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E'xempleg _
\. Capital Budgeting

A firm has n projects that it would like to undertake but because
of budget limitations not all can be selected. In particular project 3§
1; expected to pmd'f:ce 2 :eva'nu'e of t:j but :equires'an investment of ‘-ij _
in time period i for i=1,...m. The capital available in time periodi is b .
The problen of mininising revenue subject to the budget constraints can be
formulated as follows: let xj = O or 1 correspond to n;t p?oceeding or
iespect.ively proceeding with project j then we have to

n

Maxinise . x c jx 3
3=

subject to - I .a,_j xy € by L=l,ecem
=1

o> € | x 'u':estr SRR (5

2. Denot location

We consider here a simples problem of this type: a company has selected
m possible sites for distribution of itsproducts in a certain area., There
are n customers in the area’ and the transport cost of supplying the whole
of customer 3's requirements over the given planning pezi&d from

potential site i is € 3 Should site { be developed it will cost f i to

construct a depot there. which sites should be selected to minimise the

total construction plus transport cost?




To do this we 1nt_zaduce m variables yl....ym which can only take va.ues

© or 1 and correspond to a particular site being not developed or developed

respectively. We next define Xy 4 to be the fraction of customer 3's

xequirements _supf.olied fromdepot i in a given solution. The problen can then

be expressed,

Minimise I z cij xij + z fiyi .
| o im 3= i=1
subject to m
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3. Set c::ver:i.p_g

Let S,,...5) be a family of subsets of a set: s ={1,2,...m }.

A covering of S is a subfamily s ?ug jg‘I such that § = U S; . Yol
;QI, ) e A
Assume that each subset S 3 ha.s cost c > O assocjated with it, We define

the cost of a cover to be ths sum of the mts of the subsets included in

the cover,



The problex of finding a cover of minimum cest is of particular

e ;'\-,} -
E .

practical significance. As an integer program it can be specififed_as

follows: define the m x n matrix A = ” "‘ij ” by

aijtl_iftts

3

= 0 otherwvise

Let xj be O -~ 1 variables with xj = 1(0) to mean set §j is included

(respectively not included) in the cover. The problem is to

n
rinimise ) cj'xj
e j.l
n
(15.1) subject to ) By %521 i=1,...m
i=1
3j =0orl _ ‘

The » inei;uality constraints have the following significance:

since ’j = 0 or 1 and the coefficients a,, are also O or 1 we see that

i)
n .
a .
jaztl 14 ’j can be zero only if "j = O for all j such that aij =]

'In other words cnly if no set 84 is chosen such that 1 € 54. The
inequalities are put 1_n to aviod this. |

As an exaxple considér the following simplified airlins2 ::.v.-ew
scheduling problem. An aizline. has m scheduled flight-legs per week in
its current service. A flight-leg being a singlé flight flovn by a single
crevw e.g'. London - P#:is leaving Heathrow at 10.30 am. Let Sj i=1l,...n

be the collection of all possible weekly sets of flight-legs ‘that can be

flown by a single crew.” Such a subset_iust take account of restricticns like

a crew arriving in Paris at 11,30 am. cannot take a flight: out of New York
at 12,00 po, and so' if Cj is the cost of set sj of flight-legs then the

problem of minimising cost subject to covering all flight-legs is a set



-y’

coverir g problem, Note that if crews are not allowed to be passengers on a

AL

flig.\_f.‘i.e. so that t.he'y can be flown to their next flight, then we have to >

make 15,1 an eguality - the set partitioning problem,
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Furthor Uses of Intager Variables

{1 If a variable x can only take a finite number of values pl...'.pm
we can replace x by the expression

Py:¥y * eee ¥ Pp ¥n

where

1l "n.l

.H + see 4+
and '1 - 0 ox 1 1 = 1...-“

For example x might be the ouiput of a plant which can be small Pyr

medium p, or large py. The cost e(x) of the plant could be represented
by

C-¥y T Gy Wy + c,y ¥,

whare n. ig the cost of a small plant ete.




