
A Brief Study of the Nurse Scheduling
Problem (NSP)

Lizzy Augustine, Morgan Faer, Andreas Kavountzis, Reema Patel

Submitted Tuesday December 15, 2009



0. Introduction and Background

Our interest in the Nurse Scheduling Problem (NSP) as a research project
for Operations Research II originated from the desire to optimize the shift
schedule for nurses at the University of Pittsburgh Medical Center (UPMC).
Our original intention, though altruistic, was unfortunately infeasible. We
chose to contact UPMC Shadyside as they are one of the smaller hospitals in
the Pittsburgh area. Our goal was to have real data to help create the data
set for testing our model. We made contact with the Director of Nurses to
ascertain how hospitals actually deal with the NSP as we thought it would
be interesting to see how someone with a minimal background in mathemat-
ics would set about solving a complex optimization problem like this one.
Our contact with UPMC Shadyside resulted in us finding out exactly how a
non-mathematician handles the problem; they simply avoid it (e.g. the
nurses schedule themselves).

As we began researching and reading papers we found out that the Nurse
Scheduling Problem (NSP) is a well studied problem in mathematical opti-
mization [2] of known complexity (NP)-Hard. Consequently we found two
solution methods offered; a method by cyclic coordinate descent [1] and a
hybrid genetic algorithm [2]. We chose to investigate the Genetic Algorithm
(GA) approach and implemented our model in Java.

We will begin our project by giving general information about genetic al-
gorithms, followed by some notation, our formulation, implementation, and
a statistical comparison of the crossovers we chose to construct.

1. A Word About Genetic Algorithms

The central ideas of Genetic Algorithms (GAs) rely on evolutionary bi-
ology. At the most basic level, the genetic data for an organism is stored in
its chromosomes. In biology, two chromosomes of a population, referred to
as parents, crossover (or mate) to produce offspring which may be subject
to random genetic mutation. The strongest of these offspring, or most fit,
survive to form future populations. GAs are no different than these simple
ideas. For the GA the population is comprised of solutions to the NSP. The
parents are randomly selected solutions, the crossover is a constructed opera-
tor on a solution [2], the mutation is a random change in the solution, and
we apply a fitness evaluator to determine which solutions should move on
between generations.

1



The basic outline of the NSP GA is given below from [2] and explained
later when discussing our implementation:

Genetic Algorithm (NSP)

Initialize a Population of Individuals

While Stop Criterion not met

Selection of Individuals to Combine

Application of Crossover Operator

Application of Mutation Operator

Application of Local Search Heuristics

Evaluation of Fitness of the Newly Created Individuals

Update Population

Endwhile

The first attempts at creating a genetics-motivated algorithm were in the
1950s and exclusively featured the mutation of the genes of an individual
chromosome (or solution). In the mid-1960s computer scientist John Hol-
land discovered that mating solutions was a crucial component of genetic
algorithms and proposed the technique as a solution method [6].

2. Notation

Before presenting the general model we will introduce some notation and
conventions to simplify the problem statement.

� Let there be I nurses scheduled, i = 1, . . . , I

� Let the scheduling period (or horizon) be for K days, k = 1, . . . ,K
(where we tacitly assume that the solution schedule is repeated)

� Let each day have four (4) shifts denoted by S = {s1, s2, s3, s4}

� Define s1, s2, s3 to be working shifts (morning, afternoon, night respec-
tively) and let s4 represent a free shift (or day off)

� Di,k,s ∈ {0, 1} for each nurse i, day k, shift s − that is, nurse i is either
working the shift or not.

For simplicity we will refer to specific instances of the NSP by the 3-tuple

(I,K,S).

2



3. Formulation

I. Simplifying Assumptions

The following comprise a list of simplifying assumptions that we made
throughout our project:

� To simplify the problem we assume that there are no substitutions
available amongst different classes of nurses. For instance, it is not
possible to replace an RN by some number of any other nurse, say 10
LPNs - even if in theory they are able to perform the same tasks. We
use this assumption to assert that we may schedule each type of nurse
seperately.

� To limit the problem size we will restrict the aversion factors of the
nurses to be chosen from A = {1, 2, 3, 4} where 4 indicates a strong
aversion to the shift and 1 represents a preference to the shift.

� We make no differentiation or take any special note of holidays or week-
ends - that is, we treat all days the same way.

