Shortest Path Problems

A digraph D = (N,A) consists of 2 sets:
N = the set of nodes

ACNxN is the set of arcs

2

. \?\3 ’.1.

L

The above is a pictorial representation of the digraph with

N

{1,2,3.4}

A= {{1,3), (2.1), (2.2). (2.3). (3.2)}

We will only consider digraphs with N and A finite.

A walk W from a node il, to a node ip is a sequence of arcs

((il,iz), (iz'iB)""'(ip—l‘ip)) or equivalently a sequence of nodes
(11,....ip) where (ii_l.it) €A for 2<t<p.
Although W is not a set we use the notaiton u €W or i € W to say

arc u is in W or node i 1is in W.

Examples: (1,3,2) and (2,2.3,2,1) are walks in the digraph give in fig. 1.

If W= (il....,ip) and 1 {a <b{p we use the notation
W[a.b] = (ia.ia*l,....ib} for the sub-walk of W from i, to 1.

Next given a walk Wl = (11,...,ip) and a walk W2 = (ip:jl,jz.....Jp) we
define the walk

2
2,

| Fig

Wy + Wy = (it dpeen a0

(We can only form Wl + Wé if the terminal node of Wl = the inital node of
W2}.
A Path P is a walk in which no node is visited more than once.

A circuit is a walk from a node to itself e.g. (1,2,3,4,1) of fig. 2 is a

circuit.

Length

We now assume that associated with each arc u € A is a length &(u)
i.e.: £: A-R.

The length of a walk W is then defined by

(W) = I £&(u)
uew

i.e. the length of a walk is the sum of the lengths of the arcs in the walk.
We shall be concerned here with the following problem: given a node

s €N, find for each node j # s a minimum length path from s to Jj.
Because of an assumption we will make about the non-existence of negative

circuits we will be able to show that a shortest path from s to j is also

a shortest walk from s to j.

Nepative Circuits

If some arc lengths are negative it is possible that there is a circuit

C such that ¢£{C) < 0. We exclude this possibility for the following reason:

e

< F> »< GQ' »£ Fa >

Flg 3
Suppose &(C} < 0. Define walk Wn to consist of (the path P from s
to x) + (the path Q@ from x to y) + (n times round C) + (the path R

from y to j). Then B{Wn) = &(P) + £(Q) + né{C) + &(R)

Thus there is no shortest walk from s to j.

Since the number of paths from s to t is finite (< 2|Al) there is
aiways a shorfest path from s to t but there are no known polynomial
algorithms for finding shortest paths if there are negative circuits. This is

essentially because they rely on

Theorem 2.1
If D has no negative circuits then a shortest path from node s to

node t # s is a shortest walk from s to t.

Proof
Let W be any walk from s to t and let P* bea shortest path from
S to t. We can construct a path P from s to t such that &(W) 2 e{P).

As &(P) 2 e(P*) we have &(W) > 8(P*) and our theorem.

Construction of P

If W is a path let P = W, otherwise suppose W = (s = 11,...,1p = t}.

Let ia = ib be the first repeated node. Let T(W) be the walk W[1,a] +

Wb, p].

TRz e

TOW)

Then T(W) is a walk from s to t with fewer edges than W and

e(T(W)) = &(W) - &(¥[a,b]}

I~

(W) as Wa,b] is a circuit.

If T(W) is not a path we construct T2(W) and so on. Thus there exists k >
O such that TX(W) is a path. Let P = TX(W). Then
£(P) € (T (W)L, .. <e(W). o

Properties of Shortest Paths

Theorem 3.1 (Optimality of sub-paths)

let P = (i1 = s.....ip = t) be a shortest path from s to t. Then for

1{a<b<t Pla,b] is a shortest path from ia to ib'

Proof
Let R be any path from i to i,. Let W= P[1,a] + R+ P[b,t]. W~

is a walk from s to t. We know that

0 2> &(W) - &(P) [P is alsoc a shortest walk

= £(R) - 2(P[a.b]).

Suppose next that for each j € N we have a path Pj from s to J-

(P, = (s)) and that d(J) = &(P,) (d(s) = 0).

