Notes on optimization

October 17, 2019

1 Optimization Problems

We consider the following problem:
Minimize f(x) subject to x € S, (1)
where x = (z1,%s,...,z,) and S C R".
Example: f(x) =c’x and S = {x € R": Ax = b,x > 0} — Linear Programming.
Local versus Global Optima: x* is a global minimum if it is an actual minimizer in ([1).

x* is a local minimum if there exists 0 > 0 such that f(x*) < f(x) for all x € B(x*) N S,
where B(x,0) = {y : [y — x| < d} is the ball of radius J, centred at x.

See Diagram 1 at the end of these notes.

If S = () then we say that the problem is unconstrained, otherwise it is constrained.

2 Convex sets and functions

2.1 Convex Functions

A function f : R™ — R is said to be convez if

FOx+ (1 =Ny) <Af(x) + (1 =N f(y)
See Diagram 2 at the end of these notes.

Examples of convex functions:



F1
F2

F3

F4

F5
F6

F7

A linear function f(x) = a’x is convex.
If n =1 then f is convex iff

fy) = f(x) + f'(z)(y — x) for all z,y. (2)
Proof. Suppose first that f is convex. Then for 0 < X\ <1,

fl@+AMy—2)) <L =N f(x) +Af(y)
Thus, putting h = A(y — ) we have

fo) > flo) + LEF h]z — f(=))

Taking the limit as A — 0 implies .

Now suppose that holds. Choose x # y and 0 < A < 1 and let z = Az + (1 — \)y.
Then we have

fl@) = f(2) + f'(z)(@ = 2) and f(y) = f(2) + ['(2)(y — 2).
Multiplying the first inequality by A and the second by 1 — A and adding proves that

M (2)+ (1= fy) = f(2).

(y — ).

[
If n > 1 then f is convex iff f(y) > f(x) + (Vf(x))"(y — x) for all x,y.
Apply F2 to the function h(t) = f(tx + (1 —t)y).
A n=1and [ is twice differentiable then f is convex iff f”(z) > 0 for all z € R.
Proof. Taylor’s theorem implies that
Fly) = (&) + F@)y — ) + 57"y — 2)? where = € [r,y].
We now just apply . O

It follows from F4 that e** is convex for any a € R.

x® is convex on R, for a > 1 or a < 0. x® is concave for 0 <,< 1.
Here f is concave iff —f is convex.

Suppose that A is a symmetric n X n positive semi-definite matrix. Then Q(x) = x” Ax
is convex.

By positive semi-definite we mean that Q(x) > 0 for all x € R™.

We have

QMAx + (1 = Ny) = AQ(x) — (1 = N)Q(y)
=A?Q(x) + (1= 1)?Q(y) + 2M(1 = )x" Ay = AQ(x) — (1 = ) Q(y)
=-A1-N)Q(y —x) <0.



F8 If n > 1 then f is convex iff V2F = To. ; ] is positive semi-definite for all x.
Apply F7 to the function h(t) = f(x + td) for all x,d € R"™.

Operations on convex functions

E1 If f, g are convex, then f + g is convex.
E2 If A > 0 and f is convex, then Af is convex.

E3 If f, g are convex then h = max {f, g} is convex.
Proof.

h(Ax + (1 = N)y) = max{f(Ax+ (1 = N)y),g(Ax+ (1 = N)y)}
< max {Af(x) + (1= A)f(y), Ag(x) + (1 = A)g(y)}
< Amax {f(x), g(x)} + (1 = A) max {f(y), 9(y)}
= Ah(x) + (1 = A)h(y).

Jensen’s Inequality
If fisconvex and a; e R", \; e Ry, 1 <i<mand A\ + \g+---+ \,, =1 then

/ (Z )\z’ai> < Z f(hiay).

The proof is by induction on m. m = 2 is from the definition of convexity and then we use

m m—1 s
Z a an, + ( ) 2.7 - )\ma
Application: Arithmetic versus geometric mean.
Suppose that aq,as,...,a,, € R,. Then
ay+ag+---+ap
L > (aras - - am) ™. (3)

m

—log(x) is a convex function for > 0. So, applying (),

=1 =1

Now let A\; =1/mfori=1,2,...,m



2.2 Convex Sets

A set S C R" is said to be convex if x,y € S then the line segment
Lix,y)={x+(1-NyeS:0<A<1}.

See Diagram 3 at the end of these notes.

