Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 4: Due Wednesday October 24.

1. Formulate the following as an integer program: There are n students and exams $E_{1}, E_{2}, \ldots, E_{m} \subseteq[n]$ need to be scheduled. Here E_{i} is the set of students that need to take exam i. Exams take place in the morning and in the afternoon. There are s rooms available and each room can hold r students. The rules are (i) A student must not be asked to take more than one exam per day; (ii) Several different exams can be held in the same room at the same time provided there is capacity in the room to hold the students. The problem is to minimise the number of days needed to carry out all of the exams.

Solution Let

$$
\begin{aligned}
x_{i, j, k, m} & = \begin{cases}1 & \text { Exam } i \text { in room } j \text { on morning of day } k \\
0 & \text { Otherwise }\end{cases} \\
x_{i, j, k, a} & = \begin{cases}1 & \text { Exam } i \text { in room } j \text { on afternoon of day } k \\
0 & \text { Otherwise }\end{cases} \\
y_{k} & = \begin{cases}1 & \text { There is an exam on day } k \\
0 & \text { Otherwise }\end{cases}
\end{aligned}
$$

Then the problem is to

$$
\text { Minimise } y_{1}+y_{2}+\cdots+y_{m}
$$

subject to

$$
\begin{aligned}
& x_{i, j, k, m}+x_{i, j, k, a} \leq y_{k} \quad \forall i, j, k . \\
& \sum_{j, k}\left(x_{i, j, k, m}+x_{i, j, k, a}\right)=1 \quad \forall i . \\
& \sum_{i}\left|E_{i}\right| x_{i, j, k, m} \leq r \quad \forall j, k . \\
& \sum_{i}\left|E_{i}\right| x_{i, j, k, a} \leq r \quad \forall j, k . \\
& \sum_{j}\left(x_{i, j, k, m}+x_{i^{\prime}, j, k, m}+x_{i, j, k, a}+x_{i^{\prime}, j, k, a}\right) \leq 1 \quad \forall k, \forall i, i^{\prime}: E_{i} \cap E_{i^{\prime}} \neq \emptyset .
\end{aligned}
$$

2. Solve the following problem by a cutting plane algorithm:

$$
\begin{array}{rlll}
\operatorname{minimise} & 4 x_{1} & +5 x_{2}+3 x_{3} \\
\text { subject to } & & \\
& 2 x_{1} & +x_{2} \quad-x_{3} \geq 2 \\
& x_{1} & \geq 4 x_{2}+x_{3} \geq 13 \\
x_{1}, x_{2}, x_{3} & \geq 0 \text { and integer. }
\end{array}
$$

Solution

Initial tableau

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	R.H.S	
-4	-5	-3	0	0	0	z
-2	-1	1	1	0	-2	x_{4}
-1	-4	-1	0	1	-13	$x_{5} \leftarrow$
	\uparrow					

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	R.H.S	
$\frac{-11}{4}$	0	$\frac{-7}{4}$	0	$\frac{-5}{4}$	$\frac{65}{4}$	z
$\frac{-7}{4}$	0	$\frac{5}{4}$	1	$\frac{-1}{4}$	$\frac{5}{4}$	x_{4}
$\frac{1}{4}$	1	$\frac{1}{4}$	0	$\frac{-1}{4}$	$\frac{13}{4}$	x_{2}

Primal feasible, but the solution is not integral.
We add a cut which eliminates the current optimal solution.

$\frac{1}{4} x_{1}+\frac{1}{4} x_{3}+\frac{3}{4} x_{5}-y_{1}=\frac{1}{4}$							
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y_{1}	R.H.S	
$\frac{-11}{4}$	0	$\frac{-7}{4}$	0	$\frac{-5}{4}$	0	$\frac{65}{4}$	z
$\frac{-7}{4}$	0	$\frac{5}{4}$	1	$\frac{-1}{4}$	0	$\frac{5}{4}$	x_{4}
$\frac{1}{4}$	1	$\frac{1}{4}$	0	$\frac{-1}{4}$	0	$\frac{13}{4}$	x_{2}
$\frac{-11}{4}$	0	$\frac{-1}{4}$	0	$\frac{-3}{4}$	+1	$\frac{-1}{4}$	$y_{1} \leftarrow$