Theorem 3.2

{Pj; il N}y isa collection of shortest paths from s to each node of D

if and only if V_j € N we have
(3.1) d(j) < d(i) + &(i.]) V(i,j) € A.
Proof

only if: Suppose 3.1 does not hold and that there exist nodes x,y and

arc (x,y) such that

d(y) > d(x) + &({x.y).

Consider W = Px + (x,y). ¥ is a walk from s to y and
2(W) = d(x) + &(x,y) < e(Py). This contradicts the fact that Py is a
shortest path.

If: Suppose 3.1 holds V j€N. let x €N and P=(s=il....,ip=x) be
a path from s to x. We show that £&(P) 2 d(x).

From 3.1 we have d(ik) - d(ik—l) < e(ik-l‘ik) 2 {k {(p. Thus
P P
(3.2) 2 (d(i) -4{i,) € 2 &(i _,.i,).
k=2 k k-1 k=2 k=1""k

But the LHS of 3.2 "collapses™ to d(ik) - d(il} = d{x} - 0 and the RHS of
3.2 is 2(P). o
The aim of all shortest path algorithms is to find a set of paths

satisfying 3.1.

Ford's Algorithm

Suppose that D 1is given as a list of arcs and A = {ul,....um} vhere
u, = (xi.yi).

We will first consider how to compute the lengths of shortest paths and
then show how to produce paths. |

At a general stage of the algorithm we will have estimates d{j) for the
shortest path length to j € N. Initially d(s) =0 and d(j) =« for
J € N\{s}.

The idea behind Ford’s algorithm stems from theorem 3.2: if we have an

arc (x,y) such that d(y) > d(x) + &(x.y) then replace d(y) by

d{x) + 2(x.y).

Ford’s Algorithm (ignore statements on first reading)

begin
{Initialization: assume s = 1 and [N| = n, |A] = m)

d(1}) :=0; for j =2 to n do [d(i) :=; w(j) :=s7;

repeat {main loop}

flag := false

by

or

w

=1 to m do

begin {process arc (xa,ya)}

if d(y,) > d(y,) + &(x,.y,) then

end

until

end

Example

Arc

PN T T g e, g g g, o~
oo W W WA N = = =t
NRONEAWDWN
=ah b W= WA WN N
LS L L L LS L NPT Sl T e

begin
d(y,) i=d(x) + &(x,.y.): mly) :=x:

end

flag = false
3=4

d(1) d(2) d(3) d(4) d(5) 4(6)
0 © [- - . -]
O 2 © [-]]
0 2 2 0 -] -]
0 2 2 [+ [-]
4] 2 2 -] -]]
0 2 2 5 w 3
&) 2 2 3 L 3
0 2 2 3 5 3
C 2 2 3 5 3
0 2 2 3 5 3
0 2 2 3 2 3

There were no changes during second pass

END OF 1ST PASS

END OF 2ND PASS

Recording the shortest paths

We will show that the set of paths produced by the algorithm forms a

directed tree rooted at s.

i.e. for each j € N we record a predecessor node w(j) so that on

termination of the algorithm we have the following:
(5.1a) m{s) = s

(5.1b) for j#s 3k >0 such that s = Wk(j) and
P = (s = 7). 7N rP(0).7(3). 5)

is a shortest path from s to j.
The statements of Ford's algorithm actually find shortest paths.
Lemma 5.1

Throughout the algorithm if d(j) # ® then d(j) is the iength of some

walk from s to j.

10

Proof
The statement of true initially. We show that processing an arc does not

alter the statements truth. Suppose that immediately prior to processing

arc (x,y) that d(x) = e(wx) or ® and d(y) = e(wy) or « for walks

wx,wy. After processing (x.y) only d(y) can be altered and then d(y)} = B(W&)

or Q(Wx + (x,y})} or o, 0

During execution of the algorithm let label d(j) be correct if
d(j) = the length of a shortest path from s to j.

Note that once d{j) is correct it does not change anymore. If it did
change it would be reduced and then lemma 5.1 would imply the existence of a
walk shorter than the shorest path which contradicts theorem 2.1.

For 0<k ¢ |V] -1 let
H(k) = {j € N : 3 a shortest path from s to j which has k arcs or less}

Lemma 5.2

After k passes through the main loop all nodes in H(k) have correct d

labels.