Examples of convex sets:

Cl S={x:a’x=1}. x,y € S implies that
a’Mx+(1—-Ny)=da'x+(1-Naly= +(1-)\) =1,
C2 S= {x calx < 1}. Proof similar to C1.
C3 S =B(0,0): x,y € S implies that
x4+ (1 =Ny| <[ Xx|+[(1T =Ny <Ad+ (1 —N)d =4.

C4 If f is convex, then the level set {x : f(x) < 0} is convex.
F(x), £ly) < 0 implies that f(Ox + (1~ N)y) < Af(x) + (1 — A} f(y) < 0.

Operations on convex sets:

O1 S convex and x € R™ implies that x + S = {x+y :y € S} is convex.

02 S, T convex implies that A = SN T is convex. x,y € A implies that x,y € S and so
L=L(x,y) CS. Similarly, L CT andso L C SNT.

O3 Using induction we see that if S;, 1 < i < k are convex then so is ﬂle Si.

O4 If S, T are convex sets and «, 5 € R then aS + T = {ax + By} is convex.
If z; = ax; + By; € T,i = 1,2 then

/\Z1 + (1 — )\)ZQ = Oé()\Xl + (1 — )\)Xg) + B()\yl + (1 — )\)YQ) eT.
It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax < b}
are convex for any matrix A any vector b.

We now prove something that implies the importance of the above notions. Most optimiza-
tion algorithms can only find local minima. We do however have the following theorem:

Theorem 2.1. Let f, S both be convez in (I). Then if x* is a local minimum, it also a global



Proof.
See Diagram 4 at the end of these notes.

Let § be such that x* minimises f in B(x*,d) NS and suppose that x € S\ B(x*,0). Let
z = Ax* + (1 — \)y be the point on L(x*,y) at distance ¢ from x*. Note that x € S by
convexity of S. Then by the convexity of f we have

) < f(x) S AT + (1= A)f(x)
and this implies that f(x*) < f(x). O

The following shows the relationship between convex sets and functions.

Lemma 2.2. let fi, fa,..., fm be convex functions on R". Let b € R™ and let

Then S is convex.

Proof. 1t follows from O3 that we can consider the case m = 1 only and drop the subscript.
Suppose now that x,y € S i.e. f(x), f(y) <b. Then for 0 < A <1

FOX+ (1= A)y) S AF() + (1= N F(¥) < Ab+ (1= A)b=b.

So, Ax+ (1 =Ny € S. O

3 Algorithms

3.1 Line search —n=1

Here we consider the simpler problem of minimising a convex (more generally unimodal)
function f: R — R.
See Diagram 5 at the end of these notes.

We assume that we are given ag,a; such that ag < x* < a; where x* minimises f. This
is not a significant assumption. We can start with ag = 0 and then consider the sequences
G = f(2),& = f(—2") until we find ¢y < min {(o, G;} (resp. &1 < min {&,&}). Then we
know that z* € [(, G;] (resp. x* € [&,&]).

Assume then that we have an interval [ag, a;] of uncertainty for x*. Furthermore, we will have
evaluated f at two points in this interval, two points inside the interval at as = ag+a?(a;—ag)
and a3 = ag + a(a; — ag) respectively. We will determine « shortly. And at each iteration
we make one new function evaluation and decrease the interval of uncertainty by a factor a.
There are two possibilities:



(i) f(as) < f(az). This implies that z* € [ag, as]. So, we evaluate f(ag+ a?(az — ag)) and
make the changes a; — a!:

/ / / 2 /
ay < ag, @y < as, ay < ag + a(ag — ap), ay < as.

(ii) f(a2) > f(as). This implies that a* € [ag,a1]. So, we evaluate f(ap+) and make the
changes a; — aj:
apy < ay, @y < ay, ay < as, ay <+ ag + o(a; — ap).
In case (i) we see that a} —ay = a3 — ay = a(al — ap) and so the interval has shrunk by

the reqmred amount. Next we see that a, — aj = o*(az — ag) = o*(a} — ag). Furthermore,
ah — ap = as — ag = &*(a1 — ag) = ala] — ap).

In case (ii) we see that a} — af, = a; — as = a3 — (ap + @*(a; — ap)) = (1 — a?)(a; — ap). So,
shrink by « in this case we choose « to satisfy 1 — o? = . This gives us

V-1
2

o= — the golden ratio.

Next we see that a) —a) = a3 —ag = (o — a2)(a1 —ag) = 2= (al —ap) = (1 —a)(a) —ap) =
a?(ay — ap). Finally, we have a} — a = ag + a?(a; — ag) — a2 = a*(a; — ap) = ald) — af).