We do a dual simplex pivot to obtain

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y_{1}	R.H.S	
$\frac{-7}{3}$	0	$\frac{-4}{3}$	0	0	0	$\frac{50}{3}$	z
$\frac{-5}{3}$	0	$\frac{4}{3}$	1	0	$\frac{-1}{3}$	$\frac{4}{3}$	x_{4}
$\frac{1}{3}$	1	$\frac{1}{3}$	0	0	$\frac{-1}{3}$	$\frac{10}{3}$	x_{2}
$\frac{1}{3}$	0	$\frac{1}{3}$	0	1	$\frac{-4}{3}$	$\frac{1}{3}$	x_{5}

The solution is primal feasible and so optimal but still not integer.
We add a cut which eliminates the current optimal solution.

$$
\frac{-1}{3} x_{1}-\frac{1}{3} x_{3}+y_{2}=\frac{1}{3}
$$

We obtain tableau

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y_{2}	R.H.S	
$\frac{-7}{3}$	0	$\frac{-4}{3}$	0	0	0	$\frac{50}{3}$	z
$\frac{-5}{3}$	0	$\frac{4}{3}$	1	0	0	$\frac{4}{3}$	x_{4}
$\frac{1}{3}$	1	$\frac{1}{3}$	0	0	0	$\frac{10}{3}$	x_{2}
$\frac{1}{3}$	0	$\frac{1}{3}$	0	1	0	$\frac{1}{3}$	x_{5}
$\frac{-1}{3}$	0	$\frac{-1}{3}$	0	0	1	$\frac{1}{3}$	$y_{2} \leftarrow$
		\uparrow					

We do a dual simplex pivot to obtain

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y_{2}	R.H.S	
-1	0	0	0	0	-4	18	z
-3	0	0	1	0	4	0	x_{4}
0	1	0	0	0	1	3	x_{2}
0	0	0	0	1	1	0	x_{5}
1	0	1	0	0	-3	1	x_{3}

Which is optimal integral.
3. Solve the following problem by a branch and bound algorithm:

$$
\begin{array}{llllll}
\begin{array}{lllll}
\text { Maximise } & 4 x_{1} & -2 x_{2} & +7 x_{3} & -x_{4} \\
\text { subject to }
\end{array} & & & \\
& x_{1} & & +5 x_{3} & \leq 10 \\
& x_{1} & +x_{2} & -x_{3} & \leq 1 \\
& 6 x_{1} & -5 x_{2} & & \leq 0 \\
& -x_{1} & & +2 x_{3} & -2 x_{4} & \leq 3 \\
& & \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 . \\
& x_{1}, x_{2}, x_{3} & \text { integer. }
\end{array}
$$

Solution

1. LP relaxation:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{5}{4}, \frac{3}{2}, \frac{7}{4}, 0\right) \quad \text { Value }=14 \frac{1}{4} .
$$

Sub-problem 1: add constraint $x_{1} \leq 1$.

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(1, \frac{6}{5}, \frac{9}{5}, 0\right) \quad \text { Value }=14 \frac{1}{5} .
$$

Sub-problem 2: add constraint $x_{1} \geq 2$.
No solutions.
Subproblem 1.1: add constraint $x_{2} \leq 1$.

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{5}{6}, 1, \frac{11}{6}, 0\right) \quad \text { Value }=14 \frac{1}{6} .
$$

Subproblem 1.2: add constraint $x_{2} \geq 2$.

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{5}{6}, 2, \frac{11}{6}, 0\right) \quad \text { Value }=12 \frac{1}{6} .
$$

Sub-problem 1.1.1: add constraint $x_{1} \leq 0$.

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0,0,2, \frac{1}{2}\right) \quad \text { Value }=13 \frac{1}{2} .
$$

This solution is feasible.
Subproblem 1.1.2: add constraint $x_{1} \geq 1$. No solutions.
Sub-problem 1.2 is fathomed i.e. there is no solution to this problem which is better than our current incumbent.
Optimal solution: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0,0,2, \frac{1}{2}\right) \quad$ Value $=13 \frac{1}{2}$.