� All shifts are not equal, thus each will require a different minimum
number of nurses depending on the day/shift.

II. Constraints

Hard constraints are those that cannot be violated and define the
feasibility of solutions. Hard constraints are concerned with the hospital’s
needs as opposed to the nurses’ preferences. LetHk,s represent the Hospital’s
Minimum Coverage Constraint for day k, shift s, then our hard constraints
are:

� For all days k and shifts s where k = 1, . . . ,K and s = s1, s2, s3, s4:

I∑
i=1

Di,k,s ≥ Hk,s

that is, each schedule must satisfy the hospital’s minimum coverage
constraint.

� For all i, k where k = 1, . . . ,K − 1, i = 1, . . . , I:

Di,k,s3 +Di,k+1,s1 ≤ 1

that is, no nurse may be scheduled to work a night shift (s3) followed
immediately by a morning shift (s1).

3



� For all nurses i and days k: ∑
s∈S

Dk,i,s = 1

that is, each nurse must be scheduled for exactly one shift each day.

Soft constraints are those which may be violated but with an asso-
ciated penalty cost. Constraints of this form contribute to the objective
function and define optimality rather than feasibility. This notion of con-
straint satisfaction with respect to the nurses’ preferences is a crucial
component of the NSP. Our soft constraints are:

� For each nurse i = 1, . . . , I, and for k = 1, . . . ,K − 2:

Di,k,s4 +Di,k+1,s4 +Di,k+2,s4 ≤ 2

that is, each nurse may have no more than three days off in a row.

� For each nurse i = 1, . . . , I, and for k = 1, . . . ,K − 6:

k+6∑
j=k

Di,j,s ≤ 7

that is, each nurse may work no more than seven days in a row.

III. Objective Function

Let F : {0, 1}I×KS → Z be a linear function that takes in a schedule
matrix and outputs an integer fitness value based on the total of the nurses’
individual aversions to the schedule. Similarly, let G : {0, 1}I×KS → Z be an
exponential function for the hospital’s cost due to over/under-staffing.

To formulate an objective function we shall minimize the overall nurse
aversion to the schedule as well as the hospital’s schedule cost subject to a
weight, λ. Let λ ∈ R be such that λ ∈ [0, 1] and consider it a weight in the
interest of the nurses (but decided on by the hopsital). To form the objective
function we may choose λ to favor either the interest of the nurses (λ > 0.5),
the hospital (λ < 0.5), or both interests equally (λ = 0.5).

Since these functions consider bad things (e.g. aversion, cost), it follows
that the objective of the NSP is to minimize:

4



λ ∗ F(
I∑

i=1

K∑
k=1

S∑
s=1

Di,k,s) + (1− λ) ∗ G(
I∑

i=1

K∑
k=1

S∑
s=1

Di,k,s)

4. Implementation Notes

To explain our implementation we begin by presenting sample input for
our Java program. We stored the instances from the NSPLib [7] in .txt files
and used the Java Scanner Class to import our data. Below is a sample
instance corresponding to (I,K,S) = (8, 3, 4):

8 3 4
3 3 2 0
0 1 2 0
3 3 1 0
3 4 3 3 1 4 4 4 3 4 3 3
1 1 1 1 1 4 4 4 1 1 1 1
2 2 2 2 1 1 1 1 2 2 2 2
1 3 1 1 1 2 2 2 1 3 1 1
3 1 3 3 1 4 4 4 3 1 3 3
3 1 3 3 4 3 3 3 3 1 3 3
4 2 4 4 3 3 3 3 4 2 4 4
3 1 3 3 2 4 4 4 3 1 3 3

The first three values are I, K, and S respectively. The following matrix,
H, of dimension K × S represents the hospital’s minimum coverage require-
ments. The input is structured so that each row (day) represents the shift
requirements (s1, s2, s3, s4) for days k = 1, . . . ,K. Recall that the fourth
shift, s4 is the off shift − representing that a nurse is not working that day.
It follows that the fourth shift coverage requirement is zero, that is s4 = 0
always. The remaining matrix, P , of dimension I × KS is the nurse prefer-
ence matrix. P is such that row i of P represents the preferences of nurse
i, i = 1, . . . , I, where the entries of each row represent the aversion of the
nurse i to specific shift s on a given day k for each of the K×S shifts of the
scheduling horizon.

