Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 2: Due Monday, September 24.

Q1 Consider the simple production problem of the notes with costs c(x), demands d_t , t = 1, 2, ..., n and maximum inventory H and a penalty π per period for each order still unfilled. If you decide that you want to make x, then you will actually make x - 1, x or x + 1 with probability 1/3 each. (Making -1 should be taken to mean making 0).

Formulate a Dynamic Programming recurrence to solve the problem of minimising expected total cost.

Solution: Let $f_r(i)$ be the minimum expected cost of fulfilling demand for periods t, t + 1, ..., n. Then we have

$$f_t(i) = \min_x \left\{ \frac{1}{3} \sum_{\theta=0,\pm 1} (c((x+\theta)^+) + \pi (d_t - (i+x+\theta))^+ + f_{t+1}((i+x+\theta - d_t)^+)) \right\}$$

where $f_t(i) = f_t(H)$ if i > H.

Q2 A system can be in 3 states 1,2,3 and the cost of moving from state *i* to state *j* in one period is c(i, j), where the c(i, j) are given in the matrix below. The one period discount factor α is 1/2.

The aim is to find a policy which simultaneously minimises the discounted cost of operating from any starting state. Start with the policy

$$\pi(1) = 1, \pi(2) = 3, \pi(3) = 2.$$

Find an optimal policy.

The matrix of costs is

$$\left[\begin{array}{rrrrr} 10 & 2 & 3 \\ 5 & 2 & 8 \\ 1 & 8 & 2 \end{array}\right]$$

Solution: Start with an initial solution of $\pi(1) = 1, \pi(2) = 1, \pi(3) = 2$.

Then we solve

$$y_{1} = 10 + \frac{y_{1}}{2}$$
$$y_{2} = 8 + \frac{y_{1}}{2}$$
$$y_{3} = 8 + \frac{y_{2}}{2}$$

Solving these equations gives $y_1 = 20, y_2 = 18, y_3 = 17$. We now check for optimality: Check y_1 :

Chick y ₁ .	10	+	$\frac{y_1}{2} = 20$	
	2	+	$\frac{y_2}{2} = 11$	*
Check y_2 :	3	+	$\frac{y_3}{2} = \frac{23}{2}$	
	5	+	$\frac{y_1}{2} = 15$	
	2	+	$\frac{y_2}{2} = 11$,	*
Check y_3 :	8	+	$\frac{y_3}{2} = \frac{33}{2}$	
	1	+	$\frac{y_1}{2} = 11$	
	8	+	$\frac{y_2}{2} = 17$	
	2	+	$\frac{y_3}{2} = \frac{21}{2}$	*
Our new policy is $\pi(1) = 2$,	$\pi(2$) =	$2, \pi(3) = 3$	

Then we solve

$$y_1 = 2 + \frac{y_2}{2}$$
$$y_2 = 2 + \frac{y_2}{2}$$
$$y_3 = 2 + \frac{y_3}{2}$$

Solving these equations gives $y_1 = 4, y_2 = 4, y_3 = 4$. We now check for optimality: Check y_1 :

	10	+	$\frac{y_1}{2} = 12$				
	2	+	$\frac{y_2}{2} = 4$	*			
	3	+	$\frac{y_3}{2} = 5$				
	5	+	$\frac{y_1}{2} = 7$				
	2	+	$\frac{y_2}{2} = 4$	*			
	8	+	$\frac{y_3}{2} = 10$				
	1	+	$\frac{y_1}{2} = 3$	*			
	8	+	$\frac{y_2}{2} = 10$				
	2	+	$\frac{y_3}{2} = 4$				
$\pi(1) = 2 \pi(2) = 2 \pi(3) = 1$							

Check y_3 :

Check y_2 :

Our new policy is $\pi(1) = 2, \pi(2) = 2, \pi(3) = 1.$

Then we solve

$$y_1 = 2 + \frac{y_2}{2}$$
$$y_2 = 2 + \frac{y_2}{2}$$
$$y_3 = 1 + \frac{y_1}{2}$$

Solving these equations gives $y_1 = 4, y_2 = 4, y_3 = 3$. We now check for optimality: Check y_1 :

$$10 + \frac{y_1}{2} = 9$$

$$2 + \frac{y_2}{2} = 4 *$$

$$3 + \frac{y_3}{2} = \frac{13}{2}$$

$$5 + \frac{y_1}{2} = 7$$

$$2 + \frac{y_2}{2} = 4 *$$

$$7 + \frac{y_3}{2} = \frac{17}{2}$$

$$1 + \frac{y_1}{2} = 3 *$$

$$8 + \frac{y_2}{2} = 10$$

$$2 + \frac{y_3}{2} = \frac{7}{2}$$

Check y_3 :

Check y_2 :

So the current policy is optimal.

Q3 You are an oil trader and the price of oil fluctuates in the following way:

If the price per barrel in period i is p_i dollars then

$$p_{i+1} = \begin{cases} (1+\varepsilon)p_i & Probability \ p\\ (1-\varepsilon)p_i & Probability \ 1-p \end{cases}$$

The current price is one hundred dollars per barrel. Give a dynamic programming formulation to compute the maximum price per barrel one should pay now for the following option: Purchase oil at price c dollars per barrel, at any time t = 1, 2, ..., n.

Explanation: Here one is paying for the (hoped for) opportunity to purchase the oil cheaply in the future.

Hint: Let $f_t(a)$ be the maximum expected value of the option at time t if the current price is a.

Solution:

$$f_t(a) = \max\{a - c, \, pf_{t+1}((1 + \varepsilon)a) + (1 - p)f_{t+1}((1 - \varepsilon)a)\}$$

and $f_{n+1}(a) = 0$ for all a.

You should pay no more than $f_0(100)$.