Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Wednesday September 14.

Q1 Solve the following knapsack problem:

maximise $5x_1 + 8x_2 + 15x_3$ subject to $3x_1 + 4x_2 + 5x_3 \leq 19$ $x_1, x_2, x_3 \geq 0$ and integer.

Q2 Consider a 2-D map with a horizontal river passing through its center. There are *n* cities on the southern bank with *x*-coordinates a(1)...a(n) and *n* cities on the northern bank with *x*-coordinates b(1)...b(n). You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city *i* on the northern bank to city *i* on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1) < a(2) < \cdots < a(n)$, but you **cannot** assume that $b(1) < b(2) < \cdots < b(n)$. If both sequences are increasing, then the problem is trivial).

Q3 We are given 2n sets D_1, D_2, \ldots, D_n and R_1, R_2, \ldots, R_n where n is even. Also, $|D_i| + |R_i| = m$ for $i = 1, 2, \ldots, n$. Find an algorithm that will check to see if the following is possible: Find a set $I \subseteq [n], |I| = n/2$ such that

$$\sum_{i \in I} |D_i| \ge \sum_{i \in I} |R_i| \text{ and } \sum_{i \notin I} |D_i| \ge \sum_{i \notin I} |R_i|.$$

Your algorithm should run in time polynomial in m, n.