Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 7.

Q1 Solve the following knapsack problem:

maximise
$$4x_1 + 8x_2 + 13x_3$$
 subject to
$$3x_1 + 4x_2 + 5x_3 \leq 16$$
 $x_1, x_2, x_3 \geq 0$ and integer.

Solution

w	f_1	δ_1	f_2	δ_2	f_3	δ_3
0	0	0	0	0	0	0
1	0	0	0	0	0	0
$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	0	0	0	0	0	0
3	4	1	4	0	0	0
4	4	1	8	1	8	0
5	4	1	8	1	13	1
6	8	1	8	1	13	1
7	8	1	12	1	13	1
8	8	1	16	1	17	1
9	12	1	16	1	21	1
10	12	1	16	1	26	1
11	12	1	20	1	26	1
12	16	1	24	1	26	1
13	16	1	24	1	30	1
14	20	1	24	1	34	1
15	20	1	28	1	39	1
16	20	1	32	1	39	1

Solution: $x_1 = 0, x_2 = 0, x_3 = 3$. Maximum = 39.

Start with $x_1 = x_2 = x_3 = 0$. $\delta_3(16) = 1$ and so we add one to x_3 . We have used up 5 units of the knapsack. There are 11 units left. $\delta_3(11) = 1$ and so we add one to x_3 . We use up another 5 units and so we are left with 5.

 $\delta_3(6) = 1$. We add one more to x_3 . There are now 1 units in the knapsack. $\delta_3(1) = 0$ and so we move to column 2. $\delta_2(1) = 0$ and so we move to column 1. $\delta(1) = 0$ and we are done.

Q2 Consider a 2-D map with a horizontal river passing through its center. There are n cities on the southern bank with x-coordinates a(1)...a(n) and n cities on the northern bank with x-coordinates b(1)...b(n). You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city i on the northern bank to city i on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1) < a(2) < \cdots < a(n)$, but you **cannot** assume that $b(1) < b(2) < \cdots < b(n)$. If both sequences are increasing, then the problem is trivial).

Solution: Let f(j) be the maximum number of bridges choosable if we only use $(a(i), b(i), i \ge j)$. Then

$$f(j) = \max \begin{cases} f(j+1) & \text{do not choose } (a(j), b(j)) \\ 1 + f(\min\{k > j: b(k) > b(j)\}) & \text{choose } (a(j), b(j)) \end{cases}.$$

Q3 Consider a row of n coins of values v(1)...v(n), where n is even. We play a game against an opponent by alternating turns. In each turn, a player selects either the first or last coin from the row, removes it from the row permanently, and receives the value of the coin. Construct a Dynamic Programming formulation that determines the maximum possible amount of money we can definitely win if we move first.

Solution: Let f(i, j) be player 1's maximum winnings if game is played on $v(i), v(i+1), \ldots, v(j)$ where j-i+1 is even. Then

$$f(i,j) = \max \begin{cases} v(i) + \min\{f(i+1,j-1), f(i+2,j)\} & \text{choose } v(i) \\ v(j) + \min\{f(i+1,j-1), f(i,j-2)\} & \text{choose } v(j) \end{cases}.$$