A solution schedule, D?, is a 0/1 matrix of dimension I ×KS. Each row
i of D? represents the schedule of the ith nurse, i = 1, . . . , I. Observe that:

D?
i,k,s =

{
1 if nurse i is working shift s on day k
0 else

5



And it follows that since each nurse will have only one shift per day, each
nurse will have exactly K 1s in their respective row of D?.

The program begins by randomly generating schedules. These schedules
are immediately tested for feasibility and are discarded if they are infeasible,
that is the solution violates at least one hard constraint. The feasibility check
merely confirms that all hard constraints are satisfied.

If a schedule is feasible, then it is tested for fitness and assigned a cor-
responding fitness value. Recall that the fitness value measures how well
the schedule satisfies the soft constraints. Thus a lower fitness value implies
a better scheule. In our program we used the nurses’ total aversion, the
hospital cost, and the aforementioned soft constraints. We arbitrarily chose
λ = 0.46 so that the constraints related to the hospital’s cost were 54% of the
total fitness value. To calculate the overall aversion of a schedule we simply
sum over all nurses i, i = 1, . . . , I, after taking the dot product of their corre-
sponding row i from D? with their respective row i from P . For the hospital’s
cost, we found the difference between the total number of nurses scheduled
to work a specific shift and the minimum coverage for that specific shift for
each shift, squared the difference, and then added all of those values together.
We chose to square the values, rather than have a linear function, to empha-
size the severity of having too many or too few nurses working a specific shift.

Once a schedule has been determined feasible and given a correspond-
ing fitness value, we then created a Java Object called a Chromosome. The
Chromosome contains two data fields; a solution schedule and the schedule’s
corresponding fitness value. A population limit of 15 was established and
we continue to make Chromosomes until we have a full population; at which
point we may apply the crossover step. Given a full population, we determine
which chromosomes will be used as the parents in the first generation of the
algorithm. To decide, we randomly choose two chromosomes from the pop-
ulation, examine their fitness values and choose the more fit chromosome.
This process is repeated until there is a set of four parents. Once the set
of parents are chosen, we randomly choose 2 parents to apply the crossover
operator to, in order to create a child chromosome.

We implemented three crossover operators using ideas from [2] which we
briefly describe:

� Crossover 1 − Takes half of the solution (columns) from parent P1 and
half of the solution from parent P2 to create a child CP1P2

6



� Crossover 2 − Uses a randomly generated crossover point, x, taking
the first x days of parent solution P1 (columns) and the remaining K−x
days from P2 to create a child solution CP1P2

� Crossover 3 − Uses a randomly generated crossover point, i, taking
the first i nurses of parent solution P1 (rows) and the remaining I − i
rows from P2 to create a child solution CP1P2

Further, GAs require random mutation so we implemented a mutation
that would occur roughly 10% of the time. Mutations are crucial for genetic
algorithms because they allow for a more diverse population and aid in find-
ing a global optimal solution. For our mutation, when a child schedule was
produced, there was a 10% chance a mutation would be applied. The mu-
tation randomly chooses a shift for a randomly chosen nurse to change the
given entry of the solution schedule. Note that we maintained the solution
by fixing the remaining entries of the day effected by the mutation.

As soon as the child is produced it is checked for feasibility. If the child
solution is feasible, its fitness value is calculated and the child solution be-
comes a new chromosome. If the child solution is not feasible it is discarded.
The crossover process continues until there are eight child chromosomes. The
child chromosomes are then compared to the current population and the best
children chromosomes replace the worst original chromosomes until a new,
(hopefully) improved, population of size 15 is generated. This new popu-
lation is treated as the initial population and the process repeats. For our
program we repeated this process for 50 generations. In the last generation,
the most fit schedule is chosen as the solution.

5. Analysis of a Sample Instance

We worked with two different data sets when we implemented our model
in order to present a comparison study of the three crossover operators we
implemented, labeled simply Crossover 1, Crossover 2, Crossover 3. Data
Set 1 is an instance of the form (I,K,S) = (25, 7, 4) and Data Set 2 is an
instance of the form (I,K,S) = (60, 28, 4). We ran our model using each of
the three operators, for both of the data sets, 30 times each and obtained
the following results:

Results for Data Set 1
The mean fitness values for Crossover 1, Crossover 2, and Crossover 3 were
214.39, 214.50, and 214.34, respectively. The bloxplot below shows the distri-
bution for each crossover. The overall shape of the distribution of each of the