{2) In L.P. O3e generally consider all constraints to be hold:'l_ng
simultaneocusly. - It is possible that the variable might have to satisfy

one or other of a set of constraints

.
-

eogo

" a) 0OL£xXSM

0<x <leor x2 2 .

can be expressed

x<1l+ (M-28
x 2 2+ M06-1)

x20 $§=00rl

x<Misa notional upper bound to make this approach possible,

{b) 314’82».‘34

xlzlot xzzl but not both 2 1
g X 4%y 2 O

can be expressed

x, +x, s 4
x, z ¢
z, 2 1-8
Xy e (3-8) + 48
x, £ § + 4 (1-8)

d = o'cr l




Integer programming problems generally take much longer to solve then
the eorzespondiﬁg linear program obtained by ignoring i.nt'egrality.. It is
wise therefore to consider the possibility of solving as a straiéht forward
L.F, and then rounding e.g. in the trim-loss preblenm. 'i‘his is not always
possible for example if %, is a O - 1 variable such that x, = O means do
not build a plant and x; = 1 means build a plant then rownding x; = % is

not very satisfactory.

A cutting Jplane algorithm for the pure problem

~ The rationale behind this approach in:~

1) Solve the continuous problem as an L.P, i.e, ignore intagrality.

2) If by chance the optimal bglic variables are all integer then the
optimum solution has been found. Otherwise:-

3) Generate a cut i.e. a constraint which is satisfied by all integer '
solutions to the problem but not by the current L.P. solution,

4) A44 this new éonst:a.tnt and go to (l).

The idea of such an approach is illustrated below:-

It is straight forward to show that i{if at any stage the current L.P.
solution x is integer it is the optimal integer solution., This is because x

is optimal over a region containing all feasible integer solutions.



The problem is to define cuts that ensure the eonvergenc'e of the
algorithm in a finite number of steps. The first finite algorithm was
daviged by R.E, Gomory. |

It :I.s“ based on the following constryction: let

15,2
( ) X .lxl*.o."lnxn.b

be an equation which is to be satisfied by non-negative integers .

XyreoeXy and let § be the iet ofl possible sclutions,

Por a real numbe: £ we dafine LI;J it to be the largest integer < .

Thus £ = [£] + e where 0 s € < 1,

les) =6  |3j=3 l-e&}=-s

Now let a - ay + £j and b= b + £ in(15.2)then we have -

n
1 (la ]+ f;] xy = lp) + £
=1
and hence
_ n n
(15.3) ) tyxy=f = Db - ) 85 *3
j=1 4=1

Now for x € S the right hand side of 15,3 is clearly integer and
SO = zfjxj-fis integer for x € S, Since x 2 O for x € S we also
have £ 8 - £ > = 1 and since { is integer we deduce that { 2 0O and that

I fj xj 2 £ forxe §
I=1

Suppose now that one has solved the continuous problem in (1)

of our cutting plane algorithm and the sclution is not integer. Therefore

there is a basic variable 'x1 with



. x, + Z hij xj 'b.i.o
3fz

where bio is not integer.

Putting £, = hij - Lb:l.j] and £=b, - Lbiol and@ we deduce
that - |

(15.4) 1 £ x
jét

for all integer solutions to our problem.

Now £ > O since b,  is not integer and so (15.4)is not satisfied by

the current I.P, solution since xj = 0 for ij and so (lS.d)is a cut,

Statement of the Algorithm

s The initial continudus pioblem solved by the algorithm is the L.P.

problem obtained by ingoring integrality.

Step 1
. Solve current con;.inuous prcblenm,
Step 2 -
If the solution is integral it is the optimal integer solution,
Ptherwise. |
Step 3

cuooée a basic variable x; which is currently non-integer, construct
the corresponding constraint 15.4 and add it to the problem. Go to

Step 1.

We note that the tableau obtained after adding the cut is dual

feasible and so the dual simplex algorithm is used to re-optimise.
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One can show that the Gomory cuts ) fjx > £ vhen expressed in

