Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 10.

Q1 Solve the following knapsack problem:

$$
\begin{aligned}
& \operatorname{maximise} 4 x_{1}+8 x_{2}+15 x_{3} \\
& \text { subject to } \\
& \qquad 3 x_{1}+4 x_{2}+5 x_{3} \leq 19 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { and integer. }
\end{aligned}
$$

Solution

w	f_{1}	δ_{1}	f_{2}	δ_{2}	f_{3}	δ_{3}
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	4	1	4	0	5	0
4	4	1	8	1	8	0
5	4	1	8	1	15	1
6	8	1	10	0	15	1
7	8	1	13	1	15	1
8	8	1	16	1	20	1
9	12	1	16	1	23	1
10	12	1	18	1	30	1
11	12	1	21	1	30	1
12	16	1	24	1	30	1
13	16	1	24	1	35	1
14	16	1	26	1	38	1
15	20	1	29	1	45	1
16	20	1	32	1	45	1
17	20	1	32	1	45	1
18	24	1	34	1	50	1
19	24	1	37	1	53	1

Solution: $x_{1}=0, x_{2}=1, x_{3}=3$. Maximum $=53$.
Start with $x_{1}=x_{2}=x_{3}=0 . \delta_{3}(19)=1$ and so we add one to x_{3}. We have used up 5 units of the knapsack. There are 14 units left. $\delta_{3}(14)=1$ and so we add one to x_{3}. We use up another 5 units and so we are left with 9 . $\delta_{3}(9)=1$. We add one more to x_{3}. There are now 4 units in the knapsack. $\delta_{3}(4)=0$ and so we move to column 2. $\delta_{2}(4)=1$ and so we add one to x_{2}. This reduces the knapsack capacity to 0 , We have $\delta_{2}(0)=0$ and we move to column $1 . \delta(1)=0$ and we are done.

Q2 An $m \times n$ rectangle of wood is to be cut into smaller rectangles. An $a \times b$ rectangle is worth $m_{a, b}$. The machine that cuts rectangles can only cut full length or full width. I.e. if after cutting there is an $x \times y$ rectangle then the machine can cut it into two rectangles $z \times y$ and $(x-z) \times y$ for some z or into two rectangles $x \times z$ and $x \times y-z$.
Describe a dynamic programming algorithm for finding the way of cutting into pieces that maximises the total value of the rectangles produced.
Solution First assume that if you make a vertical cut then the piece to the right cannot be cut further. Similarly, if you make a horizontal cut then the higher piece cannot be cut further. Then if $f(M, N)$ denotes the maximum that can be obtained from the rectangle with corners $(0,0)$ and (M, N),
$f(M, N)=\max \begin{cases}\max \left\{f(M, N-y)+m_{M, y}: 0<y \leq N\right\} & \text { horizontal cut } \\ \max \left\{f(M-x, N)+m_{x, N}: 0<x \leq M\right\} & \text { vertical cut }\end{cases}$
If you are allowed tocut up both pieces then
$f(M, N)=\max \begin{cases}\max \{f(M, N-y)+f(M, y): 0<y \leq N\} & \text { horizontal cut } \\ \max \{f(M-x, N)+f(x, N): 0<x \leq M\} & \text { vertical cut } \\ m_{M, N} & \text { no cut }\end{cases}$

Q3 We are given $2 n$ sets $D_{1}, D_{2}, \ldots D_{n}$ and $R_{1}, R_{2}, \ldots, R_{n}$ where n is even. Also, $\left|D_{i}\right|+\left|R_{i}\right|=m$ for $i=1,2, \ldots, n$. Find an algorithm that will check to see if the following is possible: Find a set $I \subseteq[n],|I|=n / 2$ such that

$$
\sum_{i \in I}\left|D_{i}\right| \geq \sum_{i \in I}\left|R_{i}\right| \text { and } \sum_{i \notin I}\left|D_{i}\right| \geq \sum_{i \notin I}\left|R_{i}\right| .
$$

Your algorithm should run in time polynomial in m, n.
Solution: For $I \subseteq[n]$ let $D_{I}=\sum_{i \in I}\left|D_{i}\right|$ and $R_{I}=\sum_{i \in I}\left|R_{i}\right|$. Then let $f_{k, \ell}(a, b, c, d)= \begin{cases}1 & \exists I \subseteq[k]:|I|=\ell \text { and } D_{I}=a, D_{[k] \backslash I}=b, R_{I}=c, R_{[k] \backslash I}=d \\ 0 & \text { otherwise }\end{cases}$

Then we have the recurrence

$$
\begin{aligned}
& f_{k+1, \ell}(a, b, c, d)= \\
& \begin{cases}1 & f_{k, \ell-1}\left(a-\left|D_{k+1}\right|, b, c-\left|R_{k+1}\right|, d\right)+f_{k, \ell}\left(a, b-\left|D_{k+1}\right|, c, d-\left|R_{k+1}\right|\right) \geq 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Having computed $f_{n, n / 2}$ we can check to see whether or not there exist $a \geq$ $c, b \geq d$ such that $f_{n, n / 2}(a, b, c, d)=1$. This takes $O\left((m n)^{4} n^{2}\right)$ time, since this is the number of function evaluations we need to compute. Note that $D_{[n]}+R_{[n]}=m n$. (We can save a bit of time by only evaluating $f_{k, \ell}$ when $a+b+c+d=k m$.)

