Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Answers to homework 2.

Q1 Solve the following 2-person zero-sum games:

$$\begin{bmatrix} 6 & 2 & 4 \\ 5 & 2 & 5 \\ 4 & 1 & -3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 & -1 \\ 4 & 3 & 2 & 1 & -1 \\ 1 & 1 & 0 & -1 & 1 \\ 2 & 1 & 1 & -2 & -2 \\ 4 & 1 & 0 & -2 & -3 \end{bmatrix}$$

Solution (2,2) is a saddle point for the first game. Thus the solution is for player A to use 1 and player B to use 2. The value of the game is 2. For the second game we have the following sequence of row/column removals because of domination:

Remove column strategy 1.
$$\begin{bmatrix} 1 & 1 & 0 & -1 \\ 3 & 2 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & -2 & -2 \\ 1 & 0 & -2 & -3 \end{bmatrix}$$

Remove column strategy 2.
$$\begin{bmatrix} 1 & 0 & -2 & -3 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & -2 & -2 \\ 0 & -2 & -3 \end{bmatrix}$$

Remove column strategy 3.
$$\begin{bmatrix} 0 & -1 \\ 1 & -1 \\ -1 & 1 \\ -2 & -2 \\ -2 & -3 \end{bmatrix}.$$

Remove row strategy 1.
$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \\ -2 & -2 \\ -2 & -3 \end{bmatrix}$$

Remove row strategy 4.
$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \\ -2 & -3 \end{bmatrix}$$
Remove row strategy 5.
$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

The optimal strategies for this game are for player A to play rows 2 and 3 with probability 1/2 each. Similarly, player B plays columns 4 and 5 with probability 1/2 each.

Q2: Suppose the $n \times n$ matrix A is such that all row and column sums are equal to the same value C. What is the solution to this game?

Solution We can assume that C > 0. We know that

$$P_A^{-1} = \min x_1 + x_2 + \dots + x_n : A^T \mathbf{x} \ge \mathbf{1}, \ \mathbf{x} \ge 0.$$

 $P_B^{-1} = \min y_1 + y_2 + \dots + y_n : A\mathbf{y} \ge \mathbf{1}, \ \mathbf{y} \ge 0.$

Next observe that $x_i = y_j = C^{-1}$ for all i, j gives feasible solutions to these dual problems with the same value nC^{-1} . It follows that $P_A = P_B = C/n$ and that the optimal strategy for each palyer is to play each strategy with probabilty 1/n.

Q3 The correlation coefficient between assets A and B is .1 and the other data is given below:

ASSET	\bar{r}	σ
A	.1	.15
В	.18	.3

- (a) Find the proportions α of A and $1-\alpha$ of B that define a portfolio having minimum standard deviation.
- (b) What is the value of this minimum standard deviation.
- (c) What is the expected return for this portfolio.

Solution (a) Let $\sigma(\alpha)$ be the standard deviation of $\alpha A + (1 - \alpha)B$. Then

$$\sigma(\alpha)^2 = .0225\alpha^2 + .009\alpha(1-\alpha) + .09(1-\alpha)^2.$$

This is minimisd when

$$.045\alpha + .009 - .018\alpha - .18(1 - \alpha) = 0$$

or

$$\alpha = \frac{171}{207}.$$

(b)

$$\sigma(171/207) \approx .149.$$

(c) The expected return is

$$.1 \times \frac{171}{207} + .18 \times \frac{36}{207} = \frac{2378}{20700}.$$

Q4 Suppose there are n assets which are uncorrelated. The mean return \bar{r} is the same for each asset. The return on asset i has a variance of σ_i^2 .

- (a) Describe the efficient set.
- (b) Find the minim-variance point.

Solution (a) Since each asset has the same average return \bar{r} , each portfolio will have the same average return \bar{r} and so the efficient set consists of a single point, (σ, \bar{r}) . It remains to compute σ .

