
Notes on Combinatorial Optimization

August 25, 2019

1 Shortest path

1.1 Non-negative lengths

We are given a digraph D = ([n], E) with vertex set [n]. Let P denote the set of paths in D
and let ` : P → R. Think initially that there are edge lengths ` : E → R+ and that

`(P) = `reg(P) =
∑
e∈P

`(e).

Dijstra’s Algorithm:
begin
for i = 2, . . . , n, d(i)← `(1, i), Pi ← (1, i);S1 ← {1};

for k = 2, . . . , n do;
begin

d(i) = min {d(j) :/∈ Sk};
Sk+1 ← Sk ∪ {i};
for j /∈ Sk+1 do
if d(j) > `(Pi, j) then d(j)← `(Pi, j), Pj ← (Pi, j);

end
end

Lemma 1.1. On termination of Dijstra’s Algorithm, d(i) = `(Pi) is the minimum length of
a path from 1 to i, for all i

Proof. At each stage we can verify by induction on k that for each i /∈ Sk, d(i) is the
minimum length of a path from 1 to i for which all vertices but i are in Sk. If true for k
then when we add vertex i we simply update the d’s correctly.

1

Suppose that i is added at Step r. Let P = (x0 = 1, x2, . . . , xm = i) be a path from 1 to i.
Suppose that x0, x1, . . . , xl−1 ∈ Sr−1 and xl /∈ Sr−1. Then,

`(P) ≥ `(x0, x1, . . . , xl) ≥ d(xl) ≥ d(i) = `(Pi).

Note now that all we have assumed about ` is that

P = (P1, P2) implies `(P1) ≤ `(P). (1)

In which case, we can apply the algorithm to solve problems where path length is defined as
follows:

Time dependent path lengths: Suppose edge e = (x, y) has two parameters ae, be ≥ 0
and that if we start a walk at time 0 and arrive at x at time t then the edge length
is ae + bet. Suppose that P = (e0, e1, . . . , ek) as a sequence of edges and that Pi =
(e0, e1, . . . , ei). Then we now have `(P0) = ae0 and `(Pi) = aei + bei`(Pi−1).

Visit S in a fixed order: S is a set of vertices and feasible paths must visit S in some
fixed order. Individual edge lengths are non-negative. Then

`(P) =

{
`reg(P) P ∩ S visited in correct order.

∞ Otherwise.

Avoid S: S is a set of vertices and there is a penalty of f(k) for visiting S, k times. Here
f(k) is monotone increasing in k. Individual edge lengths are non-negative. Then
`(P) = `reg(P) + f(|V (P) ∩ S|.

1.2 No negative cycles

Suppose first that for paths P is a path that begins at vertex 1 and x is an arbitrary vertex.
Then we define

P ∗ x =

{
(P, x) x /∈ P.
P (1, x) x ∈ P.

Here P (1, x) is the subpath of P from 1 to x.

Assumption: Suppose that P,Q are paths from vertex 1 to vertex y. Suppose that x /∈ P
and that `(Q) ≤ `(P). Then `(Q ∗ x) ≤ `(P, x).

Putting P = Q we see that when ` = `reg this requires `(C) ≥ 0 for a cycle C. Here is an
example where ` = `reg and there are no negative cycles.

2

Electric cars: Suppose when we drive along edge e, `(e) the amount of energy used is `(e).
This is normally positive, but when going down hill it can be negative. In this scenario,
there can be no negative cycles under `reg.

Assume that the edges of D are E = {ei = (xi, yi), i = 1, 2, . . . ,m}. Let Pi, i = 1, 2, . . . , n be
a collection of paths, where P1 = (1) and Pi goes from 1 to i.

Lemma 1.2. The following is a necessary and sufficient condition for P1, P2, . . . , Pn to be a
collection of shortest paths with start vertex 1:

`(Py) ≤ `(Px ∗ y) for all (x, y) ∈ E. (2)

Proof. It is clear that (2) is necessary. If it fails then Px ∗ y is “shorter” than Py.

