Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY

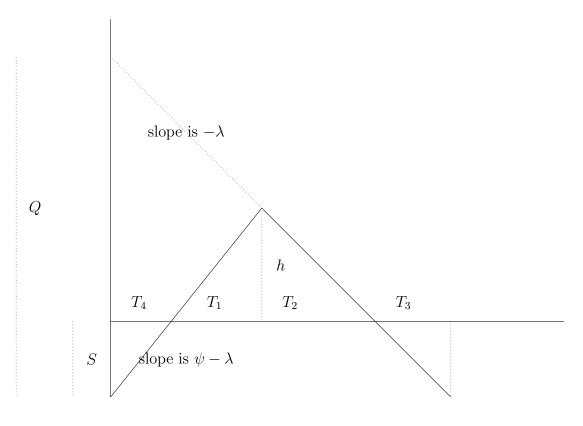
OPERATIONS RESEARCH II 21-393

Homework 4: Due Friday October 11.

Q1 In an inventory system:

- A is the fixed cost associated with making an order.
- *I* is the inventory charge per unit per period.
- π is the back order cost per unit per period.
- λ is the demand per period.
- $\psi > \lambda$ is the rate at which ordered items arrive.

Determine the optimal order strategy and its cost per period. Solution:



With reference to the diagram above, we have

$$Q = \lambda T$$

$$T = T_1 + T_2 + T_3 + T_4$$

$$\frac{T_1 + T_2 + T_4}{T} = \frac{Q - S}{Q}.$$

$$\frac{T_3}{T} = \frac{S}{\lambda T} = \frac{S}{Q}.$$

$$S = (\psi - \lambda)T_4.$$

$$h = (\psi - \lambda)T_1.$$

$$h = \lambda T_2.$$

We deduce from this that

$$\frac{T_1 + T_2}{T} = \frac{Q - S}{Q} - \frac{T_4}{T} = \frac{Q - S}{Q} - \frac{\lambda}{\psi - \lambda} \cdot \frac{S}{Q} = 1 - \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q}$$
$$\frac{T_3 + T_4}{\psi - \lambda} = -\frac{\psi}{\psi} \cdot \frac{S}{Q}$$

and

$$\frac{T_3 + T_4}{T} = \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q}$$

and

$$T_1 = (T_1 + T_2) \cdot \frac{\lambda}{\psi} = \left(1 - \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q}\right) \cdot \frac{Q}{\psi} = \frac{Q}{\psi} - \frac{S}{\psi - \lambda}$$

and then

$$h = Q \cdot \frac{\psi - \lambda}{\psi} - S.$$

The total cost per period is

$$K = \frac{A}{T} + I \cdot \frac{T_1 + T_2}{T} \cdot \frac{h}{2} + \pi \cdot \frac{T_3 + T_4}{T} \cdot \frac{S}{2}.$$

This is good enough. No need to do any more for credit. We write this in terms of Q, S only.

$$\frac{A}{T} = \frac{A\lambda}{Q}.$$

$$I \cdot \frac{T_1 + T_2}{T} \cdot \frac{h}{2} = I \cdot \left(1 - \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q}\right) \cdot \left(\frac{Q}{2} \cdot \frac{\psi - \lambda}{\psi} - \frac{S}{2}\right).$$

$$\pi \cdot \frac{T_3 + T_4}{T} \cdot \frac{S}{2} = \pi \cdot \left(\frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q}\right) \cdot \frac{S}{2}.$$

We then have

$$\frac{\partial K}{\partial Q} = -\frac{A\lambda}{Q^2} + \frac{I}{2} \left(\frac{\psi - \lambda}{\psi} - \frac{\psi S^2}{(\psi - \lambda)Q^2} \right) - \pi \cdot \frac{\psi}{\psi - \lambda} \cdot \frac{S^2}{2Q^2}.$$
$$\frac{\partial K}{\partial S} = I \cdot \left(\frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} - 1 \right) + \pi \cdot \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q}.$$

Putting the partial derivatives equal to zero and solving gives us the optimal values

$$Q^* = \left(2A\lambda \cdot \frac{\psi}{\psi - \lambda} \cdot \frac{I + \pi}{I\pi}\right)^{1/2}.$$
$$S^* = \left(2A\lambda \cdot \frac{\psi - \lambda}{\psi} \cdot \frac{I}{\pi(I + \pi)}\right)^{1/2}.$$
$$K^* = \left(2A\lambda \cdot \frac{\psi - \lambda}{\psi} \cdot \frac{I\pi}{I + \pi}\right).$$

Q2 Analyse the following inventory system and derive a strategy for minimising the total cost. There are *n* products. Product *i* has demand λ_i per period and no stock-outs are allowed. The cost of making an order for *Q* units of a mixture of products is AQ^{α} where $0 < \alpha < 1$. The inventory cost is *I* times max{ L_1, L_2, \ldots, L_n } per period where L_i is the average inventory level of product *i* in that period.

Solution: We argued in class that we order items at intervals T. Thus we order $Q_i = T\lambda_i$ units of item i each time and $L_i = Q_i/2$. Let $\lambda = \max\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$. Then the inventory cost is therefore $IT\lambda/2$. This gives us a total cost of

$$K = \frac{A\left(T\sum_{j=1}^{n}\lambda_{i}\right)^{\alpha}}{T} + \frac{IT\lambda}{2} = \frac{B}{T^{1-\alpha}} + \frac{IT\lambda}{2}$$

where $B = A\left(\sum_{j=1}^{n} \lambda_i\right)^{\alpha}$.

Now

$$\frac{dK}{dT} = -\frac{B(1-\alpha)}{T^{2-\alpha}} + \frac{I\lambda}{2}$$

Therefore, the optimal value for T is given by

$$T^* = \left(\frac{2B(1-\alpha)}{I\lambda}\right)^{1/(2-\alpha)}$$

Q³ Give an algorithm to solve the following scheduling problem. There are n jobs labelled $1, 2, \ldots, n$ that have to be processed one at a time on a single machine. There is an acyclic digraph D = (V, A) such that if $(i, j) \in A$ then job j cannot be started until job i has been completed. The problem is to minimise $\max_j f_j(C_j)$ where for all j, f_j is a monotone increasing. As usual, C_j is the completion time of job j. This is distinct from its processing time p_j .

Solution: Let S be the set of jobs with no successor in D i.e. the set of sinks of D. The last job must be in S and it will complete at time $p = p_1 + p_2 + \cdots + p_n$. Let $f_k(p) = \min_{j \in S} f_j(p)$. We schedule k last and then inductively schedule the remaining jobs.