Proof
By induction on k. For k = 0 the result is true because H(0) = {s}.
Suppose this result is true for all k (K. Let j € H{(K)\H{(K-1) and let

P=(s= il,....ik=j) be a shortest path from s to j.- By theorem 3.1 i
' th

€ H(K—l) and so its label is correct at the beginning of the K main loop.

th

During execution of the K main loop arc (iK_l.j) will be processed and so

at the end of the K" main loop d(j) € d(1,_,) + £(i) = (P) and then

K-1'3

11

lemma 5.1 and theorem 2.1 imply d{j) = &(P).

Now H(|N] - 1) ={j : 3 a path from s to j}. We therefore have

Theorem 5.1
Ford’s algorithm terminates after at most |N| - 1 iterations, having
computed the shortest distance from s to each j € N. | la]
It is easily seen that the computation time for the main loop is bounded
by some multiple of |A|. Thus the overall computation time of Ford's
algorithm is O(|N]| x |A]).

We have still to verify that on completion w7 provides shortest paths.

Lemma 5.3

On completion of the algorithm the ¥ labels are correct.

Proof

On completion we have
(5.2) d(j) = d(w(i)) + &(w(j).J) Vjen.

This is because there will have been no further reduction in d(w(j))
after the last assignment to d{j).

If we can show that (5.1) holds it will follow from (5.2) that d(j) =
8(Pj) and we are through. _

Fix j € N and consider the sequencé 'j.w(j).wz(j)..... We have to show
that d k such that rk(j) = s. If this is not true then 3 & <{ m such that
(5) = () # . |

Now for 1 € N\{s} let T(i) be the number of arc processings up to and

12

including the processing of arc (w(i).i) that gave d{i) its final value. Let
T(s) = 0. Now i # s implies T(i) > T(w(i)) because d(i) is not made
correct until after d{w(i)} is made correct.

Thus T(we(j)) > T[we+1(j)) 2.0 T(vm(j)) which contradicts we(j) =

™(3). D

A Computational Improvement

Consider the following situations we are about to process arc (x,y).
This arc has been processed before but d(x) has not been reduced since (x.y)
was last processed. Thus we know that prior to processing (x.y) that
d(y) € d{x) + &(x,y) and so in fact there is no point in processing (x.y).

We can speed up execution of the algorithm if we obey the following rule:
arc {X,y) is processed only if d{x)} has been reduced since arc (x.,y) was
last processed.

In the main loop arcs are processed in blocks. A block consists of all
the arcs leaving a specific node.

The search for nodes whose d labels have been reduced since their
blocks were last processed is speeded up by keeping them in a gueue Q.

A queue is a linked list of nodes where insertions are made at the "back

end” and deletions are from the "front end"” only.

Ford’'s algorithm (final version}

procedure process (node : x); {process all the arcs leaving x}

begin
for (x.y) €A do
begin
if d(x) + (x,y} < d(y) then
begin
d(y): = d(x) + &(x.¥): €(y): = x;

f y is not in Q then insert y into Q

end
end
end;
{initialization}
begin

d(1) = 0; w(1) = 1; for j =2 ton do [d(§): = = 7(J):

Q@ =2T1];

while Q # ¢ do

begin

delete x = front{(Q) from Q,
process (x)

end

end

1]

13

14

Example (see digraph on p3)

J
a(j)x(J)

1 2 3 4 5 6 Q
0 1 ® 1 ® 1 o 1 ® 1 ™ 1 1
0 1 2 1 2 1 ® 1 ® 1 3 1 | 2936
0 1 2 1 2 1 5) © 1 3 1 | 3964
0 1 2 1 2 1 3 3 5 3 3 1 | 645
0 1 2 1 2 1 3 3 4 3 3 1 | 45
0 1 2 1 2 1 3 3 4 3 3 1 |5
0 1 2 1 2 1 3 3 4 3 3 1 | e

To prove that the modification is valid we relate the new algorithm to
the cld.