Suppose that (2) holds. Let P = (1 = x0, x1, x2, . . . , xk = i) be a path from 1 to i. We show
by induction on j that

`(Pxj) ≤ `(P (1, x1, x2, . . . , xj)). (3)

Now when j = 0, both sides of (3) are zero. Then if it holds for some j ≥ 0 then (2) and
the inductive assumption imply that

`(Pxj+1
) ≤ `(Pxj ∗ xj+1) ≤ `(P (1, x1, . . . , xj+1)).

Thus (2) is sufficient.

Ford’s Algorithm:
begin
for i = 2, . . . , n, d(i)← `(1, i), Pi ← (1, i);

repeat;
flag ← 0;
for i = 1, 2, . . . ,m;
begin

if `(Pyi) > `(Pxi ∗ yi) then;
begin;

Pyi ← (Pxi ∗ yi); flag ← 1;
end;

end;
until flag = 0;
end

end

Lemma 1.3. Ford’s algorithm terminates after at most n rounds with a collection of shortest
paths.

Proof. If the algorithm terminates then because flag = 0 at this point, we have that (2)
holds. Thus we have shortest paths.

3

We now argue that if the minimum number of arcs in a shortest path from 1 to i has νi edges
then Pi is correct after νi rounds. We argue by induction. This is true for i = 1 and νi = 0.
Suppose that it is true for all i such that νi ≤ ν and that vertex j satisfies νj = ν + 1. Let
P = (1 = x0, x1, . . . , xν+1 = j) be a shortest path from 1 to j. Then, by induction, after ν
rounds Pxν is a shortest path from 1 to xν and then after one more round Pj is correct.

1.3 Digraphs without circuits

These are important, not least because they occur in Critical Path Analysis. Their applica-
tion in this area involves computing longest paths.

1.3.1 Topological Ordering

Let the vertices of a digraphD = ([n], E) be ordered v1, v2, . . . , vn. This ordering is topological
if (vi, vj) ∈ E implies that i < j.

Lemma 1.4. Digraph D has a topological ordering if and only if D has no directed circuits.

Proof. Suppose first that v1, v2, . . . , vn is a topological ordering and that D has a directed
cycle vi1 , vi2 , . . . , vik . then we have i1 < i2 < · · · < ik < i1, contradiction.

Conversely, suppose there are no directed circuits. Let P = (x1, x2, . . . , xk) be a longest path
in D. Then xk is a sink i.e. there are no directed edges (xk, y). (If y ∈ X = {x1, x2, . . . , xk−1}
then D contains a circuit. If y /∈ X then (P, x) is longer than P .)

To get a topological ordering, we let vn = xk and inductively order the subgraph H induced
by [n] \ {vn}. This is a topological ordering. If (vi, vj) ∈ E(H) then i < j because H is
toplologically ordered. Any other edge must be of the form (vi, vn).

To solve the longest path problem for paths starting at v1, we take a topological ordering
and then compute d(v1) = 0 and then for j ≥ 2,

d(vj) = max {d(vi) + `(vi, vj) : i < j and (vi, vj) ∈ E} . (4)

Lemma 1.5. Equation (4) computes the value of a longest path from v1 to every other vertex.

Proof. That d(vj) is correct follows by induction on j. It is trivially true for j = 0 and then
for j > 0 we use the fact if P = (x1 = v1, x2, . . . , xk = vj) is a longest path from v1 to vj
then (i) xk−1 = vl for some l < j and (ii) (x1, x2, . . . , xk−1) is a longest path from v1 to vl
and (iii) `(P) = d(vl) + `(vl, vj).

4

Critical Path Analysis: Imagine that a project consists of n activites.

Making a cup of tea:

1. Get a cup from the cupboard.

2. Get a tea bag.

3. Fill the kettle with water.

4. Boil the water.

5. Pour water into cup.

6. Allow to brew.

We define a digraph with n vertices, one for each activity and an edge (i, j) if (i) activity j
cannot start until acivity i has been completed but (ii) only include (i, j) if it is not implied
by a path (i, k, j). Each edge (i, j) has a length equal to the estimated duration of the
activity i.