Thus to achieve an accuracy within ¢ of 2* we need to take t steps, where oD < § where D
is our initial uncertainty.

3.2 Gradient Descent

See Diagram 6 at the end of these notes.

Here we consider the unconstrained problem. At a point x € R", if we move a small distance
h in direction d then we have

fx+hd/[d]) = f(x) + h(V]) % +O(h?*) > f(x) = h[Vf| + O(h?).

Thus, at least infinitessimally, the best direction is —V f. So, for us, the steepest algorithm
will follow a sequence of points xg, X1, ..., Xy, ..., where

Xg4r1 = X — Oéka<Xk).
Then we have

|Xpt1 — X*|2 =[x — X*|2 - QCYka(Xk)T(Xk —x") + ozi|Vf(xk)2|
<[ — X7 = 200 (f (1) — F(x7)) + QZV f(xi) 7, (4)

The inequality comes from F3.



Applying (4) repeatedly we get
k K
xe =X < [xo =X =2 oa(f(xi) — f(x)) + Y o[V (xi)]” (5)
i=1 =1

Putting R = |x¢ — x*|, we see from (f]) that

k

2y ailf(x) = f(x) < RP+ ) oV f(x)l” (6)

i=1 i=1

On the other hand,
>l ()= f(x) = <Z ai> min {f(x) = f(x) 4 € [K]} = (Z cu) (f (tmin—f(x)),

where f(Xmin) = min{f(x;) : i € [k]}.
Combining (6)) and we get

2 2k 2
f(szn) - f(X*) S d il GkZi:1 <
2 iy

where G = max {|V f(x;)| : i € [x]}.

?

So, if we choose ay, so that Y ;= a; =00 and >, a7 = O(1) then

| f (Xmin) — f(x*)] = 0 as k — oc.

As an example, we could let o; = 1/i.

4 Separating Hyperplane

See Diagram 7 at the end of these notes.

Theorem 4.1. Let C be a convex set in R"™ and suppose x ¢ C. Then there exists 0 # a € R"
and b € R such that (i) a"x > b and (i) C C {y e R": aly < b}.

Proof.
Case 1: C is closed.
Let z be the closest point in C' to x. Let a=x —2z # 0 and b= (x — z)’z. Then

T

a'x—b=(x—2)"x- (x—2)"

z=|x—1z|>>0.

This verifies (i). Suppose (ii) fails and there exists y € C such that a’y > b. Let w € C be
the closest point to x on the line segment L(y,z) C C. The triangle formed by x, w,z has a
right angle at w and an acute angle at z. This implies that |x —w| < |x —z]|, a contradiction.

7



Case 2: x ¢ C. )
We observe that C' O C and is convex (exercise). We can thus apply Case 1, with C replacing
C.

Case 3: x € '\ C. Every ball B(x,d) contains a point of R" \ C that is distinct from
x. Choose a sequence X, ¢ C,n > 1 that tends to x. For each x,, let a,,b, = afzn
define a hyperplane that separates x, from C, as in Case 2. We can assume that |a,| = 1
(scaling) and that b, is in some bounded set and so there must be a convergent subsequence
of (a,,b,),n > 1 that converges to (a,b),|a] = 1. Assume that we re-label so that this
subsequence is (a,),n > 1. Then for y € C' we have aly < b, for all n. Taking limits we
see that al'y < b. Furthermore, for y ¢ C' we see that for large enough n, aly > b,. taking
limits we see that a’y < b. O

Corollary 4.2. Suppose that S, T C R™ are convex and that SNT = (). Then there exists
a,b such that alx <b forallx € S and a’x > b for allx € T.

Proof. Let W = S+ (—1)T. Then 0 ¢ W and applying Theorem [£.1] we see that there exists
a such that a’z < 0 for all z € W. Now put

1
b=— (sup a’x + inf aTx) .
2 xeS xeT

]

Corollary 4.3 (Farkas Lemma). For an m X n matriz and b € R™, exactly one of the
following holds:

(i) There exists x € R™ such that x > 0, Ax = b.

(ii) There exists u € R™ such that u’ A > 0 and u’b < 0.

Proof. We cannot have both (i), (ii) holding. For then we have
0<ulAx=u'b <.

