Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 3: Due Monday September 27.

Q1 Can the following shortest path problem be solved by the Dijkstra algorithm? The edges of a digraph are colored Red, Blue and Green. Suppose edge lengths are non-negative, but a path can have at most r Red edges, b Blue edges and no Blue edge can be followed by a Green edge. Give an explicit definition of path length.

Solution Let \mathcal{R} denote the set of restrictions imposed by the colorings. Then the length of a path is given by

$$
\ell(P)= \begin{cases}\sum_{e \in P} \ell(e) & P \text { satisfies } \mathcal{R} \\ \infty & \text { Otherwise }\end{cases}
$$

Clearly $\ell(P) \geq \ell(Q)$ whenever Q is a subpath of P and so we can use Dijkstra's algorithm.

Q2 Convert the following into a standard assignment problem. We have a bipartite graph with bipartition $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. An assignment now is a set of edges M such (i) a_{i} is incident to exactly r_{i} edges of M for $i=1,2, \ldots, m$ and (ii) b_{j} is incident to exactly s_{j} edges of M for $j=1,2, \ldots, n$. Here $\sum_{i} r_{i}=\sum_{j} s_{j}$. The cost of edge $\left(a_{i}, b_{j}\right)$ is $c(i, j)$ and the cost of an assignment M is $\sum_{e \in M} c(e)$. The objective is to find a minimum cost assignment.
Solution We replace the vertex a_{i} by vertices $a_{i}(1), a_{i}(2) \ldots, a_{i}\left(r_{i}\right)$ for $i=1,2, \ldots, m$ and the vertex b_{j} by vertices $b_{j}(1), b_{j}(2), \ldots, b_{j}\left(s_{j}\right)$ for $j=1,2, \ldots, n$. The cost of edge $\left\{a_{i}(k), b_{j}(l)\right\}$ will be $c\left(a_{i}, b_{j}\right)$. Each solution x to the original problem can be mapped to $\prod_{i=1}^{m} \prod_{j=1}^{n} r_{i}!s_{j}$! solutions of the expanded problem, and each of these has the same cost. Each solution to the expanded problem arises from a unique solution to the original problem.

Q3 Let $G=(A, B, E)$ be a bipartite graph. Let $I \subseteq B$ be independent if G contains a matching M that is incident with every vertex in I. Show that the independent sets form a matroid.
Hint: consider the action of augmenting paths.
Solution Clearly the independent sets form an independence system. Next, suppose that I_{1}, I_{2} are independent and that M_{1}, M_{2} are matchings incident with I_{1}, I_{2} respectively and that $\left|I_{1}\right|=\left|M_{1}\right|>\left|M_{2}\right|=\left|I_{2}\right|$. Consider $M_{1} \oplus M_{2}$. It consists of alternating paths and cycles, but because $\left|M_{1}\right|>\left|M_{2}\right|$ there must be at least one alternating path P that goes from a vertex $a \in A$ to a vertex $b \in B$ such that neither a nor b are covered by M_{2}. Here $b \in I_{1} \backslash I_{2}$. If we amend M_{2} by removing $M_{2} \cap P$ and adding $M_{1} \cap P$ then we will obtain a new matching that covers $I_{2} \cup\{b\}$. This verifies the axioms of a matroid.

