
Notes on optimization

October 17, 2019

1 Optimization Problems

We consider the following problem:

Minimize f(x) subject to x ∈ S, (1)

where x = (x1, x2, . . . , xn) and S ⊆ Rn.

Example: f(x) = cTx and S = {x ∈ Rn : Ax = b,x ≥ 0} – Linear Programming.

Local versus Global Optima: x∗ is a global minimum if it is an actual minimizer in (1).

x∗ is a local minimum if there exists δ > 0 such that f(x∗) ≤ f(x) for all x ∈ B(x∗) ∩ S,
where B(x, δ) = {y : |y − x| ≤ δ} is the ball of radius δ, centred at x.

See Diagram 1 at the end of these notes.

If S = ∅ then we say that the problem is unconstrained, otherwise it is constrained.

2 Convex sets and functions

2.1 Convex Functions

A function f : Rn → R is said to be convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

See Diagram 2 at the end of these notes.

Examples of convex functions:
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F1 A linear function f(x) = aTx is convex.

F2 If n = 1 then f is convex iff

f(y) ≥ f(x) + f ′(x)(y − x) for all x, y. (2)

Proof. Suppose first that f is convex. Then for 0 < λ ≤ 1,

f(x+ λ(y − x)) ≤ (1− λ)f(x) + λf(y).

Thus, putting h = λ(y − x) we have

f(y) ≥ f(x) +
f((x+ h)− f(x))

h
(y − x).

Taking the limit as λ→ 0 implies (2).

Now suppose that (2) holds. Choose x 6= y and 0 ≤ λ ≤ 1 and let z = λx + (1 − λ)y.
Then we have

f(x) ≥ f(z) + f ′(z)(x− z) and f(y) ≥ f(z) + f ′(z)(y − z).

Multiplying the first inequality by λ and the second by 1− λ and adding proves that

λf(x) + (1− λ)f(y) ≥ f(z).

F3 If n ≥ 1 then f is convex iff f(y) ≥ f(x) + (∇f(x))T (y − x) for all x,y.
Apply F2 to the function h(t) = f(tx + (1− t)y).

F4 A n = 1 and f is twice differentiable then f is convex iff f ′′(z) ≥ 0 for all z ∈ R.

Proof. Taylor’s theorem implies that

f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(z)(y − x)2 where z ∈ [x, y].

We now just apply (2).

F5 It follows from F4 that eax is convex for any a ∈ R.

F6 xa is convex on R+ for a ≥ 1 or a ≤ 0. xa is concave for 0 ≤a≤ 1.
Here f is concave iff −f is convex.

F7 Suppose that A is a symmetric n× n positive semi-definite matrix. Then Q(x) = xTAx
is convex.
By positive semi-definite we mean that Q(x) ≥ 0 for all x ∈ Rn.
We have

Q(λx + (1− λ)y)− λQ(x)− (1− λ)Q(y)

=λ2Q(x) + (1− λ)2Q(y) + 2λ(1− λ)xTAy − λQ(x)− (1− λ)Q(y)

=− λ(1− λ)Q(y − x) ≤ 0.
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F8 If n ≥ 1 then f is convex iff ∇2F =
[

∂f2

dxidxj

]
is positive semi-definite for all x.

Apply F7 to the function h(t) = f(x + td) for all x,d ∈ Rn.

Operations on convex functions

E1 If f, g are convex, then f + g is convex.

E2 If λ > 0 and f is convex, then λf is convex.

E3 If f, g are convex then h = max {f, g} is convex.

Proof.

h(λx + (1− λ)y) = max {f(λx + (1− λ)y), g(λx + (1− λ)y)}
≤ max {λf(x) + (1− λ)f(y), λg(x) + (1− λ)g(y)}
≤ λmax {f(x), g(x)}+ (1− λ) max {f(y), g(y)}
= λh(x) + (1− λ)h(y).

Jensen’s Inequality
If f is convex and ai ∈ Rn, λi ∈ R+, 1 ≤ i ≤ m and λ1 + λ2 + · · ·+ λm = 1 then

f

(
m∑
i=1

λiai

)
≤

m∑
i=1

f(λiai).

The proof is by induction on m. m = 2 is from the definition of convexity and then we use

m∑
i=1

λiai = λmam + (1− λm)
m−1∑
i=1

λi
1− λm

ai.

