Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Wednesday September 11.

Q1 Solve the following knapsack problem:

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{maximise} \\
\text { subject to }
\end{array} 4 x_{1}+8 x_{2}+15 x_{3} \\
& \\
& 3 x_{1}+4 x_{2}+5 x_{3} \leq 19 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { and integer. }
\end{aligned}
$$

Q2 An $m \times n$ rectangle of wood is to be cut into smaller rectangles. An $a \times b$ rectangle is worth $m_{a, b}$. The machine that cuts rectangles can only cut full length or full width. I.e. if after cutting there is an $x \times y$ rectangle then the machine can cut it into two rectangles $z \times y$ and $(x-z) \times y$ for some z or into two rectangles $x \times z$ and $x \times y-z$.
Describe a dynamic programming algorithm for finding the way of cutting into pieces that maximises the total value of the rectangles produced.
Q3 We are given $2 n$ sets $D_{1}, D_{2}, \ldots D_{n}$ and $R_{1}, R_{2}, \ldots, R_{n}$ where n is even. Also, $\left|D_{i}\right|+\left|R_{i}\right|=m$ for $i=1,2, \ldots, n$. Find an algorithm that will check to see if the following is possible: Find a set $I \subseteq[n],|I|=n / 2$ such that

$$
\sum_{i \in I}\left|D_{i}\right| \geq \sum_{i \in I}\left|R_{i}\right| \text { and } \sum_{i \notin I}\left|D_{i}\right| \geq \sum_{i \notin I}\left|R_{i}\right| .
$$

Your algorithm should run in time polynomial in m, n.
Hint: For $I \subseteq[n]$ let $D_{I}=\sum_{i \in I}\left|D_{i}\right|$ and $R_{I}=\sum_{i \in I}\left|R_{i}\right|$. Then let
$f_{k, \ell}(a, b, c, d)= \begin{cases}1 & \exists I \subseteq[k]:|I|=\ell \text { and } D_{I}=a, D_{[k] \backslash I}=b, R_{I}=c, R_{[k] \backslash I}=d \\ 0 & \text { otherwise }\end{cases}$
Solve the problem by establishing a recurrence for f.