Tea Digraph:

3

2

1 5

4

6 FINISH

Associate a time ti to start activity i. Then ti is the length of the longest path to vertex
i. The estimated completion time of the project is then the length of the longest path to
FINISH.

2 Assignment Problem

A matching M in a graph is a set of vertex disjoint edges. A vertex v is covered by M if there
exists e ∈ M such that v ∈ e. A matching M is perfect if every vertex of G coverd by M .
For the complete bipartite graph KA,B on vertex set A = {ai : i ∈ [n]} , B = {bi : i ∈ [n]},
perfect matchings can be represented by permutations of n i.e M =

{
(ai, bπ(i)) : i ∈ [n]

}
.

Given a cost matrix (c(i, j), the cost of a perfect matching M = M(π) be given by

c(M) =
n∑
i=1

c(i, π(i)).

The assignment problem is that of finding a perfect matching of minimum cost.

5

2.1 Alternating paths

Given a matching M , a path P = (e1, e2, . . . , ek) (as a sequence of edges) is alternating if
the edges alternate between being in M and not in M .

An alternating path is augmenting if it begins and ends at uncovered vertices. If P is
augmenting with respect to matching M , then M ′ = M ⊕ P is also a matching and |M ′| =
|M |+ 1.

2.2 Successive shortest path algorithm

The algorithm produces a sequence M1,M2, . . . ,Mn where Mk is a minimum cost matching
from [k] to [k]. It begins with M1 = (1, 1).

Suppose that k > 1 and that we have constructed Mk−1 =
{

(ai, bπ(i)) : i = 1, 2, . . . , k − 1
}

.

The graph Γk is the complete graph KAk,Bk . The digraph ~Γk on vertex set Ak = {ai : i ∈ [k]},
Bk = {bi : i ∈ [k]} is defined as follows. The directed edges are X =

{
(bπ(i), ai) : i ∈ [k − 1]

}
and Y = {(ai, bj) : i ∈ [k], j ∈ [k], j 6= π(i)}. The edge (bπ(i), ai) ∈ X is given length−c(i, π(i))
and the edge (i, j) ∈ Y is given length c(i, j).

We observe the following:

• If M is a perfect matching of Γk then M ⊕Mk−1 consists of a collection C1, . . . , Cp of
vertex disjoint alternating cycles plus an augmenting path from ak to bk.

•

c(M)− c(Mk−1) =

p∑
i=1

`(Ci) + `(P)

where length ` is defined with respect to ~Γk.

• `(Ci) ≥ 0 for all i. Otherwise Mk−1 ⊕ Ci is a matching of Γk−1 with a cost c(Mk−1) +
`(Ci) < c(Mk−1).

It follows from the above that to find a minimum cost matching of Γk, we should find a
shotest path in ~Γk from ak to bk. Second, because ~Γk has no negative circuits, we can apply
Ford’s algorithm to find tihs path.

2.3 Linear Programming Solution – Hungarian Algorithm

Consider the linear program ALP:

Minimize
∑n

i=1

∑n
j=1 ci,jxi,j (5)

6

Subject to ∑n
j=1 xi,j = 1 for i = 1, 2, . . . , n. (6)∑n
i=1 xi,j = 1 for j = 1, 2, . . . , n. (7)

xi,j ≥ 0 for i, j = 1, 2, . . . , n. (8)

The assignment problem is the solution to ALP where we replace (8) by

xi,j = 0 or 1 for i, j = 1, 2, . . . , n. (9)

This is because (6), (7) force the set {(i, j) : xi,j = 1} to be a perfect matching and (5) is
then the cost of this matching.

In general replacing non-negativity constraints (8) by integer contraints (9) makes an LP
hard to solve. Not however in this case.

The dual of ALP is the linear program DLP:

Maximize
∑n

i=1 ui +
∑n

j=1 vj (10)

Subject to

ui + vj ≤ c(i, j) for i, j = 1, 2, . . . , n. (11)

The primal-dual algorithm that we describe relies on complimentary slackness to find a
solution.