Application: Arithmetic versus geometric mean.
Suppose that a1, a2, . . . , am ∈ R+. Then

a1 + a2 + · · ·+ am
m

≥ (a1a2 · · · am)1/m. (3)

− log(x) is a convex function for x ≥ 0. So, applying (3),

− log

(
m∑
i=1

λiai

)
≤

m∑
i=1

− log(λiai).

Now let λi = 1/m for i = 1, 2, . . . ,m.
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2.2 Convex Sets

A set S ⊆ Rn is said to be convex if x,y ∈ S then the line segment

L(x,y) = {λx + (1− λ)y ∈ S : 0 ≤ λ ≤ 1} .

See Diagram 3 at the end of these notes.

Examples of convex sets:

C1 S =
{
x : aTx = 1

}
. x,y ∈ S implies that

aT (λx + (1− λ)y) = λaTx + (1− λ)aTy = λ+ (1− λ) = 1.

C2 S =
{
x : aTx ≤ 1

}
. Proof similar to C1.

C3 S = B(0, δ): x,y ∈ S implies that

|λx + (1− λ)y| ≤ |λx|+ |(1− λ)y| ≤ λδ + (1− λ)δ = δ.

C4 If f is convex, then the level set {x : f(x) ≤ 0} is convex.
f(x), f(y) ≤ 0 implies that f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ 0.

Operations on convex sets:

O1 S convex and x ∈ Rn implies that x + S = {x + y : y ∈ S} is convex.

O2 S, T convex implies that A = S ∩ T is convex. x,y ∈ A implies that x,y ∈ S and so
L = L(x,y) ⊆ S. Similarly, L ⊆ T and so L ⊆ S ∩ T .

O3 Using induction we see that if Si, 1 ≤ i ≤ k are convex then so is
⋂k
i=1 Si.

O4 If S, T are convex sets and α, β ∈ R then αS + βT = {αx + βy} is convex.
If zi = αxi + βyi ∈ T, i = 1, 2 then

λz1 + (1− λ)z2 = α(λx1 + (1− λ)x2) + β(λy1 + (1− λ)y2) ∈ T.

It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax ≤ b}
are convex for any matrix A any vector b.

We now prove something that implies the importance of the above notions. Most optimiza-
tion algorithms can only find local minima. We do however have the following theorem:

Theorem 2.1. Let f, S both be convex in (1). Then if x∗ is a local minimum, it also a global
minimum.
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Proof.
See Diagram 4 at the end of these notes.

Let δ be such that x∗ minimises f in B(x∗, δ) ∩ S and suppose that x ∈ S \ B(x∗, δ). Let
z = λx∗ + (1 − λ)y be the point on L(x∗,y) at distance δ from x∗. Note that x ∈ S by
convexity of S. Then by the convexity of f we have

f(x∗) ≤ f(x) ≤ λf(x∗) + (1− λ)f(x)

and this implies that f(x∗) ≤ f(x).

The following shows the relationship between convex sets and functions.

Lemma 2.2. let f1, f2, . . . , fm be convex functions on Rn. Let b ∈ Rm and let

S = {x ∈ Rn : fi(x) ≤ bi, i = 1, 2, . . . ,m} .

Then S is convex.

Proof. It follows from O3 that we can consider the case m = 1 only and drop the subscript.
Suppose now that x,y ∈ S i.e. f(x), f(y) ≤ b. Then for 0 ≤ λ ≤ 1

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λb+ (1− λ)b = b.

So, λx + (1− λ)y ∈ S.

3 Algorithms

3.1 Line search – n = 1

Here we consider the simpler problem of minimising a convex (more generally unimodal)
function f : R→ R.

See Diagram 5 at the end of these notes.

We assume that we are given a0, a1 such that a0 ≤ x∗ ≤ a1 where x∗ minimises f . This
is not a significant assumption. We can start with a0 = 0 and then consider the sequences
ζi = f(2i), ξi = f(−2i) until we find ζi−1 ≤ min {ζ0, ζi} (resp. ξi−1 ≤ min {ξ0, ξi}). Then we
know that x∗ ∈ [ζ0, ζi] (resp. x∗ ∈ [ξ0, ξi]).