Let p(1),p(2).... be the sequence of nodes processed by the new
algorithm. Define ko =0 and kl.el..
p(l),...,p(kl-l) are all distinct but p(kl)

..kt.et... as follows:

1

p(Bl) where 1 £ 81 £ k1 -1

p(82) where k1 < 82 < k2—1

p(k;)....p(k,-1) are all distinct but p(ky)
and so on.
Let Xt = {p(kt_l].....p(kt—l)}. Yt ={x € Xt and x is not in Q

immediately prior to the etth node processing}. =

v + - 'XP(k’ﬂ P“
Exercise: show that N = Xt U Yt. S“?ch"ﬁ "‘eXEn O\ - P(b‘b“.} P(hk-‘)Q}. Tk P
’-_,/—/_-J\:\t____/

[Hint: it is a simple direct consequence of Q being a queue] (3{

Suppose now we re-ran the new algorithm but just before we process p(et)
we process all the nodes in Yt' Nothing will happen to d or 7 because
none of Yt are in Q. But the exercise shows that now between processing
p(kt-l) and p(kt-l) all nodes and hence all arcs are processed, i.e. we have
gone through a main loop of the old algorithm (the order in which we process

arcs in a main loop is irrelevant). Thus convergence in O([N| x |A|) time is

assured.

Exercise: show that we do one less main loop in the new method.

The algorithm above is very efficient.

results for some random problems.

We give a table of reported

The run time

is in seconds on a

COC 6600

Problem [Nj |A] t Problem |N| |A]
1 500 12500 .267 S 1000 4000 .139
2 500 7500 . 177 10 1000 3000 .123
3 500 2500 .089 11 1000 2000 .088
4 500 1250 .050 12 2000 16000 .476
5 500 1000 .045 13 2000 12000 .371
6 500 750 .039 14 2000 8000 .315
7 1000 10000 .288 15 2000 4000 .191
8 1000 5000 165

Exercise: the initialization step wastes a little time, what should it be?

Department of Mathematics
CARNEGIE MELION UNIVERSITY

Dijkstra’s algorithm

When arc lengths are all non—negative the following algorithm is
applicable.
For k€ N let Tk = {v: (k,v) € A} = set of out-neighbours of k.

Dijkstra's algorithm

begin
A1 (1) :=0: w(1) i=1: for j =2 to n do [d(§) i= £(s,3): m(§) := s]

S := {1} [S = {nodes that have been processed})

for i '=1 to n2 do
begin
B: let d(k) = min (d(j): j € N\S) ;
S =8 U {k} ;

{process k}

C: for v € Tk -8 do

if d(v) > d(k) + 2(k.v) then

begin
d(v) := d(k) + &(k.v),
n(v) =k
end
end

end

A nice feature of Dijkstra’s algorithm is that each node is processed

exactly once (except for last node which need not be processed).

Example

1 k
0 1 1 3 1 0 1 © o 1 2
3 1 @ 1 3 w 1 3
3 1 4 3 2 0 1 6
3 1 4 3 3 6 4
4 3 3 6 [
3 7
shortest path tree
A
{
7
L

Theorem

Assuming that all arc lengths are non-negative, Dijkstra’s algorithm

terminates with a shortest path from

s

to each node of D.

Proof

At each stage the digraph (S,XS} where XS = {(w{j}.i): j € S - {s}} is
a directed tree rooted at s and for j € S, d(j) is the length of the path
from s to J 1in this tree. Furthermore if j € S then d(j) is the
minimum length of a path from s to j, which follows a tree path in S§ and
then jumps to. J.

We prove by induction on |S]| that throughout the algorithm j € S
implies d(j) is the length of a shortest path from s to j.

This is clearly true when |S| =1 and S = {s}. Suppose it is true for
S| < ¢ and suppose k is the qth node added to S, Let
1,i
first node of P that is not in 8 -~ {k}. Then

P=(S =1 2""'ia = k) be any path from s to k and let ib be the

2(P) 2 2(P[1.b]) [arc lengths non-negative
> d(ib_l) + e[ib_l.ib)
> d(ib) [See first paragraph
2 d(k) [definition of k

Execution Time

A naive implementation is 0(n2).