Suppose then that (i) fails to hold. Let S = {y : y = Ax for some x > 0}. Then b ¢ S and
since S is closed there exists a, 3 such that (a) a’b < 8 and (b) a” Ax > 3 for all x > 0.
This implies that a’ (b — Ax) < 0 for all x > 0. This then implies that u = « satisfies
(ii). O

4.1 Convex Hulls

See Diagram 8 at the end of these notes.



Given a set S C R", we let
conv(S) = {Z Aix; : (i) |I] < oo, (i) A =1, (iii) A; > 0,i € I, (iv) x; € S,i € 1} .
icl iel
Clearly S C conv(S), since we can take || = 1.
Lemma 4.4. conv(S) is a conver set.

Proof. Let x =3, \iXi,y = D5 113y € conv(S). Let K = IUJ and put \; = 0,i € J\1
and pu; = 0,75 € I\ J. Then for 0 < o <1 we see that

ax+ (1 —a)y = Z(Oé)\l + (1 — a)u;)x; and Z(a)\l +(1—a)u) =1

ieK ieK
implying that ax + (1 — a)y € conv(S) i.e. conv(S) is convex. O

Lemma 4.5. If S is convezx, then S = conv(S).

Proof. Exercise. O

Corollary 4.6. conv(conv(S)) = conv(S) for all S C R™.

Proof. Exercise. m

4.1.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST
y,z € S such that x € L(y,z). We let ext(S) denote the set of extreme points of S.

EX1 If n =1 and S = [a, b] then ext(S) = {a, b}.

EX2 If S = B(0,1) then ext(S) = {x: |x| = 1}.

EX3 If S = {x: Ax = b} is the set of solutions to a set of linear equations, then ext(S) = 0.
Theorem 4.7. Let S be a closed, bounded convex set. Then S = conv(ext(S)).

Proof. We prove this by induction on the dimension n. For n = 1 the result is trivial, since
then S must be an interval [a, b].

Inductively assume the result for dimensions less than n. Clearly, S O T = conv(ext(S)) and
suppose there exists x € S\T'. Let z be the closest point of T to x and let H = {y caly = b}
be the hyperplane defined in Theorem Let b* = max {aTy "y EeS } We have 0* < oo
since S is bounded. Let H* = {y : a’y = b*} and let S* = SN H*.
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We observe that if w is a vertex of S* then it is also a vertex of S. For if w = Awy + (1 —
A)wa, Wi, We € 5,0 < A < 1 then we have

bv* =a’w = Aa’w; + (1 — Nalwy < A" + (1 = \)b* = b

T

This implies that a’w; = a’w, = b* and so wy, wy € S*, contradiction.

Now consider the point w on the half-line from z through x that lies in S* i.e

W—z+aTX_b(x—z)
Now by induction, we can write w = Zle A;w; where wyi, Wy, ..., W are extreme points of
S* and hence of S. Also, x = uw + (1 — p)z for some 0 < p < 1 and so x € ext(S). O

The following is sometimes useful.

Lemma 4.8. Suppose that S is a closed bounded convex set and that f is a convex function.
The f achieves its maximum at an extreme point.

Proof. Suppose the maximum occurs at x = A\;xy; + -+ + \eXp where 0 < A\, ...\ < 1
and Ay + -+ X\ = 1 and xy,...,x; € ext(S). Then by Jensen’s inequality we have
fx) S Af(xa) 4+ 4 Aef(xe) S max{f(x;) : 1 <i <k} 0

This explains why the solutions to linear programs occur at extreme points.

5 Lagrangean Duality

See Diagram 9 at the end of these notes.

Here we consider the primal problem
Minimize f(x) subject to ¢g;(x) <0,i=1,2,...,m, (8)
where f, 91,92, ..., 9m are convex functions on R".
The Lagrangean -
L(x,A) = f(x) + ) Aig(x).
i=1
The dual problem is

Maximize ¢(A) subject to A > 0 where ¢(A) = min L(x, A). (9)

xER™

We note that ¢ is a concave function. It is the minimum of a collection of convex (actually
linear) functions of A — see E3.
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D1 :Linear programming. Let f(x) = ¢'x and g¢;(x) = —alx +b; for i = 1,2,...,m. Then
L(x,A) = (CT — )\TA) x + bTX where A has rows ay, ..., a,,.
It follows that AX # c implies that ¢(A) = —oo. So the dual problem is

Minimize b” X subject to ATX =c.