Assume then that we have an interval [a0, a1] of uncertainty for x∗. Furthermore, we will have
evaluated f at two points in this interval, two points inside the interval at a2 = a0+α

2(a1−a0)
and a3 = a0 + α(a1 − a0) respectively. We will determine α shortly. And at each iteration
we make one new function evaluation and decrease the interval of uncertainty by a factor α.
There are two possibilities:
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(i) f(a2) ≤ f(a3). This implies that x∗ ∈ [a0, a3]. So, we evaluate f(a0 + α2(a3 − a0)) and
make the changes ai → a′i:

a′0 ← a0, a
′
1 ← a3, a

′
2 ← a0 + α2(a3 − a0), a′3 ← a2.

(ii) f(a2) > f(a3). This implies that x∗ ∈ [a2, a1]. So, we evaluate f(a0+) and make the
changes ai → a′i:

a′0 ← a2, a
′
1 ← a1, a

′
2 ← a3, a

′
3 ← a2 + α2(a1 − a0).

In case (i) we see that a′1 − a′0 = a3 − a0 = α(a1 − a0) and so the interval has shrunk by
the required amount. Next we see that a′2 − a′0 = α2(a3 − a0) = α2(a′1 − a0). Furthermore,
a′3 − a′0 = a2 − a0 = α2(a1 − a0) = α(a′1 − a′0).

In case (ii) we see that a′1 − a′0 = a1 − a2 = a1 − (a0 + α2(a1 − a0)) = (1− α2)(a1 − a0). So,
shrink by α in this case we choose α to satisfy 1− α2 = α. This gives us

α =

√
5− 1

2
– the golden ratio.

Next we see that a′2− a′0 = a3− a2 = (α−α2)(a1− a0) = α−α2

α
(a′1− a′0) = (1−α)(a′1− a′0) =

α2(a′1 − a′0). Finally, we have a′3 − a′0 = a2 + α2(a1 − a0)− a2 = α2(a1 − a0) = α(a′1 − a′0).

Thus to achieve an accuracy within δ of x∗ we need to take t steps, where αtD ≤ δ where D
is our initial uncertainty.

3.2 Gradient Descent

See Diagram 6 at the end of these notes.

Here we consider the unconstrained problem. At a point x ∈ Rn, if we move a small distance
h in direction d then we have

f(x + hd/|d|) = f(x) + h(∇f)T
d

|d|
+O(h2) ≥ f(x)− h|∇f |+O(h2).

Thus, at least infinitessimally, the best direction is −∇f . So, for us, the steepest algorithm
will follow a sequence of points x0,x1, . . . ,xk, . . ., where

xk+1 = xk − αk∇f(xk).

Then we have

|xk+1 − x∗|2 = |xk − x∗|2 − 2αk∇f(xk)
T (xk − x∗) + α2

k|∇f(xk)
2|

≤ |xk − x∗|2 − 2αk(f(xk)− f(x∗)) + α2
k|∇f(xk)|2. (4)

The inequality comes from F3.
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Applying (4) repeatedly we get

|xk − x∗|2 ≤ |x0 − x∗|2 − 2
k∑
i=1

αi(f(xi)− f(x∗)) +
K∑
i=1

α2
i |∇f(xk)|2. (5)

Putting R = |x0 − x∗|, we see from (5) that

2
k∑
i=1

αi(f(xi)− f(x∗)) ≤ R2 +
K∑
i=1

α2
i |∇f(xk)|2. (6)

On the other hand,

k∑
i=1

αi(f(xi)−f(x∗)) ≥

(
k∑
i=1

αi

)
min {f(xk)− f(x∗) : i ∈ [k]} =

(
k∑
i=1

αi

)
(f(xmin−f(x∗)),

(7)
where f(xmin) = min {f(xi) : i ∈ [k]}.

Combining (6) and (7) we get

f(xmin)− f(x∗) ≤ R2 +G2
∑k

i=1 α
2
i

2
∑k

i=1 αi
,

where G = max {|∇f(xi)| : i ∈ [κ]}.

So, if we choose αk so that
∑∞

i=1 αi =∞ and
∑∞

i=1 α
2
i = O(1) then

|f(xmin)− f(x∗)| → 0 as k →∞.

As an example, we could let αi = 1/i.

4 Separating Hyperplane

See Diagram 7 at the end of these notes.

Theorem 4.1. Let C be a convex set in Rn and suppose x /∈ C. Then there exists 0 6= a ∈ Rn

and b ∈ R such that (i) aTx ≥ b and (ii) C ⊆
{
y ∈ Rn : aTy ≤ b

}
.

