
Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 4: Due Monday October 27.

1. Consider the following in relation to the 0-1 Knapsack problem: For
i ∈ [n] let Mi be the value of the solution where (i) we fix xi = 1 and
(ii) we apply the greedy algorithm to find the remaining items. Let
M = max{M1,M2, . . . ,Mn}. Show that M ≥ ZOPT/2.

Solution: Let x∗1, x
∗
2, . . . , x

∗
n denote an optimal solution. Assume that

c1 = max{ci : x∗i = 1} and that ci/wi ≥ ci+1/wi+1 for 2 ≤ i < n.

We now show that M1 ≥ ZOPT/2. Let the solution associated with M1

be x̂1 = 1, x̂2, . . . , x̂n and let m be the first index i such that x̂i = 0.
Next let

A = c1 + · · ·+ cm−1

B = W − (w1 + · · ·+ wm−1)

C =
m−1∑
i=2

wi1(x∗i = 0).

Then we have

(a) M1 ≥ A.

(b) B < wm, else x̂m = 1.

(c)

ZOPT ≤ A− C cm−1
wm−1

+
cm
wm

(B + C)

< A+ cm + C

(
cm
wm
− cm−1
wm−1

)
≤ A+ cm

≤ A+ c1

≤ 2A.

1



2. Give an algorithm to solve the following scheduling problem. There
are n jobs labelled 1, 2, . . . , n that have to be processed one at a time
on a single machine. There is an acyclic digraph D = (V,A) such
that if (i, j) ∈ A then job j cannot be started until job i has been
completed. The problem is to minimise maxj fj(Cj) where for all j, fj
is a monotone increasing. As usual, Cj is the completion time of job j.
This is distinct from its processing time pj.

Solution: Because D is acyclic, we can assume that the (i, j) ∈ A
implies that i < j. Next let j be a sink if there are no edges in D of
the form (j, k) i.e. directed from j to k.

For a set of jobs S let p(S) =
∑

j∈S pj.

The algorithm is to process last, the sink j∗ that minimises fj(p([n])).
Then apply this procedure recursively to the remining jobs [n] \ {j∗}.
Let f ∗(S) denote the optimum schedule value, if we only schedule jobs
in S. Then we observe that

f ∗([n]) ≥ min
j∈[n]

fj(p([n]))

f ∗([n]) ≥ f ∗([n] \ {j}) for all sinks j ∈ [n].

We use these inequalities to prove by induction that our schedule is
optimal. According to our scheduling rule, we schedule last the job j
minimizing fj(p([n])). By induction, this gives us a schedule with ob-

jective max{f (
jp([n])), f ∗([n] \ {j})}. But since each of these quantities

is (by the equations above) a lower bound on f ∗([n]) we see that in fact
we obtain a schedule whose value is a lower bound on f ∗([n]), and thus
must in fact equal f ∗([n]).

3. Find the optimal ordering strategy for the following inventory system.
If you order an amount Q, it costs AQα for some 0 < α < 1 and the
inventory cost is I per unit per period. The demand is λ units per
period and stock-outs are allowed. The penalty cost for stock-outs are
π per unit per period.

Solution: The total cost K is given by

K =
λA

Q1−α +
I(Q− S)2

2Q
+
πS2

2Q
.

2



We then have, at the minimum,

∂K

∂S
=
I(S −Q)

Q
+
πS

Q
= 0

which implies that

S =
IQ

I + π
.

Then we have,

∂K

∂Q
= − lA(1− α)

Q2−α +
I(Q− S)

Q
− I(Q− S)2

2Q2
− πS2

2Q2

= − lA(1− α)

Q2−α +
Iπ

I + π
− Iπ2

2(I + π)2
− πI2

2(I + π)2

= − lA(1− α)

Q2−α +
Iπ

2(I + π)

= 0,

at the minimum. So, we have

Q =

(
2lA(1− α)(I + π)

Iπ

)1/(2−α)

.

S =
I

I + π

(
2lA(1− α)(I + π)

Iπ

)1/(2−α)

.

K = lA

(
Iπ

2lA(1− α)(I + π)

)(1−α)/(2−α)

+
Iπ

2(I + π)

(
2lA(1− α)(I + π)

Iπ

)1/(2−α)

=

(
2Iπ

I + π

)(1−α)/(2−α)

(lA(1− α))1/(2−α).

3


