Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

## OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 10.

Describe a Dynamic programming solution to the following problems:
Q1 An $m \times n$ rectangle of wood is to be cut into smaller rectangles. An $a \times b$ rectangle is worth $m_{a, b}$. The machine that cuts rectangles can only cut full length or full width. I.e. if after cutting there is an $x \times y$ rectangle then the machine can cut it into two rectangles $z \times y$ and $(x-z) \times y$ for some $z$ or into two rectangles $x \times z$ and $x \times(y-z)$. All rectangles cut must have integral side lengths.

Q2 Consider a 2-D map with a horizontal river passing through its center. There are $n$ cities on the southern bank with $x$-coordinates $a(1) \ldots a(n)$ and $n$ cities on the northern bank with $x$-coordinates $b(1) \ldots b(n)$. You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city $i$ on the northern bank to city $i$ on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1)<a(2)<\cdots<a(n)$, but you cannot assume that $b(1)<b(2)<\cdots<b(n)$. If both sequences are increasing, then the problem is trivial).

Q3 Solve the infinite horizon problem for the given matrix of costs. Assume that $\alpha=1 / 2$.

$$
\left[\begin{array}{llll}
5 & 4 & 1 & 8 \\
2 & 1 & 5 & 6 \\
3 & 1 & 5 & 4 \\
4 & 3 & 6 & 1
\end{array}\right]
$$

Begin with the policy

$$
\pi(1)=4, \pi(2)=4, \pi(3)=3, \pi(4)=4 .
$$

