Notes for OR1

1 Basic Linear Programming

1.1 Some formulations

P1 To obtain your recommended daily allowances of Vitamins A, C, and K, you decide to eat apricots,
bananas and cucumbers. The percentage of the recommended daily allowance of each vitamin contained
in a serving of a given food, along with the cost of one serving of each food is given in the table below.

A C K| cost
apricot |60 26 6 | $ 1.53
banana | 3 33 1 | $0.37

cucumber | 2 7 12| $0.18

Minimise 1.53x + 0.37y 4+ 0.182
Subject to 60x + 3y + 22 > 100.
26z + 33y + 7z > 100.
6x +y+ 12z > 100.
x,y,z > 0.

Solution: xr =1.4,y =0.3,z = 7.6. Cost is 3.62.

More generally, if there are n foods and m nutrients and each unit of food j costs ¢; and contains a; ;
units of nutrient ¢ and we require r; nutrients per day, then we need to solve

n
Minimise E CjT;

Jj=1

n
Subject to Zai,jxj >ry, 1=1,2,....,m.
j=1
2; >0, j=12...n

P2 A company makes two products (say, P and Q) using two machines (say, A and B). Each unit of P that is
produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine
B. Each unit of Q that is produced requires 24 minutes processing time on machine A and 33 minutes
processing time on machine B. Machine A is going to be available for 40 hours and machine B is available
for 35 hours. The profit per unit of P is $25 and the profit per unit of Q is $30. Company policy is to

determine the production quantity of each product in such a way as to maximize the total profit given
that the available resources should not be exceeded.

Maximise 25z + 30y

Subject to H0x + 24y < 2400.
30z + 33y < 2100.
x,y > 0.

P3 An operations manager is trying to determine a production plan for the next week. There are three
products (say, P, Q, and R) to produce using four machines (say, A and B, C, and D). Each of the four
machines performs a unique process. There is one machine of each type, and each machine is available
for 2400 minutes per week.

Problem Data

Machine Product P | Product Q | Product R | Availability
Processing time per unit on A 20 10 10 2400
Processing time per unit on B 12 28 16 2400
Processing time per unit on C 15 6 16 2400
Processing time per unit on D 10 15 0 2400
Profit per unit 45 60 50

Maximum sales 100 40 60

Maximise 45p + 60g + 507
Subject to 20p + 10g + 107 < 2400.
12p + 28q + 167 < 2400.
15p + 6q 4 16r < 2400.
10p 4 15q + Or < 2400.
0<p<100, 0<¢g<400<r <60.

P4 Suppose you run an ice cream factory, and you anticipate monthly demand (in tons) for the for the next
n periods to be d;, i = 1,2,...,n. Suppose it costs ¢ per ton to change production from one month to the
next, and s per ton to store ice cream for a month. What is the minimum cost production schedule that
meets demand?

Suppose that we produce z; tons of ice-cream in period and have y; tons in storage at the beginning of
period i. Let xg =y, = 0.

Minimise Z(C|xZ — x| + syi).
i=1

Subject to x; +y; > d;, i =1,2,...,n.
yi+1:x,;—l—yi—di,i:l,Q,...,n—l.
Ty Y 20,22 1,2,...,77,.

The objective function is non-linear. Introduce another variable z;. Replace the above by

Minimise Z(C'Zi + sy;).
i=1
Subject to z; +y; > d;,e=1,2,....n

Yi+1 :(L’z—i-yz—dl,lz 1,2,...,71—]_.

2 > X1 — Xy, 0 12 n—l. (2)

i, y; > 0,1 = 1,2,...,n
In an optimum solution, z; will be as small as possible, given that it has to satisfy ,, giving z; =
|[Ei — IL‘Z'_1|.

P5 The problem is to minimise f(z) = max{a;x +b; : i =1,2,...,n}.

Minimise z.
Subject to z > a;x + b, 1 =1,2,...,n

P6 A company is planning its investment strategy over the next n periods. It has m choices of investment.
If investment ¢ is operated at level y in period ¢ then it generates r;,y dollars and needs p; ;+y units of
resource j. There will be a;; units of resource j available in total during period ¢. The cost of resource
J,J =1,2,...,r in period ¢ is b;; dollars per unit. The company starts with A dollars to spend. Money
generated in periods 1,2,...,t can be used in period t 4+ 1, but must be available at the start of the
period. The company wishes to maximise the total amount it has in hand at the end of period n.