Proof.
Case 1: C is closed.
Let z be the closest point in C to x. Let a = x− z 6= 0 and b = (x− z)Tz. Then

aTx− b = (x− z)Tx− (x− z)Tz = |x− z|2 > 0.

This verifies (i). Suppose (ii) fails and there exists y ∈ C such that aTy > b. Let w ∈ C be
the closest point to x on the line segment L(y, z) ⊆ C. The triangle formed by x,w, z has a
right angle at w and an acute angle at z. This implies that |x−w| < |x−z|, a contradiction.
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Case 2: x /∈ C̄.
We observe that C̄ ⊇ C and is convex (exercise). We can thus apply Case 1, with C̄ replacing
C.

Case 3: x ∈ C̄ \ C. Every ball B(x, δ) contains a point of Rn \ C̄ that is distinct from
x. Choose a sequence xn, /∈ C̄, n ≥ 1 that tends to x. For each xn, let an, bn = aTnzn
define a hyperplane that separates xn from C̄, as in Case 2. We can assume that |an| = 1
(scaling) and that bn is in some bounded set and so there must be a convergent subsequence
of (an, bn), n ≥ 1 that converges to (a, b), |a| = 1. Assume that we re-label so that this
subsequence is (an), n ≥ 1. Then for y ∈ C̄ we have aTny ≤ bn for all n. Taking limits we
see that aTy ≤ b. Furthermore, for y /∈ C̄ we see that for large enough n, aTny > bn. taking
limits we see that aTy ≤ b.

Corollary 4.2. Suppose that S, T ⊆ Rn are convex and that S ∩ T = ∅. Then there exists
a, b such that aTx ≤ b for all x ∈ S and aTx ≥ b for all x ∈ T .

Proof. Let W = S+(−1)T . Then 0 /∈ W and applying Theorem 4.1 we see that there exists
a such that aTz ≤ 0 for all z ∈ W . Now put

b =
1

2

(
sup
x∈S

aTx + inf
x∈T

aTx

)
.

Corollary 4.3 (Farkas Lemma). For an m × n matrix and b ∈ Rm, exactly one of the
following holds:

(i) There exists x ∈ Rn such that x ≥ 0, Ax = b.

(ii) There exists u ∈ Rm such that uTA ≥ 0 and uTb < 0.

Proof. We cannot have both (i), (ii) holding. For then we have

0 ≤ uTAx = uTb < 0.

Suppose then that (i) fails to hold. Let S = {y : y = Ax for some x ≥ 0}. Then b /∈ S and
since S is closed there exists α, β such that (a) αTb ≤ β and (b) αTAx ≥ β for all x ≥ 0.
This implies that αT (b − Ax) ≤ 0 for all x ≥ 0. This then implies that u = α satisfies
(ii).

4.1 Convex Hulls

See Diagram 8 at the end of these notes.
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Given a set S ⊆ Rn, we let

conv(S) =

{∑
i∈I

λixi : (i) |I| <∞, (ii)
∑
i∈I

λi = 1, (iii) λi > 0, i ∈ I, (iv) xi ∈ S, i ∈ I

}
.

Clearly S ⊆ conv(S), since we can take |I| = 1.

Lemma 4.4. conv(S) is a convex set.

Proof. Let x =
∑

i∈I λixi,y =
∑

j∈J µjyj ∈ conv(S). Let K = I∪J and put λi = 0, i ∈ J \I
and µj = 0, j ∈ I \ J . Then for 0 ≤ α ≤ 1 we see that

αx + (1− α)y =
∑
i∈K

(αλ1 + (1− α)µi)xi and
∑
i∈K

(αλ1 + (1− α)µi) = 1

implying that αx + (1− α)y ∈ conv(S) i.e. conv(S) is convex.

Lemma 4.5. If S is convex, then S = conv(S).

Proof. Exercise.

Corollary 4.6. conv(conv(S)) = conv(S) for all S ⊆ Rn.

Proof. Exercise.

4.1.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST
y, z ∈ S such that x ∈ L(y, z). We let ext(S) denote the set of extreme points of S.

EX1 If n = 1 and S = [a, b] then ext(S) = {a, b}.

EX2 If S = B(0, 1) then ext(S) = {x : |x| = 1}.