(b) Since $\sum_{i=1}^n w_i \bar{r} = \bar{r}$ is implied by $\sum_{i=1}^n w_i = 1$ we can drop one constraint in our Lagrangean formulation. Our equations then become

$$\sigma_i^2 w_i = \mu \qquad i = 1, 2, \dots, n.$$

 $w_1 + \cdots + w_n = 1$ then implies that

$$\mu = \left(\sum_{j=1}^n \sigma_j^{-2}\right)^{-1}$$

and

$$w_i = \sigma_i^{-2} \left(\sum_{j=1}^n \sigma_j^{-2} \right)^{-1}$$
 $i = 1, 2, \dots, n$

and

$$\sigma^2 = \sum_{i=1}^n w_i^2 \sigma_i^2 = \left(\sum_{j=1}^n \sigma_j^{-2}\right)^{-1}.$$

Q5 There are 3 assets with data given below:

$$V = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \qquad \bar{r} = \begin{bmatrix} .4 \\ .8 \\ .8 \end{bmatrix}$$

- (a) Find the minimum variance portfolio.
- (b) Find another efficient portfolio by setting $\lambda = 1, \mu = 0$.
- (c) If the risk-free rate is $r_f = .2$, find the efficient portfolio of risky assets.

Solution The equations determining efficient portfolios are

where r is the target return.

(a) r is not specified i.e. there is no requirement. Thus we drop the 5th equation and put $\lambda = 0$.

By symmetry $w_1 = w_3 = w$ and the equations become

So

$$w_1=rac{1}{2},\ w_2=0,\ w_3=rac{1}{2},\ \lambda=0,\ \mu=-1$$

is the solution.

(b) Now the equations become

$$2w_1 + w_2 + .4 = 0$$

 $w_1 + 2w_2 + w_3 + .8 = 0$
 $+w_2 + 2w_3 + .8 = 0$

So

$$w_1 = -.1, w_2 = -.2, w_3 = -.3, \lambda = 1, \mu = 0.$$

To get the actual solution we scale this to give

$$w_1 = 1/6, w_2 = 1/3, w_3 = 1/2.$$

(c) Following the argument in Section 6.9, we solve the following equations (6.10):

$$\sum_{i=1}^{n} \sigma_{k,i} v_i = \bar{r}_k - r_f \qquad k = 1, 2, \dots, n$$

Thus

$$v_1 = .2, v_2 = -.2, v_3 = -.4.$$

Then we put

$$w_i = \frac{v_i}{\sum_{k=1}^n v_k}$$

yielding

$$w_1 = .5, w_2 = -.5, w_3 = 1.$$

 ${\bf Q6}$ Solve the following quadratic programming problem: Minimise

$$(x_1 + x_2)^2 + (x_1 - x_3)^2 + x_3^2$$
.

Subject to

$$x_1 + x_2 + x_3 = 1$$
 and $x_1, x_2, x_3 \ge 0$.

Solution

Note Title 10/21/2004

JRKY conditions: \$20+ (20-101) + (20-100) sommy M -222, 42, +222 2201 + 202 subject to $0 \leq \epsilon_{\Lambda}^{c} \epsilon_{\Lambda}^{c} \Lambda^{c} \epsilon_{\Delta}^{c} \epsilon_{\Delta}^{c} \epsilon_{\Delta}^{c} \leq 0$ $X_1V_1 = X_2V_2 = X_3V_3 = 0.$ 25+20+20=1 26 Exc2 20 5)ch + - 2 oc 3 V3 11 0 ll O 11

			1	1	
£ M	La Car	Neg /	_ree/	(\(\chi\)	め く
	S	N		Ŋ	
		2	2	h	بر بر
	4		2	W	× ω
	[13	5
			1		\ - -
				()	2
					ر د
	○ ,	\bigcirc			Sty

 . ,	.~~	m \	1	.01	<i>(D</i>)
£ \	La Car	Noe /	×	(\(\chi\)	の く
77			UL	الم إم	کریم
y W	W) NT	2(=	× ω
4	h 100	h/_	ナノ	4	7
+	174	21-	1-	1+1	\ - -
				(ν<
					ζ ω
	<i>O</i> ,	0	0		Str

	£ /	WY L	X	×		めく
			20			×
						کم
					W	× W
	NH		NI-		2	5
			21-	1 2/-		\ - -
	21-			21-	NW	ν<
-					1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		0	\bigcirc			SAU

£	× ω	X	X	M	めく
		20			×
					×
					×
) N-		1 21	_	5
ارع	b H		1	714	\ - -
	21	200			2
7/4	ا ا	21	قم إ	pt	<i>ω</i> <
	\bigcirc	0	0		SHA

	<u> </u>	× w	X	×	W	8
10 D		ω	20			×
Multd D						X
X1= = > X2=0						X W
						5
ω \times	ارع	47		+1m		\ \ \ \
2 /-		21	87W			\rangle \langle \rangle \langle \rangle \rangl
	7/4	+	21	+		\ \(\alpha\)
		الع ا	0	70		SAS