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OPERATIONS RESEARCH II 21-393
Homework 5: Due Wednesday October 24.

Q1 In an inventory system:

e A is the fixed cost associated with making an order.

e [ is the inventory charge per unit per period.

7 is the back order cost per unit per period.
e )\ is the demand per period.

e 1) > )\ is the rate at which ordered items arrive.

Determine the optimal order strategy and its cost per period.
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With reference to the diagram above, we have
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We write this in terms of @), S only.
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We then have
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Putting the partial derivatives equal to zero and solving gives us the

optimal values
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Q2 Analyse the following inventory system and derive a strategy for min-
imising the total cost. There are n products. Product ¢ has demand ),
per period and no stock-outs are allowed. The cost of making an order
for (Q units of a mixture of products is AQ® where 0 < a < 1. The
inventory cost is I times max{Ls, Lo, ..., L,} per period where L; is the
average inventory level of product ¢ in that period.

Solution: We argued in class that we order items at intervals 7". Thus
we order (; = T\; units of item i each time and L; = Q;/2. Let
A = max{A;, \,..., A\, }. Then the inventory cost is therefore IT\/2.
This gives us a total cost of
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Therefore, the optimal value for T is given by
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Q3 Give an algorithm to solve the following scheduling problem. There are
n jobs labelled 1,2,...,n that have to be processed one at a time on
a single machine. There is an acyclic digraph D = (V, A) such that if
(i,7) € A then job j cannot be started until job 7 has been completed.
The problem is to minimise max; f;(C;) where for all j, f; is a monotone
increasing. As usual, C; is the completion time of job j. This is distinct
from its processing time p;.

Solution: Let S be the set of jobs with no successor in D i.e. the set
of sinks of D. The last job must be in S and it will complete at time
p=p1+p2+---+p, Let fr(p) = minjes f;(p). We schedule k last and
then inductively schedule the remaining jobs.