Line A is O(n) and is executed once
Line B is O(n) and is executed n-1 times

Line C is 0(|Tk|) and total execution time is 0(E|Fk|) = 0(|A]) = O(nz).
k

16

Digraphs without circuits

These are important not least because they occur in critical path
analysis. Their application in this area involves computing longest paths.
For this problem inequalities are reversed throughout the previous sections

but most important the optimality conditions (3.1) becomes
(7.1} d(j) = max (d(i) + £(i.7)).
- J

topological Ordering

Let the nodes of digraph G = (N,A) be ordered or numbered 1,2,....n.

This ordering is topological if (i.,j) €A =1 < j

8 D

£ A

FBEDAC 1is a topological ordering for the above digragh.

Theorem 7.1

There exists a topological ordering for a digraph G if and only if the

digraph does not contain any circuits.

Proof

Suppose first that the nodes of G have been topologically ordered

1,2,...,n. Suppose G has a circuit (il.iz,....ip=i1) then we have

17

i, €i, <... <i_ =1 contradiction.

Conversely assume G has no circuits. We describe an algorithm for
numbering the nodes of G. 1It’'s general step i;: if nodes 1,2,....,k have
been chosen define Gk = (Nk'Ak) where Nk =N - {1,2,...,k}

Ak =AN N xN.

Note Go =G and Ak consists of these arcs not involving 1,2,....,k.
Now since G has no circuits Gk will not have any for k = 0,1,...,n-1,
Thus (Lemma 7.1 below) Gk has at least one node without predecessors. Let

k+1 be such a node (a predecessor of a node j is a node i such that

(i,3) € A). 128 1: D
C z H C
8 ‘ N 3:zA
£ £ e
D A 0 A

The algorithm above will number the nodes 1,2,...,n. Now let (i,j) € A.

From the way j was chosen from Gj- we see that (i,j) € A which implies

1 j-1
that i € {1,2,...,3-1} or 1 < j. o

Lemma 7.1

Let G = (N,A) be a digraph without circuits. Then G contains 2 node

without predecessors.

18

Proof

Let Xy € N. If x4

is an arc (x2.x1). If Xy has no predecessors we are finished, otherwise

has no predecessors we are finished otherwise there

there is an arc (x3,x2). Continuing thus we generate a sequence X 1Xgu oo
vwhere (xk+1.xk) €A for k 2 1. This sequence must terminate with a node
without predecessors or repeat a node because G is finite. But repeating a

node means there is a circuit in G. O

Assume now that we have topologically ordered the nodes of a digraph G.

Then (1.9) can be replaced by

(7.2) d(j) = max (d{(i) + &(1,3)) J=1.....n
i<j
vwhere it is assumed that s = 1 (what if s # 1?) Given that d{(1) = 0 we

can use (7.2) to compute d{2)},... in a manner analogous to back-substitution

for solving a lower triangular set of linear equations

begin
d(1): = 0;
for j: =210 n do
d(J): = max (d(i) + &(i.3): (i.3) € A) *
end

{Note that because (i,j) € A implies { < j % can be carried out

validly.)

19

Since (7.1) holds on completion of the algorithm a proof of validity is

obvious.

Computaional Considerations
The complexity of the algofithm is O(IA[) and there exists an O |A|)

method for topologically ordering the nodes.

20

Shortest paths between all pairs of neodes

We complete the material on shortest paths by describing an algorithm for
finding shortest paths between all pairs of nodes.

We use the two matrices D = Hdin, N = Hngjﬂ where dij islthe length
of the current best known path from i to j and nij is the second node

after i on this path. the algorithm tries to improve paths as follows.

el ~

- (J(i —

If in figure 12 dik + dkj < dij then the known path from i to
should be replaced by the known path from i to k followed by the one from

k to j.

