Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 4: Due Monday October 15.

Q1 Show that if $f: \Re^{n} \rightarrow \Re$ is a convex function then its epigraph epi $(f)=$ $\{(\mathbf{x}, t): t \geq f(\mathbf{x})\}$ is a convex subset of \Re^{n+1}.
Solution: Let $(\mathbf{x}, s),(\mathbf{y}, t) \in \operatorname{epi}(f)$ and $0<\lambda<1$. Then,

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \leq \lambda s+(1-\lambda) t
$$

This implies that

$$
\lambda(\mathbf{x}, s)+(1-\lambda)(\mathbf{y}, t)=(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}, \lambda s+(1-\lambda) t) \in \operatorname{epi}(f)
$$

Q2 A monomial is a function f of the form

$$
f(\mathbf{x})=c \prod_{i=1}^{n} x_{i}^{a_{i}}
$$

where $c>0$.
The sum of monomials is called a posynomial. Transform the Geometric Programming problem

Minimise $f_{0}(\mathbf{x})$ subject to $f_{i}(\mathbf{x}) \leq 1, i=1,2, \ldots, m, x_{j}>0, j=1,2, \ldots, n$ where $f_{0}, f_{1}, \ldots, f_{m}$ are posynomials, into a convex program.
Solution: Let $x_{i}=e^{y_{i}}$ for $i=1,2, \ldots, n$. Then the problem be comes,
Minimise $g_{0}(\mathbf{y})$ subject to $g_{i}(\mathbf{y}) \leq 1, i=1,2, \ldots, m, y_{j}>0, j=1,2, \ldots, n$ where

$$
g_{i}(\mathbf{y})=\sum_{k=1}^{m_{i}} \exp \left\{\log c_{i, k}+\sum_{j=1}^{n} a_{i, j, k} y_{j}\right\}, \quad i=0,1, \ldots, m
$$

and for some coefficents $c_{i}, a_{i, j}$.
Finally, note that $g(\mathbf{x})=\exp \left\{\log c+\sum_{j=1}^{n} a_{i} y_{j}\right\}=c e^{\mathbf{a}^{T} \mathbf{y}}$ is convex. Indeed,

$$
\begin{aligned}
g(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})=c e^{\mathbf{a}^{T}(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})}=c e^{\lambda \mathbf{a}^{T} \mathbf{x}+(1-\lambda) \mathbf{a}^{T} \mathbf{y}} \leq \\
\lambda c e^{\mathbf{a}^{T} \mathbf{x}}+(1-\lambda) c e^{\mathbf{a}^{T} \mathbf{y}}
\end{aligned}
$$

where the last inequality follows from $c>0$ and the convexity of the exponential function.

Q3 Use the KKT conditions to solve

$$
\text { Minimise }\left(x_{1}-5\right)^{2}+\left(x_{2}-4\right)^{2} \text { subject to } x_{1}+x_{2} \leq 1,2 x_{1}+3 x_{2} \leq 2
$$

The KKT conditions for this problem are:

$$
\begin{aligned}
x_{1}+x_{2} & \leq 1 \\
2 x_{1}+3 x_{2} & \leq 2 \\
2\left(x_{1}-5\right)+\lambda_{1}+2 \lambda_{2} & =0 \\
2\left(x_{2}-4\right)+\lambda_{1}+3 \lambda_{2} & =0 \\
\lambda_{1}\left(x_{1}+x_{2}-1\right)=\lambda_{2}\left(2 x_{1}+3 x_{2}-2\right) & =0 \\
\lambda_{1}, \lambda_{2} & \geq 0 .
\end{aligned}
$$

This is a convex problem and so any solution to the above serves as a global optimum. There are 4 possibilities to check: $\lambda_{i}=0,>0, i=1,2$.
Case 1: $\lambda_{1}=0, \lambda_{2}=0$: This gives $x_{1}=5, x_{2}=4$ which is infeasible.
Case 2: $\lambda_{1}=0, \lambda_{2}>0$: This gives $2 x_{1}+3 x_{2}=2, x_{1}-5=-\lambda_{2}, x_{2}-4=$ $-3 \lambda_{2} / 2$ which implies $x_{1}=45 / 17, x_{2}=-8 / 17, \lambda_{2}=40 / 17>0$ which is infeasible.
Case 3: $\lambda_{1}>0, \lambda_{2}=0$ This gives $x_{1}+x_{2}=1, x_{1}-5=x_{2}-4=-\lambda_{1} / 2$ which implies that $x_{1}=1, x_{2}=0, \lambda_{1}=8$ which satisfies the KKT conditions.
Thus the solution is $x_{1}=1, x_{2}=0$. (Note that we did not impose $x_{1}, x_{2} \geq 0$ and that this is a convex program.)