EX3 If S = {x : Ax = b} is the set of solutions to a set of linear equations, then ext(S) = ∅.

Theorem 4.7. Let S be a closed, bounded convex set. Then S = conv(ext(S)).

Proof. We prove this by induction on the dimension n. For n = 1 the result is trivial, since
then S must be an interval [a, b].

Inductively assume the result for dimensions less than n. Clearly, S ⊇ T = conv(ext(S)) and
suppose there exists x ∈ S\T . Let z be the closest point of T to x and let H =

{
y : aTy = b

}
be the hyperplane defined in Theorem 4.1. Let b∗ = max

{
aTy : y ∈ S

}
. We have b∗ < ∞

since S is bounded. Let H∗ =
{
y : aTy = b∗

}
and let S∗ = S ∩H∗.
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We observe that if w is a vertex of S∗ then it is also a vertex of S. For if w = λw1 + (1−
λ)w2,w1,w2 ∈ S, 0 < λ < 1 then we have

b∗ = aTw = λaTw1 + (1− λ)aTw2 ≤ λb∗ + (1− λ)b∗ = b∗.

This implies that aTw1 = aTw2 = b∗ and so w1,w2 ∈ S∗, contradiction.

Now consider the point w on the half-line from z through x that lies in S∗ i.e

w = z +
b∗ − b

aTx− b
(x− z).

Now by induction, we can write w =
∑k

i=1 λiwi where w1,w2, . . . ,wk are extreme points of
S∗ and hence of S. Also, x = µw + (1− µ)z for some 0 < µ ≤ 1 and so x ∈ ext(S).

The following is sometimes useful.

Lemma 4.8. Suppose that S is a closed bounded convex set and that f is a convex function.
The f achieves its maximum at an extreme point.

Proof. Suppose the maximum occurs at x = λ1x1 + · · · + λkxk where 0 ≤ λ1, . . . , λk ≤ 1
and λ1 + · · · + λk = 1 and x1, . . . ,xk ∈ ext(S). Then by Jensen’s inequality we have
f(x) ≤ λ1f(x1) + · · ·+ λkf(xk) ≤ max {f(xi) : 1 ≤ i ≤ k}.

This explains why the solutions to linear programs occur at extreme points.

5 Lagrangean Duality

See Diagram 9 at the end of these notes.

Here we consider the primal problem

Minimize f(x) subject to gi(x) ≤ 0, i = 1, 2, . . . ,m, (8)

where f, g1, g2, . . . , gm are convex functions on Rn.

The Lagrangean

L(x,λ) = f(x) +
m∑
i=1

λig(x).

The dual problem is

Maximize φ(λ) subject to λ ≥ 0 where φ(λ) = min
x∈Rn

L(x,λ). (9)

We note that φ is a concave function. It is the minimum of a collection of convex (actually
linear) functions of λ – see E3.
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D1 :Linear programming. Let f(x) = cTx and gi(x) = −aTi x + bi for i = 1, 2, . . . ,m. Then

L(x,λ) =
(
cT − λTA

)
x + bTλ where A has rows a1, . . . , am.

It follows that Aλ 6= c implies that φ(λ) = −∞. So the dual problem is

Minimize bTλ subject to ATλ = c.

Weak Duality: If λ is feasible for (9) and x is feasible for (8) then f(x) ≥ φ(λ).

φ(λ) ≤ L(x,λ) ≤ f(x) since λi ≥ 0, gi(x) ≤ 0, i = 1, 2, . . . ,m. (10)

Now note that φ(λ) = −∞, unless cT = λTA, since x is unconstrained in the definition of
φ. And if cT = λTA then φ(λ) = bTλ. So, the dual problem is to
Maximize bTλ subject to cT = λTA and λ ≥ 0, i.e. the LP dual.

Strong Duality: We give a sufficient condition Slater’s Constraint Condition for tightness
in (10).

Theorem 5.1. Suppose that there exists a point x∗ such that gi(x
∗) < 0, i = 1, 2, . . . ,m.

Then
max
λ≥0

φ(λ) = min
x:gi(x)≤0,i∈[m]

f(x).

Proof. Let

A = {u, t) : ∃x ∈ Rn, gi(x) ≤ ui, i = 1, 2, . . . ,m and f(x) ≤ t} .
B =

{
(0, s) ∈ Rm+1 : s < f ∗

}
where f ∗ = min

x:gi(x)≤0,i∈[m]
f(x).

