
Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 4: Due Monday October 29.

Q1

Find an optimal inventory policy for the model with the following parameters:
It is a generalisation of Models 2 and 3 of notes.

A Cost of making an order.
λ Demand per period for items.
ψ Arrival rate of ordered items.
I Inventory cost per item per period.
π Penalty cost per item out of stock per period.

1. First draw a diagram showing the inventory level over time and various
parameters.

2. Then identify the various costs per period.

3. Optimize total cost.

Solution:

h

S

T

−λ
ψ − λ

T4T1

T2 T3

1

S and h will be our independent variables. Then

T1 =
S

ψ − λ
; T2 =

h

ψ − λ
; T3 =

h

λ
; T4 =

S

λ
.

T = T1 + T2 + T3 + T4 =
(S + h)ψ

λ(ψ − λ)
.

Let K denote total cost. Then

K =
A

T
+
hI

2
·
T2 + T3

T
+
πS

2
·
T1 + T4

T

=
1

S + h

(

Aλ(ψ − λ)

ψ
+

1

2
Ih2 +

1

2
πS2

)

Putting ∂K
∂S

= ∂K
∂h

= 0 we get

S2 =
2AIλ(ψ − λ)

πψ(I + π)
and h2 =

2Aπλ(ψ − λ)

Iψ(I + π)

Q2

Describe a modification of Dijkstra’s algorithm that can be used to solve the
following problem: Prove that your algorithm finds optimum paths.
(The standard proof for Dijkstra will work, with only very minor changes.)

You are given a digraph D with a distinguished vertex s. If P = (s =
x0, x1, . . . , xk) is a path and Pi = (x0, x1, . . . , xi) for i = 0, 1, . . . , k then we
define its weight w(P) by

w(P0) = 0 and w(Pi) = w(Pi−1) + φei
(w(Pi−1))

where for every edge e, φe is a non-negative monotone increasing function.
(What this is saying is that the time to cross edge e = (x, y) is a function of
the time of arrival at x and increases with this time.)

Solution: Run the usual Dijksra algorithm: We have a set S, initially S =
{s} and for each v ∈ S, d(v) is the weight of the shortest path from s to v.
For v /∈ S, d(v) is the minimum weight of a path that goes s, P, w, v where
w ∈ S and where s, P, w is a minimum weight path from s to w. Initially,
d(v) = φsv(0). The update rule is to add u to S where d(u) = minv/∈S d(v)
and then to update d(v), v /∈ S by

d(v) := min{d(v), d(u) + φuv(d(u))}.

2

All we have to show is that d(u) is the minimum weight of a path from s to
u. Let P be any other path from s to u and let x be the last vertex of S on
P . Let Px be the sub-path of P from S to x. Let y be the vertex that follows
x on P . Then, by induction on |S|,

w(P) ≥ w(Px, y)

= w(Px, x) + φxy(w(Px))

≥ d(x) + φxy(w(Px))

≥ d(x) + φxy(d(x))

≥ d(y)

≥ d(u).

Q3

How would you solve the following bottleneck assignment problem: You are
given an m×m matrix of costs A and you are asked to find an assignment
a which minimises

max
i=1,...,m

A(i, a(i)).

Solution: We re-phrase the problem as follows: Suppose that the ordered
pairs (i, j) ∈ [m]2 are ordered by � where (i, j) � (i′, j′) if A(i, j) ≤ A(i′, j′)
(ties can be broken arbitrarily). Let (is, js) be the sth largest pair in this
order. Then we wish to find the smallest s such that there exists assignment
a for which (i, a(i)) � (is, js) for i = 1, 2, . . . ,m. So for each s we define

B(i, j) =

{

1 (i, j) � (is, js)

2 (i, j) 6� (is, js)
.

We try s = 1, 2, . . . ,m2 and stop at the first s from which the minimum
cost assignment using costs B is m. (We can perhaps speed things up using
binary search).

3

