Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 5: Due Wednesday October 24.

Q1 In an inventory system:

- A is the fixed cost associated with making an order.
- I is the inventory charge per unit per period.
- π is the back order cost per unit per period.
- λ is the demand per period.
- $\psi>\lambda$ is the rate at which ordered items arrive.

Determine the optimal order strategy and its cost per period.

Solution:

With reference to the diagram above, we have

$$
\begin{aligned}
Q & =\lambda T \\
T & =T_{1}+T_{2}+T_{3}+T_{4} \\
\frac{T_{1}+T_{2}+T_{4}}{T} & =\frac{Q-S}{Q} . \\
\frac{T_{3}}{T} & =\frac{S}{\lambda T}=\frac{S}{Q} . \\
S & =(\psi-\lambda) T_{4} . \\
h & =(\psi-\lambda) T_{1} . \\
h & =\lambda T_{2} .
\end{aligned}
$$

We deduce from this that

$$
\frac{T_{1}+T_{2}}{T}=\frac{Q-S}{Q}-\frac{T_{4}}{T}=\frac{Q-S}{Q}-\frac{\lambda}{\psi-\lambda} \cdot \frac{S}{Q}=1-\frac{\psi}{\psi-\lambda} \cdot \frac{S}{Q}
$$

and

$$
\frac{T_{3}+T_{4}}{T}=\frac{\psi}{\psi-\lambda} \cdot \frac{S}{Q}
$$

and

$$
T_{1}=\left(T_{1}+T_{2}\right) \cdot \frac{\lambda}{\psi}=\left(1-\frac{\psi}{\psi-\lambda} \cdot \frac{S}{Q}\right) \cdot \frac{Q}{\psi}=\frac{Q}{\psi}-\frac{S}{\psi-\lambda}
$$

and then

$$
h=Q \cdot \frac{\psi-\lambda}{\psi}-S
$$

The total cost per period is

$$
K=\frac{A}{T}+I \cdot \frac{T_{1}+T_{2}}{T} \cdot \frac{h}{2}+\pi \cdot \frac{T_{3}+T_{4}}{T} \cdot \frac{S}{2} .
$$

We write this in terms of Q, S only.

$$
\begin{aligned}
\frac{A}{T} & =\frac{A \lambda}{Q} . \\
I \cdot \frac{T_{1}+T_{2}}{T} \cdot \frac{h}{2} & =I \cdot\left(1-\frac{\psi}{\psi-\lambda} \cdot \frac{S}{Q}\right) \cdot\left(\frac{Q}{2} \cdot \frac{\psi-\lambda}{\psi}-\frac{S}{2}\right) . \\
\pi \cdot \frac{T_{3}+T_{4}}{T} \cdot \frac{S}{2} & =\pi \cdot\left(\frac{\psi}{\psi-\lambda} \cdot \frac{S}{Q}\right) \cdot \frac{S}{2} .
\end{aligned}
$$

We then have

$$
\begin{aligned}
& \frac{\partial K}{\partial Q}=-\frac{A \lambda}{Q^{2}}+\frac{I}{2}\left(\frac{\psi-\lambda}{\psi}-\frac{\psi S^{2}}{(\psi-\lambda) Q^{2}}\right)-\pi \cdot \frac{\psi}{\psi-\lambda} \cdot \frac{S^{2}}{2 Q^{2}} \\
& \frac{\partial K}{\partial S}=I \cdot\left(\frac{\psi}{\psi-\lambda} \cdot \frac{S}{Q}-1\right)+\pi \cdot \frac{\psi}{\psi-\lambda} \cdot \frac{S}{Q}
\end{aligned}
$$

Putting the partial derivatives equal to zero and solving gives us the optimal values

$$
\begin{aligned}
Q^{*} & =\left(2 A \lambda \cdot \frac{\psi}{\psi-\lambda} \cdot \frac{I+\pi}{I \pi}\right)^{1 / 2} \\
S^{*} & =\left(2 A \lambda \cdot \frac{\psi-\lambda}{\psi} \cdot \frac{I}{\pi(I+\pi)}\right)^{1 / 2} \\
K^{*} & =\left(2 A \lambda \cdot \frac{\psi-\lambda}{\psi} \cdot \frac{I \pi}{I+\pi}\right)
\end{aligned}
$$

Q2 Analyse the following inventory system and derive a strategy for minimising the total cost. There are n products. Product i has demand λ_{i} per period and no stock-outs are allowed. The cost of making an order for Q units of a mixture of products is $A Q^{\alpha}$ where $0<\alpha<1$. The inventory cost is I times $\max \left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$ per period where L_{i} is the average inventory level of product i in that period.
Solution: We argued in class that we order items at intervals T. Thus we order $Q_{i}=T \lambda_{i}$ units of item i each time and $L_{i}=Q_{i} / 2$. Let $\lambda=\max \left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. Then the inventory cost is therefore IT $\lambda / 2$. This gives us a total cost of

$$
K=\frac{A\left(T \sum_{j=1}^{n} \lambda_{i}\right)^{\alpha}}{T}+\frac{I T \lambda}{2}=\frac{B}{T^{1-\alpha}}+\frac{I T \lambda}{2}
$$

where $B=A\left(\sum_{j=1}^{n} \lambda_{i}\right)^{\alpha}$.
Now

$$
\frac{d K}{d T}=-\frac{B(1-\alpha)}{T^{2-\alpha}}+\frac{I \lambda}{2}
$$

Therefore, the optimal value for T is given by

$$
T^{*}=\left(\frac{2 B(1-\alpha)}{I \lambda}\right)^{1 /(2-\alpha)}
$$

Q3 Give an algorithm to solve the following scheduling problem. There are n jobs labelled $1,2, \ldots, n$ that have to be processed one at a time on a single machine. There is an acyclic digraph $D=(V, A)$ such that if $(i, j) \in A$ then job j cannot be started until job i has been completed. The problem is to minimise $\max _{j} f_{j}\left(C_{j}\right)$ where for all j, f_{j} is a monotone increasing. As usual, C_{j} is the completion time of job j. This is distinct from its processing time p_{j}.
Solution: Let S be the set of jobs with no successor in D i.e. the set of sinks of D. The last job must be in S and it will complete at time $p=p_{1}+p_{2}+\cdots+p_{n}$. Let $f_{k}(p)=\min _{j \in S} f_{j}(p)$. We schedule k last and then inductively schedule the remaining jobs.