Complimentary Slackness: If a feasible solution x to ALP and a feasible solution u,v,
to DLP satisfy

xi,j > 0 implies that ui + vj = c(i, j). (12)

then x solves ALP and u,v, solves DLP. For then

0 =
n∑
i=1

n∑
j=1

(c(i, j)− ui − vj)xi,j =
n∑
i=1

n∑
j=1

ci,jxi,j −

(
n∑
i=1

ui +
n∑
j=1

vj

)
, (13)

and the two solutions have the same objective value.

(We have used
∑n

i=1 ui
∑n

j=1 xi,j =
∑n

i=1 ui, which follows from (6) etc.)

The steps of the Primal-Dual algorithm are as follows:

Step 1 Choose an initial dual feasible solution. E.g. vj = 0, j ∈ [n] and ui = minj c(i, j).

Step 2 Given a dual feasible solution, u,v, define the graph Ku,v to be the bipartite graph
with vertex set A,B and an edge (i, j) whenever ui + vj = c(i, j).

Step 3 Find a maximum size matching M in Ku,v.

Step 4 If M is perfect then (12) holds and M provides a solution to the assignment problem.

7

Step 5 If M is not perfect, update u,v and go to Step 3.

To carry out Step 3, we proceed as follows:

Step 3a Begin with an arbitrary matching M of Ku,v.

Step 3b Let AU denote the set of vertices in A not covered by M .

Step 3c Let ~Ku,v be the digraph obtained from Ku,v by orienting matching edges from B
to A and other edges from A to B.

Step 3d Let AM , BM denote the set of vertices in A,B that are reachable by a path in ~Ku,v

from AU . Such paths are necessarily alternating.

Step 3e If there is a vertex b ∈ BM that is not covered by M then there is an augmenting
path P from some a ∈ AU to v. In this case we use P to consgtruct a matching
M ′ with |M ′| > |M |. We then go to Step 3b, with M replaced by M ′. Otherwise,
Step 3 is finished.

To carry out Step 5, we assume that we have finished Step 3 with M,AM , BM . We then let

θ = min {ci,j − ui − vj : ai ∈ AM , bj /∈ BM} > 0.

We know that θ > 0. Otherwise, if ai, bj is the minimising pair, then we should have put
bj ∈ BM .

We then amend u,v to u∗,v∗ via

u∗i =

{
ui + θ ai ∈ AM .
ui Otherwise.

and v∗j =

{
vj − θ j ∈ BM .

vj Otherwise.

Observe the following:

1. u∗,v∗ is feasible for DLP. u∗i +v∗j ≤ ui+vj except for the case where ai ∈ AM , bj /∈ BM

and θ is chosen so that the increase maintains feasiblity.

2. If b ∈ BM for the pair u,v then it will stay in BM when we replace u,v by u∗,v∗. This
is because there is a path P = (ai1 ∈ AU , bi1 , . . . , aik , bik = b) such that each edge of P
contains one vertex in AM and one vertex in BM . Hence the sum ui + vj is unchanged
for edges along P .

3. A vertex b /∈ BM contained in a pair that defines θ will be in BM when we replace u,v
by u∗,v∗.

In summary: if we reach Step 4 with a perfect matching then we have solved ALP. After at
most n changes of u,v in Step 5, the size of M increases by at least one. This is because
updating u,v increases BM by at least one. Thus the algorithm finishes in O(n4) time.
(O(n3) time if done carefully.)

8

3 Branch and Bound

We consider the problem P0:

Minimize f(x) subject to x ∈ S0.

Here S0 is our set of feasible solutions and f : S0 → R.

As we proceed in Branch-and-Bound we create a set of sub-problems P . A sub-problem
P ∈ P is defined by the description of a subset SP ⊆ S0. We also keep a lower bound bP
where

bP ≤ min {f(x) : x ∈ SP} .

At all times we act as if we have x∗ ∈ S0, some known feasible solution to P0 and v∗ = f(x∗).
If we do not actually have a solution x∗ then we let v∗ = −∞. We will have a procedure
bound that computes bP for a sub-problem P . In many cases, bound sometimes produces
a solution xP ∈ S0 and sometimes determines that SP = ∅.

