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Homework 4: Due Friday October 11.

Q1 In an inventory system:

e A is the fixed cost associated with making an order.

I is the inventory charge per unit per period.

7 is the back order cost per unit per period.
e )\ is the demand per period.

e ) > ) is the rate at which ordered items arrive.

Determine the optimal order strategy and its cost per period.

Solution:
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With reference to the diagram above, we have
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We deduce from this that
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The total cost per period is
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This is good enough. No need to do any more for credit.

We write this in terms of ), .S only.
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We then have
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Putting the partial derivatives equal to zero and solving gives us the
optimal values
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Q2 Analyse the following inventory system and derive a strategy for min-
imising the total cost. There are n products. Product ¢ has demand \;
per period and no stock-outs are allowed. The cost of making an order
for () units of a mixture of products is AQ®“ where 0 < o < 1. The
inventory cost is I times max{Ls, Lo, ..., L,} per period where L; is the
average inventory level of product ¢ in that period.

Solution: We argued in the notes that we order items at intervals 7T
Thus we order (); = T'A; units of item i each time and L; = Q;/2. Let
A = max{A;, A2, ..., A\, }. Then the inventory cost is therefore IT\/2.
This gives us a total cost of
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Therefore, the optimal value for T is given by
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Q3 The Vertex Cover problem is defined as follows: given a graph G = (V, E)
find the smallest subset S C V such that every edge in E has at least
one endpoint in S. Show that starting with S = (), if you repeatedly add
the vertices of an uncovered edge to S then the final set constructed has
at most twice the optimum number of vertices.

Solution: let M be the set of edges chosen by the algorithm so that
the final cover has size 2|M|. Now M is a matching i.e. a collection of
vertex disjoint edges. The optimal cover needs at least one vertex from
each e € M and so has size at least |M].



