Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 4: Due Monday October 15.

- Q1 Show that if $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function then its epigraph $\{(\mathbf{x}, t) : t \geq f(\mathbf{x})\}$ is a convex subset of \mathbb{R}^{n+1} .
- \mathbf{Q}_{2} A monomial is a function f of the form

$$f(\mathbf{x}) = c \prod_{i=1}^{n} x_i^{a_i}$$

where c > 0.

The sum of monomials is called a *posynomial*. Transform the *Geometric Programming* problem

Minimise $f_0(\mathbf{x})$ subject to $f_i(\mathbf{x}) \leq 1$, i = 1, 2, ..., m, $x_j > 0$, j = 1, 2, ..., n where $f_0, f_1, ..., f_m$ are posynomials, into a convex program.

Q3 Use the KKT conditions to solve

Minimise $(x_1 - 5)^2 + (x_2 - 4)^2$ subject to $x_1 + x_2 \le 1, 2x_1 + 3x_2 \le 2$.