3

terms of the original non-basic variables have the form | w w

¥y S

vhere the V4o W are integer and the value of [ w x_ after solving the

"3
Current continuous problem is W+ ¢ where 0 < ¢ < 1 assuming the current
solution non-integer, Thus thé cut is obtained by moving a hyperplane
parallel to itself to an extend which cannot exclude an integer solution.
It is worth noting that the plane can usually be md further without
e;tcluding integer points thus generating deeper cuts, PFor a discussion

on how this can be done see the referance given for integer programing.‘

Further Remarks

1) After adding a cut and carrying out one iteration of the dual
simplexalgorithm the slack variable corresponding to this cut becomes
honbasic. 1f during a succeeding iteration this slack variable becomes
basic then it may be discarded along with its current row without
affecting terminatien. mis means that the tableau never has more than

n+1rows or m + n columns,

2) A valid cut can be éenerate& from any row containing a non-integral
variable., One strategy is to choose the variable with the largest
fractional part as this helps' to produce a 'large' change in the
objective ;'alue. It is interesting that finitness of the algorithm has
not been p:’roved for this strategy alt:hoi:gh finitness ﬁus been proved for
the strategy of always choosing the 'topmost' row the tableau with a .

non=-integer variable,

) The behaviour of‘ this algorithm has been erratic. It has for example
worked well on set covering problems but in other cases the algorithm has to
be terminated because of excessive use of computer time. This raises an
1lpori:ant point; if the algorithm is stopped prematurely then one does not

have a good sub-optimal solution to use., Thus in some sense the algorithm
ts uarclisble,



It is useful to see what has happened graphically. We first express ’:7

the cuts in terms of x,, X,. ' - )

Cut no.l
) 3 :
7,

% x, +%_x3 : %
.8ince
: Xy = 7 -2:1 - 482 this becomes

"2 £ 1.
Cut no.?2

After re-arranging, this becomes

% + xzn‘s?.

A {s optimal selution ignoring integrality _ J
8 i5s optimal solution efter ‘adéiag cut C) '

C is Optimal integar solution found after adding C2.



Branch and Bound Method

The method to be descr;bed in this section constztutcs the
most successful method appl;ed to date. The idea is Quite general
and has been applled to many other discrete optimisation problems,

e.g. travelling salesman, job sﬁop'schqduling.

-Let us assume we are.trying to solQe the mixed integer ’
problem 12.2.- Let us call this problem Po+ The first step is to -
solve the 'continuous' L.P. problem obtained by ignoring the
integrality constraints. If in the optimal solution, one or more
- of the integer variables turn out to be non-integef, we choose one
such variable and use it to split the given problem Py into two
vsub-problems' Pl and P2. Suppose the variable chosen is yj and
it takes the non-integral value Bj in the continuous optimum. Then

P1 and P2 are defined as follows:

P

1 PD with the added constraint yj < [ Bj]

1

2 ¥ Py with the added constraint yj > [ Bj] +.1

Now any solution to Py is either a sclution of P1 or P, and so Po
can be solved by solving P, ani Pz. We continue by éoiving the
L.P. problems associated with P1 and Pz. We then choose one of'the
problems and if necessary split it into two sub-problems as was

done with Po.



This process can be viewed as the construction of a binary tree of

sub-problems whose terminal (pendant) nodes correspond to the problems

that remain to be solved.

In an actual computation one keeps a list of the unsolved problems

into which the main problem has been split. One alsoc keeps a note of

" the objective value MIN of the best integer solution found so far.

Step 0

Initially the list consists of the initial problem Po. ?ut MIN equal

to either the value of some known integer solution, or if one is not
given equal to some upper bound calculable from initial data, if

neither possibility is possible put MIN = =.

Solve the L.P; problem associated with P,. If the sclution has

integral values for all integer variables terminate, otherwise

Step 1

Remove a problem P from the list whose optimal continuous objective

function value X is less than MIN, If there are no such problems

terminate. The best integer solution found so far is optimal. If

none have been found the problem is infeasible.

U UUIUS VSRR

D
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Step 2

Amongst the integer variables in problem P with non-integer
values in the optimal continuous solution for P select one for

branching. Let this variable be yp and let its value in the

continuous solution bé B;
Step 3

Create two new problems P' and P" by adding the extra restrictions
< and

yp < [6] and yj

associated with P' and P" and add these problems to the list. . If

2 [BJ + 1 respectively. Solve the L.P. problems

& new and improved integer solution is found store it and update
MIN. The new L.P. problems do not have to be solved from scratch
but can be re-optimised using the dual algorithm (or

parametrically altering the bouni on yp). If during the

re-optimisation of either L.P. problem the value of the objective

function exceeds MIN this problem may be abandoned. Go to step 1.