Floyd's Algorithm

(Initialization)

begin
for i :=1 to n do
for j: = to n do

~—
=]
—_—
e
Gty
S
.
il
Cte
L]

(main algorithm)

for k=1 to n do
for i :=1 to n do
for ji=1 to n do

if d(i.j) > d(i.k) + d(k,j) then

d(i,j) := d(i.k) + d(k.§); n(i.j) := n(i.k)

end

Initially

D=0 3 » 5 N=1 2 3 4 5
@ 0 12 8 1 2 3 45
© 120 183 1 2 3 45
5 4 © 0 ® 1 2 3 45
4 8 © 100 1 2 3 45

Stage 1

D=0 3 © 5 o N=1 2 3 4 5
© 0 12 8 1 2 3 45
® 120 18 3 1 2 3 45
5 4 © 0 o 1 23 45
4 7 « 9 0 11310

Stage 2

D=0 3 155 11 N=1 2 2 4 2
®© 0 12 8 1 2 3 4°5
® 120 183 1 2 3 45
5 4 160 12 1 2 2 4 2
4 7 199 0 111465

22

Stage 3
P=0 3 155 11 N=1 2 2 4 2
© O 12308 1 2 3 3 5
o 120 18 3 1 2 3 4 5
B 4 160 12 1 2 2 4 2
4 7 199 0 1 11 4 5
Stage 4
D=0 3 155 11 N=1 2 2 4 2
30 12 30 8 3 2 3 3 5
23120 18 3 4 2 2 4 5
5 4 160 12 1 2 2 4 2
4 7 199 O 1 1 1 4 5
Stage 5
D=0 3 155 11 N=1 2 2 4 2
120 12 17 8 5 2 3 5 b
7T 100 123 5 5 3 5 5
5 4 160 12 1 2 2 4 2
4 7 199 0 1 1 1 4 5
Ex
dyp =10 ny, =5, 15 =1, nyy = 2
Shortest path from 3 to 2 is (3.,5,1,2)
Theorem 7.1
Floyds algorithm finds a shortest path between any pair of nodes.
Proof

¥We shall prove this by induction, the hypothesis being that at the

beginning of the kth stage di is the minimum length of a path from i to

J
J with intermediate nodes taken from 1,2,....k-1. This is true for k=1
and so assume it to be true for a general k. Ngw paths from i to j which
only use 1,2,....k as intermediate nodes either use node k or they do
not. The minimum length of such paths which do not use k is the value of

dij at the beginning of the k’th stage. A path from i to j which uses k

is the catenation of a path from i to k and a path from k fo j and

both these paths use only 1,2,...,k-1 as intermediate nodes. Thus the

minimum length of a path from i to j which only uses 1,2,....,k as

intermediate nodes is min {dij‘dik+dkj} which is the value of dij at the

beginning of stage k+l.

Department of Mathematics
CARNEGIE MELLON UNIVERSITY

Operations Research II

Notation

UL~ n LAL¥ 70N
X @y = wman {X,¥}. @xi =‘max-{x1, 2,...,xn}

® =
xQy=x+y
If A=Ha I, B=Ib Il are n xn matrices then A® B = lic. .l where
1] 1] 1]

n
45 = si? a; @ bkj = min {aik + bkj =1<k {n}
e.g.

4 2|1Q@ 2 1 3 5
& =
-1 3 1 3 1 0

Now let D be a digraph and L = neiju where £.. = length of arc (i,j).
Claim % @

t 2 2 (t)

L"=L%L% ... &L = ueij I
satisfies
B§§) = min length of a walk from i to j using t arcs or less.

Proof

By induction on t. Obvious for t = 1.

Let Rg?) = minimum length of a walk from i to j using u arcs or

less. Now

(1) A) e A v k=120

ij kj’

To see this note that for any u > 1

{(a) h(u+1) < min {kgE) + & k=12,...,n}.

ij = ki’
Since each term in the minimisation is the length of some walk from i to j

using {u+ 1 arcs

and
(b) If W= (i-= il’i2 i, = j), v{u+ 1 is a shortest walk using < u
+ 1 arcs then
A§?+1) = e(igig..d) v 8 L2 A§2) A
J v 1y-19 v-1 v-19

(a) and (b) imply (1).
We can now use induction on t to prove the claim.

Now

n
t+1 @ Ve,
e§j+) = (egk) ® Ayl

in (1) C k=
min {Rik + ekj tk=1,2,...,n}

. (t) C Lo _ . .
min {hik + ekj :k=1,2,...,n} induction

= h§§+1) ' by (1}.

Now if D bhas no negative circuits then Kg?_l) = minimum length of a path

from i to j (why?) and so

Dn_1 is the matrix of shortest path lengths.