Now A ∩ B = ∅ and so from Corollary 4.2 there exists λ, γ, b such that (λ, γ) 6= 0 and

b ≤ min
{
λTu + γt : (u, t) ∈ A

}
. (11)

b ≥ max
{
λTu + γt : (u, t) ∈ B

}
. (12)

We deduce from (11) that λ ≥ 0 and ḡ ≥ 0. If γ < 0 or λi < 0 for some i then the minimum
in (11) is −∞. We deduce from (12) that γt < b for all t < f ∗ and so γf ∗ ≤ b. And from
(11) that

γf(x) +
m∑
i=1

λigi(x) ≥ b ≥ γf ∗ for all x ∈ Rn. (13)

If γ > 0 then we can divide (13) by γ and see that L(x,λ) ≥ f ∗, and together with weak
duality, we see that L(x,λ) = f ∗.

If γ = 0 then substituting x∗ into (13) we see that
∑m

i=1 λigi(x
∗) ≥ 0 which then implies

that λ = 0, contradiction.
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6 Conditions for a minimum: First Order Condition

6.1 Unconstrained problem

We discuss necessary conditons for a to be a (local) minimum. (We are not assuming that
f is convex.) We will assume that our functions are differentiable. Then Taylor’s Theorem

f(a + h) = f(a) + (∇f(a))Th + o(|h|)

implies that
∇f(a) = 0 (14)

is a necessary condition for a to be a local minimum. Otherwise,

f (a− t∇f(a)) ≤ f(a)− t|∇f(a)|2/2

for small t > 0.

Of course (14) is not sufficient in general, a could be a local maximum. Generally spealking,
one has to look at second order conditions to distinguish between local minima and local
maxima.

However,

Lemma 6.1. If f is convex then (14) is also a sufficient condition.

Proof. This follows directly from F3.

6.2 Constrained problem

We will consider Problem (8), but we will not assume convexity, only differentiability. The
condition corresponding to (14) is the Karush-Kuhn-Tucker or KKT condition. Assume that
f, g1, g2, . . . , gm are differentiable. Then (subject to some regularity conditions, a necessary
condition for a to be a local minimum (or maximum) to Problem (8) is that there exists λ
such that

gi(a) ≤ 0, 1 ≤ i ≤ m.

λi ≥ 0 1 ≤ i ≤ m. (15)

∇f(a) +
m∑
i=1

λi∇gi(a) = 0. (16)

λigi(a) = 0, 1 ≤ i ≤ m. Complementary Slackness (17)

The second condition says that only active constraints (gi(a) = 0) are involved in the first
condition.
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One deals with gi(x) ≥ 0 via −gi(x) ≤ 0 (and λi ≤ 0) and gi(x) = 0 by gi(x) ≥ 0 and
−gi(x) ≤ 0 (and λi not constrined to be non-negative or non-positive).

In the convex case, we will see that (16), (15) and (17) are sufficient for a global minimum.

6.2.1 Heuristic Justification of KKT conditions

See Diagram 10 at the end of these notes.

Suppose that a is a local minimum and assume w.l.o.g. that gi(a) = 0 for i = 1, 2, . . . ,m.
Then (heuristically) Taylor’s theorem implies that if (i) hT∇gi(a) ≤ 0, i = 1, 2, . . . ,m then
(ii) we should have hT∇f(a) ≥ 0. (The heuristic argument is that (i) holds then we should
have (iii) a + h feasible for small h and then we should have (ii) since we are at a local
minimum. You need a regularity condition to ensure that (ii) implies (iii).)

Applying Corollary 4.3 we see that the KKT conditions hold. We let A have columns
∇gi(a), i = 1, 2, . . . ,m. Then the KKT conditions are Aλ = −∇f(a).

Convex case: Suppose now that f, g1, . . . , gm are all convex functions and that (x∗,λ∗)
satisfies the KKT conditions. Now λ∗ ≥ 0 implies that φ(x) = L(x,λ∗) is a convex function
of x. Equation (16) and Lemma 6.1 implies that x∗ minimises φ. But then for any feasible
x we have

f(x∗) = φ(x∗) ≤ φ(x) = f(x) +
m∑
i=1

λ∗i gi(x) ≤ f(x).

For much more on this subject see Convex Optimization, by Boyd and Vendenberghe
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https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf





















