CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 8.

Describe a Dynamic programming solution to the following problems:

Q1 A company manufactures two products A and B at a certain facility. The demands for the products are $a_r, b_r, r = 1, 2, ..., n$ over the next n periods. The cost of making x of either product is c(x) and there is room to store H in total of the two products. Cleaning problems require that only one product can be manufactured in any one period. Assume that at the beginning of period one there is H/2 of each product in storage. The problem is to minimise total cost, given that all demands must be met.

Solution Let f(r, a, b) denote the minimum cost of meeting demand in periods $r, r+1, \ldots, n$ given that you start period r with a units of A and b units of B in stock. Then we have the recurrence for $r = 1, 2, \ldots, n$:

$$f(r, a, b) = \min \begin{cases} \min_x \{c(x) + f(r+1, a+x-a_r, b-b_r)\} \\ \min_x \{c(x) + f(r+1, a-a_r, b+x-b_r)\} \end{cases}$$

In addition $f(r, a, b) = \infty$ if a < 0 or b < 0 or a + b > H. Also, f(n + 1, a, b) = 0 for $a, b \ge 0$.

Q2 You have to drive across country along a road of length L. There are gas stations at points P_1, P_2, \ldots, P_r along the route. Your car can hold g gallons of gasoline. At gas station i, the price of gas is p_i per gallon. If you drive at s miles per hour then you use up f(s) gallons of gas per mile. You can assume that you have to drive at constant speed between stops. You start with a full tank of gas and you have an amount A to spend on the trip. Can you finish the trip in time at most T?

Hint: let $f(i, a, \gamma)$ denote the minimum time to get from P_i to P_r given you are at P_i , you have a left and γ gallons in your car. Find a recurrence for f.

Solution: Let f(i, a, g) be as in the hint. Let f(r, a, g) = 0 for all a, g. We have to determine whether or not $f(0, A, g) \leq T$. For this we use the recurrence,

$$f(i, a, \gamma) = \min_{j > i, s, b} \left\{ \frac{P_j - P_i}{s} + f(j, a - bp_i, \gamma + b - (p_j - p_i)f(s)) \right\}$$

Here j represents the choice of next stop, s represents the speed you will travel and b denotes the amount of gas that you will buy at station i. The constraints are

$$\gamma + b - (P_j - P_i)f(s) \ge 0.$$
$$\gamma + b \le g.$$
$$a - bp_i \ge 0.$$

Q3 The people of a certain area live at the side of a long straight road of length L. The population is clustered into several villages at points a_1, a_2, \ldots, a_k along the road. There is a proposal to build ℓ fire stations on the road. The problem is to build them so that the maximum distance of a village to its nearest fire station is minimised. Formulate the problem of finding the optimum placement of fire stations as a dynamic program. (Assume that fire stations are to be placed at integer points only on the line.)

Hint: for an interval $I = \{i, i+1, \ldots, j\}$ let d(I, k) denote the maximum distance to a fire station placed at k from villages placed in I. Let $D(I) = \min_{k \in I} d(I, k)$. Now break up stick of length L into ℓ intervals I_1, I_2, \ldots, I_ℓ and minimise $\max\{D(I_j):_{j=1}, 2, \ldots, \ell\}$.

Solution:

Let f(x, i) be the maximum distance from a village in [0, x] to its nearest fire station in [0, x] if i fire stations are optimally placed to service the villages in [0, x]. Then f(i, i) = 0 for $i = 0, 1, 2, ..., \ell$ and

$$f(x,i) = \min_{i \le y \le x} \{ \max\{f(y,i-1), d([y,x])\} \}.$$

Here y is the tentative place to put the ith firestation.