

A problem with an infinite time horizon

A system can be in one of a set V of possible states. For each v ∈ V one can
choose any w ∈ V and move to w at a cost of c(v, w). The system is to run
forever and it is requiredto minimise the discounted cost of running the system,
assuming that the discount factor is α. A policy is a function π : V → V . So if
|V | = n then there are nn distinct policies to choose from.
Example

Costs





2 1 3
4 3 2
1 3 2



 α = 1/2.

Let π be a policy and let yv be the discounted cost of this policy, starting at
v ∈ V . Then

yv = c(v, π(w)) + αyπ(v) v ∈ V. (1)

Example Let π(1) = π(2) = π(3) = 1. Then

y1 = 2 +
1

2
y1

y2 = 4 +
1

2
y1

y3 = 1 +
1

2
y1.

So
y1 = 4, y2 = 6, y3 = 3.

Problem: Find the policy π∗ which minimises yv simultaneously for all v ∈ V .

Theorem 1 Optimality Criterion

π∗ is optimal iff its values y∗

v satisfy

y∗

v = min
w∈V
{c(v, w) + αy∗

w} ∀v ∈ V. (2)

Proof Suppose that (2) does not hold for some π.

yu > c(u, λ(u)) + αyλ(u) u ∈ U

yv = min
w∈V
{c(v, w) + αyw} u /∈ U

Define π̃ by π̃(u) = λ(u) for u ∈ U and π̃(v) = π(v) for v /∈ U . Then for u ∈ U ,

yu > c(u, λ(u)) + αyλ(u)

ỹu = c(u, λ(u)) + αỹλ(u)

So if ξv = yv − ỹv for v ∈ V then

ξu > αξπ̃(u) u ∈ U. (3)

1

Also, for v /∈ U

yv = c(v, π(v)) + αyπ(v)

ỹv = c(v, π(v)) + αỹπ(v)

and so
ξv = αξπ̃(v) v /∈ U. (4)

It follows from (3), (4) that

ξv ≥ αtξπ̃t(v) ∀v /∈ U, t ≥ 1

ξu > αtξπ̃t(u) ∀u ∈ U, t ≥ 1

Letting t→∞ we see that

ξv ≥ 0 ∀v and ξu > 0 ∀u ∈ U.

Thus π̃ is strictly better than Π i.e. if (2) does not hald, then we can improve
the current policy.
Conversely, if (2) holds and π̂ is any other policy and ηv = ŷv − y∗

v then

ŷv = c(v, π̂(v)) + αŷπ̂(v)

y∗

v ≤ c(v, π̂(v)) + αy∗

π̂(v)

and so
ηv ≥ αηπ̂(v) ≥ · · · ≥ αtηπ̂t(v) for t ≥ 1

which implies that ηv ≥ 0 for v ∈ V .
Policy Improvement Algorithm

1. Choose arbitrary initial policy π.
2. Compute y as in (1).
3. If (2) holds – current π is optimal, stop.
4. If (2) doesn’t hold then
5. compute λ by

yλ(v) = minw{c(v, w) + αyw}.
6. π ← λ.
7. goto 2.

In our example with π = (1, 1, 1). First compute λ = (1, 3, 1). Re-compute
y = (39

28 , 11
14 , 95

56). Now λ = π i.e. (1) holds and we are done.

2

Traveling SalesPerson via Dynamic programming:
We are given a matrix of costs c(i, j), 1 ≤ i, j ≤ n. The problem is to find a
permutation π of [n] = {1, 2, . . . , n} that minimises

TSP (π) = c1,π(1) + c(π(1), π2(1)) + ·+ c(πn)(1), 1).

This represents the total cost of a “tour through [n] in the order 1, π(1), π2(1), . . . , πn(1), 1.

There are (n − 1)! distinct tours (each tour, as a set of directed edges of ~Kn,
arises from n distinct permutations.)
With DP we can solve the problem in O(n22n) time. For 1 ∈ S ⊆ [n] and x ∈ S,
let f(x, S) denote the minimum cost of a path that begins at 1, ends at x and
visits each vertex in S exactly once. Then, f(x, S) = 0 for S = {1} and

f(x, S) = min{f(x, S \ {x}) + c(z, x) : z ∈ S \ {x}}.

There are
(
n−1
k−1

)
choices for |S| = k and given S there are k − 1 choices for x

and then k − 2 choices for y. So, to compute f(x, [n]) for all 1 6= x ∈ [n] takes
time

n∑
k=2

(k − 1)(k − 2)

(
n− 1

k − 1

)
=

n∑
k=3

(k − 1)(k − 2)

(
n− 1

k − 1

)
=

(n− 1)(n− 2)

n∑
k=3

(
n− 3

k − 3

)
= (n− 1)(n− 2)2n−3.

To finish we compute min{f(x, [n]) + c(x, 1) : x 6= 1).

1