7



crossovers is fairly similar. They all have medians around a fitness value of
214 and each of the distributions is symmetric. An important distinction for
Crossover 2 is that its IQR (Inter Quartile Range), where the middle 50%
of the data lies, is much smaller than those of Crossover 1 and Crossover 3.
From the graph we see that the mean fitness values for the three crossover
operators are about the same. To statistically verify that the means are the
same, we ran an Analysis of Variance test (ANOVA) with the null hypoth-
esis that all three means are the same, and the alternative hypothesis that
at least one of the means is different. After running the test, we obtained
F = 0.0422 on 2, 56.6 degrees of freedom, which has a corresponding p-value
of 0.9587. Since the p-value is so high, we can say that the means of the
three crossover operators are equal.

Results for Data Set 2
The mean fitness values for Crossover 1, Crossover 2, and Crossover 3 were
2162.12, 2161.92, and 2164.60, respectively. The boxplot below shows the
distribution for each crossover. The overall shape of the distribution of each

8



crossover is symmetric. In addition, the size of the IQR for all three dis-
tributions is the same. Once again, we can graphically see that the mean
fitness values for the three crossover operators are about the same. To statis-
tically verify that the means are the same, we ran an ANOVA with the null
hypothesis that all three means are the same, and the alternative hypothesis
that at least one of the means is different. After running the test, we obtain
F = 0.6295 on 2, 57.97 degrees of freedom, which has a corresponding p-value
of 0.5365. Therefore, we have strong statistical evidence that the means of
the three crossover operators are equal.

Now that we have individually compared the crossover operators with
respect to each of the data sets, we can make inferences comparing them
side-by-side. Compared to Data Set 1 (which contains 25 nurses), Data Set
2 (which contains 60 nurses), has a much higher fitness value, which means
that the nurses as a whole are less satisfied. This makes sense practically be-
cause when there are more people to take into consideration, there are more
(soft) constraints, and it makes it harder to form a solution that satisfies as
many constraints as possible. Another interesting observation between the

9



two data sets is that although within each data set the IQRs are about the
same for all three crossover operators, the approximate size of the IQR for
Data Set 2 (2157 < 2169) is larger than the approximate size of the IQR for
Data Set 1 (212 < 215). This also makes sense practically because in general
when there is a larger data set there are many more feasible solutions, some
of which may be much more optimal than others. On the other hand, when
there is a smaller data set, there may not be as many feasible solutions, and
they will tend to have similar optimal values.

6. Conclusion

Spending a semester learning about the NSP outside of class was a valu-
able experience that exposed us to a difficult problem with a slick solution
method − the genetic algorithm. In addition to spending time reading pa-
pers and refining our understanding of the problem and its solution method,
we were able to experience a group work environment more like that found
in the industry. Furthermore we had to implement the solution in code − a
difficulty we often are able to avoid in classes. Finally, we were exposed to
a metaheuristic technique not otherwise covered in our coursework and were
able to successfully apply it independently to a problem that we chose.

7. Sources

[1] Miller, H., Pierskalla, W. & Rath, G. (1976). Nurse Scheduling Using
Mathematical Programming. Operations Research, Vol 24, No 5, Special Is-
sue on Health Care, pp 857-870.

[2] Maenhout, B. & Vanhoucke, M. (2007). Comparison and hybridization of
crossover operators for the nurse scheduling problem. Annals of Operations
Research, Vol 159, pp 333-353.

[3] Burke, Crowling, Causmaecker & Berghe (2001). A Memetic Approach
to the Nurse Rostering Problem. Applied Intelligence, Vol 15, Num 3,pp
119-214.

[4] Dowsland, K. & Thompson, J. (2000).Solving a nurse scheduling problem
with knapsacks, networks and tabu search. Journal Of the Operations Re-
search Society, Vol 51, pp 825-833.

[5] Maenhout, B. & Vanhoucke, M. (2005). NSPLib A Nurse Scheduling
Problem Library: A tool to evaluate (meta-)heuristic procedures. ORAHS

10



2005 Proceedings.

[6] Holland, J. (1992). Genetic Algorithms: Computer programs that “evolve”
in ways that resemble natural selection can solve complex problems even their
creators do not fully understand. Scientific American, July 1992, pp 66-72.

[7] Data Set Maenhout, B. & Vanhoucke, M. (2005). Tutorial NSPLib
benchmark dataset.

11