Weak Duality: If A is feasible for (9) and x is feasible for (8 then f(x) > ¢(X).
O(A) < L(x,A) < f(x) since \; > 0,¢;(x) <0,i=1,2,...,m. (10)

Now note that ¢(A\) = —oo, unless ¢/ = AT A, since x is unconstrained in the definition of
¢. And if c” = AT A then ¢(A) = b”A. So, the dual problem is to
Maximize b” X subject to ¢/ = AT A and XA > 0, i.e. the LP dual.

Strong Duality: We give a sufficient condition Slater’s Constraint Condition for tightness

in .

Theorem 5.1. Suppose that there exists a point x* such that g;(x*) < 0,7 = 1,2,...,m.
Then

A) = 1 .
maxo(V) = i T

Proof. Let

A={u,t): Ix e R g;(x) <uy,i=1,2,...,mand f(x) <t}.
B=1{(0,s) e R"*': s < f*} where f*= min  f(x).

x:9i(x)<0,i€[m]
Now AN B = () and so from Corollary there exists A, y, b such that (A,~) # 0 and

b < min {)\Tu +qt:(u,t) € A}. (11)
b > max {A\u+1t: (ut) € B}. (12)

We deduce from that A\ >0and g > 0. If vy < 0 or \; < 0 for some 7 then the minimum
in (11]) is —co. We deduce from that v¢ < b for all t < f* and so vf* < b. And from

that
YA+ ) Nigi(x) = b>yf*  forallx € R™. (13)
=1

If v > 0 then we can divide by v and see that L(x,A) > f*, and together with weak
duality, we see that L(x,A) = f*.

If v = 0 then substituting x* into we see that Y " \;g;(x*) > 0 which then implies
that A = 0, contradiction. O
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6 Conditions for a minimum: First Order Condition

6.1 Unconstrained problem

We discuss necessary conditons for a to be a (local) minimum. (We are not assuming that
f is convex.) We will assume that our functions are differentiable. Then Taylor’s Theorem

fa+h) = f(a) + (Vf(a))"h+o(|h|)

implies that
Vf(a)=0 (14)

is a necessary condition for a to be a local minimum. Otherwise,
fla—tVf(a) < f(a) = t[Vf(a)[*/2
for small ¢ > 0.

Of course (|14) is not sufficient in general, a could be a local maximum. Generally spealking,
one has to look at second order conditions to distinguish between local minima and local
maxima.

However,

Lemma 6.1. If f is convex then 1s also a sufficient condition.

Proof. This follows directly from F3. O]

6.2 Constrained problem

We will consider Problem , but we will not assume convexity, only differentiability. The
condition corresponding to is the Karush-Kuhn-Tucker or KK'T condition. Assume that
f,91,92, - - ., gm are differentiable. Then (subject to some regularity conditions, a necessary
condition for a to be a local minimum (or maximum) to Problem is that there exists A
such that

gi(a) <0, 1<i<m.
Ai >0 1<i<m. (15)
V@) + > A\Vgi(a)=0. (16)
i=1
Aigi(a) =0, 1<i<m. Complementary Slackness (17)

The second condition says that only active constraints (g;(a) = 0) are involved in the first
condition.
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One deals with g;(x) > 0 via —g;(x) < 0 (and \; < 0) and ¢;(x) = 0 by ¢;(x) > 0 and
—g;(x) <0 (and \; not constrined to be non-negative or non-positive).

In the convex case, we will see that , and are sufficient for a global minimum.

6.2.1 Heuristic Justification of KKT conditions

See Diagram 10 at the end of these notes.

Suppose that a is a local minimum and assume w.l.o.g. that g;(a) =0 for i = 1,2,...,m.
Then (heuristically) Taylor’s theorem implies that if (i) h"Vg;(a) < 0,4 =1,2,...,m then
(ii) we should have hTV f(a) > 0. (The heuristic argument is that (i) holds then we should
have (iii) a 4+ h feasible for small h and then we should have (ii) since we are at a local
minimum. You need a regularity condition to ensure that (ii) implies (iii).)

Applying Corollary we see that the KKT conditions hold. We let A have columns
Vgi(a),i =1,2,...,m. Then the KKT conditions are AA = —V f(a).

Convex case: Suppose now that f,gi,..., g, are all convex functions and that (x*, A¥)
satisfies the KKT conditions. Now A* > 0 implies that ¢(x) = L(x, A*) is a convex function
of x. Equation and Lemma implies that x* minimises ¢. But then for any feasible

x we have

F(x*) = d(x*) < o(x) = f(x) + Z Ngi(x) < f(x).

For much more on this subject see Convex Optimization, by Boyd and Vendenberghe
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https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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