Question: if there are no negative cycles, why is

r

D = Ds for all r,s, > n-1 ?

Operations Research 11

Assignment Problems

Suppose that there are m jobs available and m people are to be
considered for filling these jobs. Suppose it has been estimated that if
person { is given job j gpen the cost of the job will be cij. The problem is
how to assign people to jobs in such a way as to minimise the total cost.

We show how this problem can be solved as a sequence of shortest path

problems.

Notation

An assignment a is a permutation of [m] = {1,...,m}.

A solution to the assignment problem can be expressed as person i does
job a(i) for some assignment a. Let Am = {assignments}. Then the problem

can be expressed

m

minimise 151 cia(i)

subject to a € Am

Another, fruitful, way of viewing this problem is that we seek a minimum

weight perfect matching of the complete bipartite graph Kﬁ n’

Cig- "wugt of elye (6i)

ali)
A k—assigggent a is a permutation of [k]. For a € Ak we let

k
c(a) = 1§1c‘a(”'

(= |

_ For a €7Ak define the bipartite digraph G(a) with nodes Vﬁ =
(Vi Vgs-nns voho W= {Wl.w2.....Wh} and arcs B(a) U F(a) where
B(a) = {(wa(i)’vi): 1<1i<k} Backward Arcs
F(a) = {(Vi'wj): 1>k or 1<k and i ¥ a{i)} Forward Arcs

Example m =3, k =2, a(l) =2, a(2) =1

Arc lengths in G(a) are defined as follows:

if (vi,wj) € F(a) £(i1.3) = 53

if (wj,vi) € B{a) £(j.i) = _cij

Suppose next that a € A, k <m and P = (v =V, W, ,....V, W, =
e Ak k+1 il A lp jp
wk+1) is a path in G{a) from Vier1 € Vm to W .4 € Wﬁ
an) =3 Y W, o =axP
a(3)=2 Y w, add VW,
o!fe‘:- \fz wl
% ¥y
V‘P wq, | dfﬂ f V| w?
%o “y . e odd ww,

P= Vi y W15 Ve, Wa V) W,

~~
We can construct a new assignment a (denoted by axP) where

a(i,) :

a(i)

"
[

t=1,...,p

a{i) otherwise

It is not too difficult to see that a % P € Ak+1 and further that

c{axP) = c(a) + ¢ c +c ... ¥ C

8 ldy Tigedg Tp+dp

= c(a)} + &(P).

We have a similar result if C = (vi Wy Yy ¥y = vy } isa
1 1 P ‘P “ptl 1
cycle in G{a) - assuming 11 £ k.

We again define a*C and this time c(a*C) = c(a) + &(C) and axC € Ak

We need the following lemma: for a digraph G = (V.E)} we define for each

vVEY

H

d+(v) (v.j) € E}Y| - outdegree of v

d (v) [{(i,v) € E}| - indegree of v

Lemma 1

Suppose that for digraph G = (V,E) we have d'(v), d (v) {1 for all
v€V. Then G is a collection of isolated nodes (d'(v) = d (v) = 0) plus &
collection of node disjoint cycles Cl""’cp plus a collection of node
disjoint paths Pl,....Pq where q = |{v : d+(v) =1, d (v) = 0}|

[{v : d'(v) = 0, d(v) = 1}

Proof {Outline)

By induction on [E[. Trivially true for [E} = 0 and so assuming it is
true for all digraphs with |E[< m and suppose we have a digraph with |[E| =
m > 0. Delete an arc (x,y). apply the induction hypothesis and then put (x,y)
back ~ which either turns a path into a cycle or lengthens a path or joins 2
isolated nodes. All cases maintain the result. o

A k-assignment a will be called o-optimal if for any a’' € Ak with
we have c{a) { c{a').

Theorem
let a € Ak be o-optimal
(i) If C is a cycle in G(a) then £(C) 2 ©
{(ii) Let P be a shortest path from Vis1 to W1 Then axP is also

o-optimal.

Proof
(i) Now axC € Ak and so c(axC) = c(a) + E(C) 2 c{a) by assumption.
Hence £(C) 2 O.

