Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 2: Due Monday September 24.

Q1 Can the following shortest path problem be solved by the Dijkstra algorithm? The edges of a digraph are colored Red and Blue. Suppose edge lengths are non-negative, but a path can have at most k red edges. Give an explicit definition of path length.
Solution: We let

$$
\ell(P)= \begin{cases}\sum_{e \in P} \ell(e) & P \text { contains at most } k \text { red edges } . \\ \infty & \text { Otherwise. }\end{cases}
$$

Q2 Convert the following 3-dimensional assignment problem into a 2-dimensional problem. There are objects $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, C=$ $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ and $A \cup B \cup C$ must be partitioned into n triples with one element from each of A, B, C in each triple. The value of a triple $\left\{a_{i}, b_{j}, c_{k}\right\}$ is given by $c_{i, j, k}=u_{i, j}+v_{i, k}$. The goal is partition the triples at minimum total cost.
Hint: a partition into triples can be determined by two permutations ϕ, ψ of $[n]$. In which case we have triples $\left(a_{i}, b_{\phi(i)}, c_{\psi(i)}\right)$ for $i \in[n]$.
Solution: The objective becomes

$$
\sum_{i=1}^{n}\left(u_{i, \phi(i)}+v_{i, \psi(i)}\right)
$$

and we can solve the problem by choosing ϕ to minimise $\sum_{i=1}^{n} u_{i, \phi(i)}$ and ψ to minimise $\sum_{i=1}^{n} v_{i, \psi(i)}$. Both problems are assignment problems.

Q3 Suppose we color the elements of a set A with q colors. Let a subset of S be rainbow colored if all of its elements have a different color. Show that the collection of rainbow colored sets forms a matroid.
Solution: If I, J are rainbow and $|J|=|I|+1$ then J must contain an element e whose color does not appear in I. So, $I \cup\{e\}$ is also rainbow.

