep money in the stock market, given that we can invest money 
in virtually riskless securities. In the Fundamental Analysis model, we can see the risk-averse 
portfolio expects an 11% return, which is the long-run average return on stock indices, which are 
considered very safe investments. Therefore we can see that both models produce un-dominated 
portfolios, and the algorithm works as expected. 

 

Collections of Assets – OR Predictor Model 

 

This graph plots the weights of each asset in the portfolio, given the value of lambda on the left. 
We can see that as we decrease the risk-averseness of our portfolio, the stock with the highest 
return –LUV, becomes the dominant investment. 
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Collections of Assets – Fundamental Analysis Model 

 

This graph plots the various asset weights as a function of lambda. Note, as risk averseness of the 
investor increases, the asset collection becomes more and more diversified, leading to a decrease 
in portfolio variance. As we decrease the value of lambda, the portfolio starts containing more of 
SFEG, which has the highest expected return out of all the stocks in our model. 

Conclusion 
From these results we can conclude that the algorithm performs up to specification, decreasing 
the portfolio variance for a given value of risk. The efficient frontiers that are constructed using 
different predictor methods, and the subsequent genetic algorithm optimization create a curve, 
which an investor could use to pick the best collection of assets, given that he knows his own 
appetite for risk, or a desired expected return. The results give us effective measures for 
proportions of assets to be included in our real-world example of a portfolio of stocks, showing 
that as risk decreases, diversification becomes more important, at the cost of expected portfolio 
return. The algorithm evaluation demonstrated that a rather substantial problem of 11 assets 
could be solved in millisecond time, using a fixed number of iterations, compared with a 
polynomial time QP algorithm that performs poorly as the number of assets increases. Overall 
the objective for creating new/uncommon optimization methods was very successful, and 
provides real-world functionality to real investment problems. Please see attached Appendix for 
Python and Java code for the predictor and optimizer methods respectively. 
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 Appendix 
 

Prediction algorithms: 

class Predictor 

   

  def initialize(file="test2.csv") 

    @stock_file= file 

    @file_lines = Array.new 

    read_file 

  end 

   

  def read_file 

    if @file_lines.empty? 

      @file = File.open(@stock_file) 

      @file_lines = @file.readlines() 

    end 

  end 

   

  #Prediction Algorithm 1: Simple Moving Average 

  #Description: Take the previous n close values and average them to obtain your prediction for n+1 case 

  # By default, n is set to 4, but the method can be called on any n as shown in the test code at the very bottom 

  def simpleMovingAvg(n=4) 

    #n = n-1 

    i=0    

    previous = Array.new(n) 

     

    while(i<=n)       #need a sample size of at least n before making a prediction - insert nil values until you have n values 

      previous[i] = nil 

      i= i+1 

    end 

     

    itr = 0 

    @file_lines.each do |line| 
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      puts "Iteration" + itr.to_s 

      puts line 

      itr+=1 

      dateV, openV, highV, lowV, closeV, volumeV, adjCloseV, allOthersV = line.split(",") 

      puts "Date: " + dateV + ", Close: " + closeV 

       

      if(allValsNumeric?(previous)) 

        puts " Close Before that: " + previous[previous.length-1].to_s 

        puts "Prediction: " + average(previous).to_s 

      end 

           

      previous= update(previous, Float(closeV)) 

      puts previous     

    end     

  end 

   

  #Prediction Algorithm 2: Weighted Moving Average 

  #Description: Takes linearly weighted average of previous n close values and average them to obtain prediction 

  # By default, n is set to 4, but the method can be called on any n as shown in the test code at the very bottom 

  def weightedMovingAvg(n=4) 

    i=0    

    previous = Array.new(n) 

     

    while(i<=n)       #need a sample size of at least n before making a prediction - insert nil values until you have n values 

      previous[i] = nil 

      i= i+1 

    end 

     

    itr = 0 

    @file_lines.each do |line|        #reads each line of the file 

      puts "Iteration" + itr.to_s 

      puts line 

      itr+=1 

      dateV, openV, highV, lowV, closeV, volumeV, adjCloseV, allOthersV = line.split(",") 
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      puts "Date: " + dateV + ", Close: " + closeV 