(ii) Let a be any k+l - assignment. We show that there exist node

disjoint cycles Cl.....C q20 and a path Q@ from v

q kel to Werl such

that

{strictly speaking we need brackets on RHS of the above). Then

o) = o@) + 3 £(C;) + 2(@)
i=1

2 c(a) + £(Q} by (i)
2 c(a) + &(P) by assumption
= c(a*P)
To construct CI""‘qq and .Q consider the subset X of arcs of G{a)

defined by

X = {(vi‘w;(i)): i=k+lorikand a(i) # ;(i)}

u{(wa(i),vi): i {kand a(i) # ;(i)}

One then checks that the digraph (Vk+1 u Wk+1.

conditions of the lemma, that d+(vk+1] =1, d(

X) satisfies the

})=0 and d'(w . .) =0,

_ Vi1 Tk+1
d-(wk+1) = 1 and that all other vertices are isolated or satisfy d+(v) =

d (v) = 1. The cycles and path of the lemma are what we need. o

Assignment Algorithm

(Initial Description)

begin

construct G(a);
find a2 shortest path P from Vi to v
a = axp

end

end

By Theorem 1 a remains o-optimal and after m—iterations we will have
solved the problem. As arc lengths could be negative, each shortest path
problem could take 0(m3) steps and so the time complexity of the whole

algorithm is 0(m4) .

Example

[

Linear Programming Formulation

m m
ALP = minimise 2 2 ¢, x,.
i=1 j=1 RN
subject to
m
1 2 x,.=1 i=1,2,....m
() i=1 1 !
m
(2) 2 ox,, =1 i=1,2, ,m
j=1 M
(3) Xij 2 0 ¥ i,j.
Let XF = {x: (1) - {3) hold}
and

XI = {x € XF: xij =0 or 1, Vi,j}.

Assignment Problem is equivalent to minimise ch subject to x € X

I

Proof

If a is an assignment then putting

gives a solution to ALP with value c(a).

Conversely, if x € XI define a by
a(i) = unique j such that xij =1
(uniqueness follows from (1))

a is a permutation for if a(r) = a{s) = k then

m

2 X, 2 X, +x, =2, contradiction. 0
-, Tik Tk

We show that

N
)

I min ch subject to x € XI [min{c{a): a € A}]

min cTﬁ subject to x € XF

= = zp , say.
Proof
Consider dual problem
m m
DALP = maximise Z ¥y + Zz,
i=]1 j=1

subject to Y; + zj < cij Vi,j
We show that if a is the assignment constructed by our algorithm then there

. »* % .
exists (y ,z) satsifying

10

* * - -
(4) ¥y + Zj < cij 1<i,j€<m
3 *
(5) Yi * Za%(4) = Cia¥(1) 1 Sigm

Now (4) implies y*,z* is a dual solution and so

m mo
(6) Zp 2 2 y.+ 3 =z_. [zF is max. dual
i=1 ' =1
[value
But, from (5)
m m m
Z e, ¥ .= 3 y.+ I z %
i1 2 (1), i=1 2 (1)
m m
(7) = 3 y? + 3 oz
i=1 j=1 J

since a# is a permatation.
Hence Zp 2 c(af) 2 Zp, where the first inequality follows from (6). (7) and
the second from duality.

To construct y*.z* let ; be the {m—1)-assignment produced just before
a. For x € VUW let d{x) = length of shortest path from v, to X in
G(a).

Let

1.2,....m

>
i

—d(vi) i

Z. = d(wj) j=12,...,m

11

Observe first that

d(vy) = A0 5) + vy 1<¢1<md

since (w;(i),vi) is the unique arc entering v, in G(a). Equivalently

» %* ~
(8) Vi = Zari) T ©i,a(i)°
This verifies (5) whenever ;(i) = a#(i). and also (4) for all i.j = a(i).
But if a*(i) # af{i) then the last path P found contains the arc

{v..w »* _.) and for an arc of P we have
i"a (i)

d(waf(i)) = d{v,) + E(Vi,waf(i))

or

»*
Za¥1) < Y1t Ci,at(4)

and (5) is verified for all 1.
We only now need check (4) for arcs of F(a)} which are not on P. But

for such arcs we have

d(wj) < d(vi) + e(vi,wj).