We initialize P = {P0}.

Branch and Bound:

Step 1 If P = ∅ then x∗ solves the problem.

Step 2 Choose P ∈ P . P ← P \ {P}.

Step 3 Bound: Run bound(P) to compute bP .

Step 4 If SP = ∅ or bP ≥ v∗ then we consider P to be solved and go to Step 1.

Step 5 If bound generates xP ∈ S0 and f(xP) < v∗ then we update, x∗ ← xP , v
∗ ← f(xP).

Step 6 Branch: Split P into a number of subproblems Qi, i = 1, 2, . . . , `, where SP =⋃`
i=1 SQi . And SQi 6= SP is a strict subset for i = 1, 2, . . . , `.

Step 7 P ← P ∪ {Q1, Q2, . . . , Q`}.

Assuming S0 is finite, this procedure will eventually terminate with P = ∅. This is because
the feasible sets SP are getting smaller and smaller as we branch.

Most often the procedure bound has the following form: while it may be difficult to solve
P directly, we may be able to find TP ⊇ SP such that there is an efficient algorithm that
determines whether or not TP = ∅ and finds ξP ∈ TP that minimizes f(ξ), ξ ∈ TP , if TP 6= ∅.
In this case, bP = f(ξP) and Step 5 is implemented if ξP ∈ S0. We call the problem of
minimizing f(ξ), ξ ∈ TP , a relaxed problem.

Examples:

9

Ex. 1 Integer Linear Programming. Here SP is the set of integer solutions and TP is the set
of solutions, if we ignore integrality. The procedure bound solves the linear program.
If the solution ξP is not integral, we choose a variable x, whose value is ζ /∈ Z and
form 2 sub-problems by adding x ≤ bzc to one and x ≥ dze to the other.

Ex. 2 Traveling Salesperson Person Problem (TSP): Here SP is the set of tours i.e. single
directed cycles that cover all the vertices. We can take TP to be the set of collections
of vertex disjoint directed cycles that cover all the vertices. More precisely, to solve
the TSP we must minimise

∑n
i=1C(I, π(i)) as π ranges over all cyclic permutations.

Our relaxation is to minimise
∑n

i=1C(I, π(i)) as π ranges over all permutations,
i.e. the assignment problem. We branch as follows. Suppose that the assignment
solution consists of cycles C1, C2, . . . , Ck, k ≥ 2. Choose a cycle, C1 say. Suppose that
C1 = (v1, v2, . . . , vr) as a sequence of vertices. Then in Q1 we disallow π(v1) = v2, in
Q2 we insist that π(v1) = v2, but that π(v2) 6= v3, in Q3 we insist that π(v1) = v2,
π(v2) = v3, but that π(v3) 6= v4 and so on.

Ex. 3 Implicit Enumeration: Here the problem is

Minimize
n∑
j=1

cjxj subject to
n∑
j=1

ai,jxj ≥ bi, i ∈ [m], xj ∈ {0, 1} , j ∈ [n].

A sub-problem is assciated with two sets I, O ⊆ [n]. This the sub-problem PI,O
where we add the constraints xj = 1, j ∈ I, xj = 0, j ∈ O. We also check to see if
xj = 1, j ∈ I, xj = 0, j /∈ I gives an improved feasible solution. As a bound bI,O we use∑

j /∈O max {cj, 0}. To test feasibility we check that
∑

j /∈O max {ai,j, 0} ≥ bi, i ∈ [m].
To branch, we split PI,O into PI∪{j},O and PI,O∪{j} for some j /∈ I ∪O.

4 Matroids and the Greedy Algorithm

Given a ground setX, an independence system onX is collection of subsets I = {I1, I2, . . . , Im}
such that

I ∈ I and J ⊆ I implies that J ∈ I. (14)

Examples

Ex. 1 The set M of matchings of a graph G = (V,X).

Ex. 2 The set of (edge-sets of) forests of a graph G = (V,X).

Ex. 3 The set of stable sets of a graph G = (X,E). We say that S is stable if it contains
no edges.