       

      if(allValsNumeric?(previous)) 

        puts "Prediction: " + weightedAverage(previous).to_s    #displays the prediction according to the moving average 

      end 

           

      previous= update(previous, Float(closeV)) 

      puts previous     

    end     

  end 

   

  #Prediction Algorithm 3: Modified Regression 

  #See description in paper 

  def modifiedRegression 

     i=0    

     previous = Array.new(n) 

 

     while(i<=2)       #need initial sample size of 2 

       previous[i] = nil 

       i= i+1 

     end 

 

     itr = 0 

     @file_lines.each do |line| 

       puts "Iteration" + itr.to_s 

       puts line 

       itr+=1 

       dateV, openV, highV, lowV, closeV, volumeV, adjCloseV, allOthersV = line.split(",") 

       middle = (highV + lowV) / 2 

       puts "Date: " + dateV + ", Close: " + closeV + "High: " + highV + "Low: " + lowV + "Midpoint: " + middle 

        

       #Here is where we calculate the prediction 

       net = closeV - previous[previous.length-1] 

       point = closeV - lowV 
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        if point > middle 

          point = point - middle 

          pchange = (point / middle) * 1 

if net < 0  

  net = -1 * net 

end 

        end         

        if point < middle 

          pchange = (1 - (point / middle)) * 1  

 if net < 0  

  net = -1 * net 

end 

        end 

        if point = middle 

          pchange = 0 

        end 

        

       predV = (pchange*net) + closeV 

 

       if(allValsNumeric?(previous)) 

         puts " Close Before that: " + previous[previous.length-1].to_s 

         puts "Prediction: " + predV 

       end 

 

       previous= update(previous, Float(closeV)) 

       puts previous     

     end     

   end 

   

  #This 'helper' method updates the array storing the past n close values in a moving average 

  #It kicks the most outdated value out of the array, shifts all values down one index, and fills in the  

  # most recent value, val 

  def update(previous, val) 



 19 

    i=1 

    temp = Array.new(previous.length)     

    while(i<temp.length) 

      temp[i-1]=previous[i] 

      i = i+1 

    end 

    temp[temp.length-1]=val 

    return temp 

  end 

   

  #This 'helper' method calculates the average of the values of an array 

  #This method should never be called unless allValsNumeric? returns true 

  def average(previous) 

    total = 0 

    previous.each do |value| 

      total = Float(total + value) 

    end 

    return total/previous.length 

  end 

   

  #This 'helper' method calculates the WEIGHTED average of the values of an array 

  #For example, in an array of 4, the most 'recent' value will have a weight of 4, the second most recent weight 3, etc. 

  #This method should never be called unless allValsNumeric? returns true 

  def weightedAverage(previous) 

    total = 0 

    weight = previous.length 

    previous.each do |value| 

      total = Float(total + weight*value) 

      weight = weight - 1 

    end 

    return total/(previous.length * 2) 

  end 

   

  #This 'helper' checks if all the values in an array are numeric 
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  def allValsNumeric?(previous) 

    previous.each do |value|       

      if !value.kind_of?(Numeric) 

        return false 

      end 

    end 

    return true     

  end   

end 

 

#Test Code 

test1 = Predictor.new 

test1.simpleMovingAvg(2) 

 

Genetic Algorithm: 

package portfoliooptimization; 
import java.util.*; 
import java.io.*; 
/** 
 * 
 * @author Ivan 
 */ 
public class Optimizer { 
    Random rand = new Random(); 
    private double[] expectedValues; 
    private double[][] covarMatrix; 
    private int numAssets; 
    private double minProportion; 
    private double maxProportion; 
    /** 
     * @param args the command line arguments 
     */ 
    public Optimizer(double[] expectedValues, double[][] covMatrix,  
                     int numAssets, double minProportion, double maxProportion){ 
        this.expectedValues = expectedValues; 
        this.covarMatrix = covMatrix; 
        this.numAssets = numAssets; 
        this.minProportion = minProportion; 
        this.maxProportion = maxProportion; 
    } 
         
    public Solution[] GAheuristic(){ 
        Solution[] map = new Solution[16]; 
        int LAMBDA = 15; 
        for(int l = 0; l <= LAMBDA; l++){ 
            double lambda = ((double)l)/((double)LAMBDA); 
            Solution[] d = new Solution[25];  
            for(int i = 0; i < 25; i++) 
                d[i] = new Solution(expectedValues, covarMatrix, numAssets, lambda); 
             
            for(int iter = 0; iter < 3000; iter++){ 
                Arrays.sort(d); 
                //System.out.println("Just before bin tourn"); 
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                Solution child = binaryTournament(d, lambda); 
                //System.out.println("Just after"); 
                if(d[24].compareTo(child) > 0) 
                    d[24] = child;  
            }                        
            Arrays.sort(d); 
             