If one assumes that each integer variable in Py has a finite
upper bound (equal to some large number for notionally unbounded |
variable) then the algorithn must terminate eventually, because as
one proceeds further down the tree of problems the bounds on the
variaebles become tighter and tighter, and these would eventually

become exact if the L.P. solutions were never integer.
As an example we show & possible tree (Fig 1) for solving

Minimise 20 - 3xl - sz
Subject to

© 2
T X *tx;s3

Fx-Ex sl | /7
e ~ >N and x. .x. integer
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Branch and Bound

September 27, 2018

We consider the problem Fjy:
Minimize f(z) subject to x € Sp.
Here Sy is our set of feasible solutions and f : Sy — R.

As we proceed in Branch-and-Bound we create a set of sub-problems P. A sub-problem
P € P is defined by the description of a subset Sp C Sy. We also keep a lower bound bp
where

bp <min{f(z): x € Sp}.

At all times we act as if we have 2* € Sy, some known feasible solution to Py and v* = f(z*).
If we do not actually have a solution x* then we let v* = —oo. We will have a procedure
BOUND that computes bp for a sub-problem P. In many cases, BOUND sometimes produces
a solution xp € Sy and sometimes determines that Sp = ().

We initialize P = {F}.

Branch and Bound:

Step 1 If P = () then z* solves the problem.

Step 2 Choose P € P. P+ P\ {P}.

Step 3 Bound: Run BOUND(P) to compute bp.

Step 4 If Sp =) or bp > v* then we consider P to be solved and go to Step 1.

Step 5 If BOUND generates xp € Sy and f(xp) < v* then we update, * <— xp,v* < f(zp).

Step 6 Branch: Split P into a number of subproblems @;,7 = 1,2,..., ¢, where Sp =
Ur_, So,- And Sg, # Sp is a strict subset for i = 1,2,.. ., (.

Step 7 P« PU{Q1,Q2,...,Q}.



Assuming Sy is finite, this procedure will eventually terminate with 7 = (). This is because
the feasible sets Sp are getting smaller and smaller as we branch.

Most often the procedure BOUND has the following form: while it may be difficult to solve
P directly, we may be able to find Tp O Sp such that there is an efficient algorithm that
determines whether or not T = ) and finds p € Tp that minimizes f(§),§ € Tp, if Tp # 0.
In this case, bp = f({p) and Step 5 is implemented if {p € S;. We call the problem of
minimizing f(£),& € Tp, a relazed problem.

Examples:

Ex. 1 Integer Linear Programming. Here Sp is the set of integer solutions and Tp is the set

of solutions, if we ignore integrality. The procedure BOUND solves the linear program.
If the solution £p is not integral, we choose a variable x, whose value is ( ¢ Z and
form 2 sub-problems by adding x < |z| to one and = > [z] to the other.

Traveling Salesperson Person Problem (TSP): Here Sp is the set of tours i.e. single
directed cycles that cover all the vertices. We can take T» to be the set of collections
of vertex disjoint directed cycles that cover all the vertices. More precisely, to solve
the TSP we must minimise Y ;' , C(I,7(i)) as w ranges over all cyclic permutations.
Our relaxation is to minimise Y . , C(I,7(i)) as m ranges over all permutations,
i.e. the assignment problem. We branch as follows. Suppose that the assignment
solution consists of cycles C1, Cs, ..., Ck, k > 2. Choose a cycle, C say. Suppose that
Cy = (v1,v9,...,v,) as a sequence of vertices. Then in @)1 we disallow 7(v;) = v9, in
()2 we insist that 7(vy) = vg, but that 7(vy) # v, in Q3 we insist that m(v) = va,
7(ve) = vz, but that 7(v3) # vy and so on.

Implicit Enumeration: Here the problem is

Minimize chxj subject to Zai,jxj > b, i€ [m], x;€{0,1},j € [n].

j=1 j=1

A sub-problem is assciated with two sets I,0 C [n]. This the sub-problem P;o
where we add the constraints z; = 1,5 € I,z; = 0,57 € O. We also check to see if
rj=1,7€l,x;=0,j ¢ Igives animproved feasible solution. As a bound by o we use
> jeomax{c;,0}. To test feasibility we check that }_ .., max{a;;, 0} > b;,i € [m].
To branch, we split P into Prugy,0 and Prougy for some j ¢ 1UO.