Ex. 4 The set of solutions to the {0, 1}-knapsack problem. Here we are given positive
integers w1, w2, . . . , wn,W and X = [n] and I =

{
S ⊆ [n] :

∑
i∈S wi ≤ W

}
.

10

Ex. 5 Let c1, c2, . . . , cn be the columns of an m × n matrix A. Then X = [n] and I =
{S ⊆ [n] : {ci, i ∈ S} are linearly independent}.

An independence system is a matroid if whenever I, J ∈ I with |J | = |I| + 1 there exists
e ∈ J \ I such that I ∪ {e} ∈ I. Only Ex. 2 and 5 above are matroids. To check Ex. 5, let
AI be the m × |I| sub-matrix of A consisting of the columns in I. If there is no e ∈ J \ I
such that I ∪ {e} ∈ I then AJ = AIM for some |I| × |J | matrix. But then

|J | = rank(AJ) ≤ min {rank(AI), rank(M)} ≤ |I|,

contradiction.

To check Ex. 2 we can argue (exercise) that I ⊆ E defines a forest if and only if the columns
corresponding to I in the vertex-edge incidence matrix MG are linearly independent.
(MG has a row for each vertex of G and a column for each edge of G. The column ce, e =
{x, y} has a one in row x and a -1 in row y and a zero in all other rows. It doesn’t matter
which of the two endpoints is viewed as x.)

4.1 Greedy Algorithm

Suppose that each e ∈ E is given a weight we and that the weight w(I) of an independent
set I is given by w(I) =

∑
e∈I ce. The problem we discuss is

Maximize w(I) subject to I ∈ I.

Greedy Algorithm:
begin

Sort E = {e1, e2, . . . , em} so that w(ei) ≥ w(ei+1) for 1 ≤ i < m;
S ← ∅;
for i = 1, 2, . . . ,m;
begin

if S ∪ {ei} ∈ I then;
begin;

S ← S ∪ {ei};
end;

end;
end

Theorem 4.1. The greedy algorithm finds a maximum weight independent set for all
choices of w if and only if it is a matroid.

Proof. Suppose first that the Greedy Algorithm always finds a maximum weight independent

11

set. Suppose that ∅ 6= I, J ∈ I with |J | = |I|+ 1. Define

w(e) =

1 + 1

2|I| e ∈ I.
1 e ∈ J \ I.
0 e /∈ I ∪ J.

If there does not exist e ∈ J \ I such that I ∪ {e} ∈ I then the Greedy Algorithm will
choose the elements of I and stop. But I does not have maximum weight. Its weight is
|I|+ 1/2 < |J |. So if Greedy succeeds, then (??) holds.

Conversely, suppose that our independence system is a matroid. We can assume that w(e) >
0 for all e ∈ E. Otherwise we can restrict ourselves to the matroid defined by I ′ = {I ⊆ E+}
where E+ = {e ∈ E : w(e) > 0}.

Suppose now that Greedy chooses IG = ei1 , ei2 , . . . , eik where it < it+1 for 1 ≤ t < k. Let
I = ej1 , ej2 , . . . , ej` be any other independent set and assume that jt < jt+1 for 1 ≤ t < `.
We can assume that ` ≥ k, for otherwise we can add something from IG to I to give it
larger weight. We show next that k = ` and that it ≤ jt for 1 ≤ t ≤ k. This implies that
w(IG) ≥ w(I).

Suppose then that there exists t such that it > jt and let t be as small as possible for this
to be true. Now consider I = {eis : s = 1, 2, . . . , t− 1} and J = {ejs : s = 1, 2, . . . , t}. Now
there exists ejs ∈ J \ I such that I ∪ {ejs} ∈ I. But js ≤ jt < it and Greedy should have
chosen ejs before choosing eit+1 . Also, ik ≤ jk implies that k = `. Otherwise Greedy can find
another element from I \ IG to add.

12

	Shortest path
	Non-negative lengths
	No negative cycles
	Digraphs without circuits
	Topological Ordering

	Assignment Problem
	Alternating paths
	Successive shortest path algorithm
	Linear Programming Solution – Hungarian Algorithm

	Branch and Bound