            //map.put(lambda, d[0]); 
            map[l]=d[0]; 
        }         
        return map; 
    } 
     
    public Solution binaryTournament(Solution[] array, double lambda){ 
        //System.out.println("starting binary tournament"); 
        HashSet<Integer> set = new HashSet<Integer>(); 
        while(set.size() < 4) 
            set.add(rand.nextInt(array.length)); 
        int[] parents = new int[set.size()]; 
        int counter = 0; 
        for(int i : set) 
            parents[counter++] = i; 
           
        Solution parent1; 
        Solution parent2; 
         
        if(array[parents[0]].compareTo(array[parents[1]]) > 0 )             
            parent1 = array[parents[0]]; 
        else 
            parent1 = array[parents[1]]; 
         
        if(array[parents[2]].compareTo(array[parents[3]]) > 0 )             
            parent2 = array[parents[2]]; 
        else 
            parent2 = array[parents[3]]; 
         
      return crossGenes(parent1, parent2, lambda); 
         
    }  
     
    public Solution crossGenes(Solution s1, Solution s2, double lambda){ 
        //System.out.println("starting crossGenes"); 
        double[] parent1 = s1.getWeights(); 
        double[] parent2 = s2.getWeights(); 
        double[] childArray = new double[parent1.length]; 
         
        for(int i = 0; i < parent1.length; i++){ 
            if(parent1[i] > 0.0001 && parent2[i] > 0.0001){        /// asset present in both parents 
                if(rand.nextBoolean())  
                    childArray[i] = parent1[i]; 
                else 
                    childArray[i] = parent2[i]; 
             
            }else if(parent1[i] > 0.0001 || parent2[i] > 0.0001){  /// present in just one                 
                if(rand.nextBoolean()){ 
                    if(rand.nextBoolean())  
                        childArray[i] = parent1[i]; 
                    else 
                        childArray[i] = parent2[i]; 
                }else{ 
                    childArray[i] = 0.0; 
                }   
            }else{              /// not present 
                 childArray[i] = 0.0;                 
            } 
        } 
        //System.out.println("starting mutate"); 
        mutate(childArray); 
        reWeight(childArray); 
        //System.out.println("returning new solution"); 
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        return new Solution(childArray, this.expectedValues, this.covarMatrix, this.numAssets, lambda); 
    } 
     
    public void reWeight(double[] weights){ 
        double sum = 0.0; 
        for(double c_i : weights) 
            sum += c_i; 
         
        double multiplier = 1.0/sum;         
        for(int i = 0; i < weights.length ; i++) 
            weights[i] = weights[i]* multiplier; 
         
    } 
     
    public void mutate(double[] array){ 
        int counter = 0; 
        for(int i = 0; i < array.length; i++){ 
            if(array[i] > 0.0001){ 
                if(rand.nextBoolean()) 
                    array[i] = array[i]*1.1; 
                else 
                    array[i] = array[i]*0.9; 
                counter++; 
            }         
        } 
         
        int newAssets = this.numAssets - counter; 
         
        if(newAssets > 0){ 
            for(int j = 0; j < newAssets; j++){ 
                int newIndex = 0; 
                while(array[newIndex] > 0.0001){             /// random asset 
                    newIndex = rand.nextInt(array.length); 
                    //System.out.println("while loop"); 
                    //System.out.println(Arrays.toString(array)); 
                } 
                array[newIndex] = rand.nextDouble(); 
            } 
        }else if(newAssets < 0){            /// decrease the assets until desired number 
            while(newAssets < 0){ 
                int index = rand.nextInt(array.length); 
                if(array[index] > 0.0001){ 
                    array[index] = 0.0; 
                    newAssets++; 
                } 
                 
            } 
             
        } 
         
    } 
         
    public double[] geneticOptimizer(){ 
        return expectedValues; 
    } 


