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Homework 4: Due Monday October 27.

1. Consider the following in relation to the 0-1 Knapsack problem: For
i € [n] let M; be the value of the solution where (i) we fix x; = 1 and
(ii) we apply the greedy algorithm to find the remaining items. Let
M = max{Mi, My, ..., M,}. Show that M > Zppr/2.

Solution: Let z7, x5, ...,z denote an optimal solution. Assume that
¢ = max{¢; : 7 = 1} and that ¢;/w; > ¢;11/wiq for 2 <i < n.

We now show that M; > Zopr/2. Let the solution associated with M;

be ¥y = 1,79, ...,7, and let m be the first index i such that z; = 0.
Next let
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Then we have
(a) M1 Z A.
(b) B < wyy, else Z,, = 1.

(c)

Con— Cm
Zopr < A—C—2"L 4 (B4 Q)
Wm—1 W

<A+cm+0(c—m— c””)

W Wm—1

<A+ecy
§A+Cl
< 2A.



2. Give an algorithm to solve the following scheduling problem. There
are n jobs labelled 1,2,...,n that have to be processed one at a time
on a single machine. There is an acyclic digraph D = (V, A) such
that if (i,j) € A then job j cannot be started until job ¢ has been
completed. The problem is to minimise max; f;(C;) where for all j, f;
is a monotone increasing. As usual, C; is the completion time of job j.
This is distinct from its processing time p;.

Solution: Because D is acyclic, we can assume that the (i,7) € A
implies that ¢ < j. Next let j be a sink if there are no edges in D of
the form (7, k) i.e. directed from j to k.

For a set of jobs S let p(S) = . g p;-

The algorithm is to process last, the sink j* that minimises f;(p([n])).
Then apply this procedure recursively to the remining jobs [n] \ {j*}.

Let f*(S) denote the optimum schedule value, if we only schedule jobs
in S. Then we observe that

f([n]) = min f;(p([n]))

J€n]

f(n]) = f (] \{j})  for all sinks j € [n].

We use these inequalities to prove by induction that our schedule is
optimal. According to our scheduling rule, we schedule last the job j
minimizing f;(p([n])). By induction, this gives us a schedule with ob-
jective max{f;p([n])), f*([n]\ {7})}. But since each of these quantities
is (by the equations above) a lower bound on f*([n]) we see that in fact
we obtain a schedule whose value is a lower bound on f*([n]), and thus
must in fact equal f*([n]).

3. Find the optimal ordering strategy for the following inventory system.
If you order an amount (), it costs AQ® for some 0 < o < 1 and the
inventory cost is I per unit per period. The demand is A units per
period and stock-outs are allowed. The penalty cost for stock-outs are
7 per unit per period.

Solution: The total cost K is given by
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We then have, at the minimum,
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at the minimum. So, we have
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