Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 4: Due Wednesday October 23.

- **Q1** Show that if $f : \Re^n \to \Re$ is a convex function then its *epigraph* $\{(\mathbf{x}, t) : t \ge f(\mathbf{x})\}$ is a convex subset of \Re^{n+1} .
- \mathbf{Q}_{2} A monomial is a function f of the form

$$f(\mathbf{x}) = c \prod_{i=1}^{n} x_i^{a_i}$$

where c > 0.

The sum of monomials is called a *posynomial*. Let $x_i = e^{y_i}$ for i = 1, 2, ..., n. Show that this transforms the *Geometric Programming* problem

Minimise $f_0(\mathbf{x})$ subject to $f_i(\mathbf{x}) \le 1, i = 1, 2, ..., m, x_j > 0, j = 1, 2, ..., n$

where f_0, f_1, \ldots, f_m are posynomials, into a convex program.

 $\mathbf{Q}3$ Use the KKT conditions to solve

Minimise $(x_1 - 5)^2 + (x_2 - 4)^2$ subject to $x_1 + x_2 \le 1, 2x_1 + 3x_2 \le 2$.