Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 4: Due Monday October 28.

1. Give an algorithm to solve the scheduling problem $1|\cdot| \sum_{j} f\left(C_{j}\right)$ where f is a monotone increasing function.
Solution: The algorithm here is to schedule the jobs in increasing order of processing times p_{i}. To see that this is optimal, suppose that job j immediately follows job i in the ordering, but $p_{i}>p_{j}$. Suppose that job i starts being processed at time t. Consider the effect on the objective of interchanging i and j. This changes the objective by

$$
f\left(t+p_{j}\right)+f\left(t+p_{j}+p_{i}\right)-f\left(t+p_{i}\right)-f\left(t+p_{i}+p_{j}\right) \leq 0 .
$$

2. Give an algorithm to solve the scheduling problem $1|\cdot| \max _{j} f_{j}\left(C_{j}\right)$ where f_{j} is a monotone increasing function for all j.

Solution: The solution here is to find the job that will go last and then repeat the process for the remaining $n-1$ jobs. Suppose that $P=p_{1}+p_{2}+\cdots+p_{n}$ is the total processing time. Then the job that goes last should be the one that minimises $f_{j}(P)$. We show that this is an optimal decision.
Suppose that $\Psi(S)$ denotes the optimal solution value for scheduling the jobs in S only. Then by induction, our choice of j produces a solution of cost

$$
\begin{equation*}
C=\min _{j} \max \left\{\Psi\left([n] \backslash\{j\}, f_{j}(P)\right\} .\right. \tag{1}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \Psi([n]) \geq \min _{j}\left\{f_{j}(P)\right\} \tag{2}\\
& \Psi([n]) \geq \Psi([n]) \backslash\{j\}) \tag{3}
\end{align*}
$$

Here (2) follows from the fact that some job must go last and complete at time P and (3) follows from the fact that removing a job can
only decrease completion times, whatever the order. In addition f is monotone.
So,

$$
C \leq \min _{j} \max \left\{\Psi([n]), f_{j}(P)\right\}=\max \left\{\Psi([n]), \min _{j}\left\{f_{j}(P)\right\}\right\}=\Psi([n])
$$

3. Find the optimal ordering strategy for the following inventory system. If you order an amount Q, it costs $A Q^{\alpha}$ for some $0<\alpha<1$ and the inventory cost is I per unit per period. The demand is λ units per period and stock-outs are allowed. The penalty cost for stock-outs are π per unit per period.
Solution: The total cost K is given by

$$
K=\frac{\lambda A}{Q^{1-\alpha}}+\frac{I(Q-S)^{2}}{2 Q}+\frac{\pi S^{2}}{2 Q} .
$$

We then have, at the minimum,

$$
\frac{\partial K}{\partial S}=\frac{I(S-Q)}{Q}+\frac{\pi S}{Q}=0
$$

which implies that

$$
S=\frac{I Q}{I+\pi}
$$

Then we have,

$$
\begin{aligned}
\frac{\partial K}{\partial Q} & =-\frac{\lambda A(1-\alpha)}{Q^{2-\alpha}}+\frac{I(Q-S)}{Q}-\frac{I(Q-S)^{2}}{2 Q^{2}}-\frac{\pi S^{2}}{2 Q^{2}} \\
& =-\frac{\lambda A(1-\alpha)}{Q^{2-\alpha}}+\frac{I \pi}{I+\pi}-\frac{I \pi^{2}}{2(I+\pi)^{2}}-\frac{\pi I^{2}}{2(I+\pi)^{2}} \\
& =-\frac{\lambda A(1-\alpha)}{Q^{2-\alpha}}+\frac{I \pi}{2(I+\pi)} \\
& =0
\end{aligned}
$$

at the minimum. So, we have

$$
\begin{aligned}
Q & =\left(\frac{2 \lambda A(1-\alpha)(I+\pi)}{I \pi}\right)^{1 /(2-\alpha)} \cdot \\
S & =\frac{I}{I+\pi}\left(\frac{2 \lambda A(1-\alpha)(I+\pi)}{I \pi}\right)^{1 /(2-\alpha)} \cdot \\
K & =\lambda A\left(\frac{I \pi}{2 \lambda A(1-\alpha)(I+\pi)}\right)^{(1-\alpha) /(2-\alpha)}+\frac{I \pi}{2(I+\pi)}\left(\frac{2 \lambda A(1-\alpha)(I+\pi)}{I \pi}\right)^{1 /(2-\alpha)} \\
& =\left(\frac{2 I \pi}{I+\pi}\right)^{(1-\alpha) /(2-\alpha)}(\lambda A(1-\alpha))^{1 /(2-\alpha)} .
\end{aligned}
$$