Maximise Z Z (m - me +b;, t) Yit

t=1 i=1

Subject to Zpi7j7ty,~7t < aj, for all j,¢.

i=1
558 -3k e 2 323 i
=1 i1=1 =1 j=1
yir > 0 for all 7,¢.
Standard Form A is an m x n matrix of full row rank. The columns of A are a;,j =1,2,...,n.
Maximise cTx (3)
Subject to Ax=Db
x > 0.

Transforming to standard form:
alx<bh— alx+s=0.
alx>bh— alx—s=10.
z; <0 Replace z; by — 2, 2% > 0.

z; free Replace x; by o — o, 7,27 > 0.
)T

]’

Minimise ¢cTx Maximise (—c)Tx.

Linear programs can be

1. Solvable: e.g. maximise x: subject to 0 < x < 1.
2. Infeasible: e.g. maximise x: subject to x < 1,2 > 2.

3. Unbounded: maximise x: subject to x > 0.

The feasible region is the set {x € R": Ax = b, x > 0}. The feasible region is a polyhedron:

(It isn’t necessarily bounded in size.)

The “corners” are called extreme points. If there is an optimal solution, then there is an extreme point with
optimal value.

The simplex algorithm starts at an extreme point and moves along the edges from extreme point to neighboring
extreme point until it finds the optimum.

All we need now is (i) an algebraic equivalent of vertex and (ii) a procedure for moving from vertex to
neighboring vertex.

The algebraic equivalent is Basic Feasible Solution and the procedure (ii) is a pivot.

i
(0,21)

(7.9) (2.0) (24.0)
2 4 6-:"8 i0 12 14 16 18 20 22 24 26%X

Y

Now add slack variables.
The feasible region F' here is

r+4y +s5 =24
x4+ 4y < 24. 3r+y + 89 = 21.
3z +y <21 T+y TS =
r+y <9 x,y, 81, 82,83 > 0.

z,y > 0.
The extreme points are

The extreme points are (0,0), (7,0), (6,3), (4,5), (0,6). (0,0,24,21,9),(7,0,17,0,2), (6,3,6,0,0),
(4,5,0,4,0), (0,6,0,15,3).

Suppose we want to maximise z = 2z + 3y over F.

Now we keep track of which variables are basic or
non-basic. Initial basis {s1, s9, s3}, then {z, s1, s3},
then {x,y, s;} and finally {x,y, s2}. Put the
non-basic variables equal to 0 and then solve the
equations for the basic variables.

Start at (0,0). Choose an edge to move along that
increases z, e.g. move to (7,0), then to (6,3), then to
(4,5). Now a move along an adjacent edge decreases z

— we found the maximum.

A Basic Feasible Solution (BFS) is one with n — m zero non-basic variables z;,j € J C [n] \ I such that the
remaining m basic variables x;,7 € I = [n]\ J are (i) the unique solution to the remaining equations and (ii)
they have non-negative values. BFS’s defined by I3, I are neighbors if |I; \ Ir| = |I2 \ 1] = 1. The simplex
algorithm proceeds as follows: if I defines the current basis, see if there exists k € I,/ € [n] \ I such that
I'=(TU{l})\ {k} is an improvement. If there is, replace I by I’. Otherwise the problem is solved. All we
need now is machinery to implement this efficiently.

Example:

Maximise 22, + 322
Subject to x1 + 4y < 24.

3[L’1 + T2 S 21.

r1+ 29 < 9.

T1,x9 > 0.
B.V. T i) T3 T4 Ty RHS
Zo -2 =3 0
x5 |1 4 1 24
Ty 3 1 1 21
zs |11 1 9
0 —7/3 2/3 14
3 11/3 1 ~1/3 17
5 2/3 ~-1/3 1 2
o —1/2 72 |21
3 1 3/2 —11/2|6
|1 /2 —1/2 |6
Ty 1 ~-1/2 3/2 |3
o 1/3 5/3 |23
4 2/3 1 —11/3 | 4
|1 ~1/3 4/3 |4
o 1 1/3 ~-1/3 |5

Vertex to neighboring vertex becomes basic solution to neighboring basic solution.

Sequence of bases:

1 00 1 00
B=|0120 B1l=1010
0 01 0 0 1
110 1 —1/3 0
B=|0 30 Bt=|0 1/3 0
011 0 —1/3 1
101 4] 1 3/2 —11/2]
B=|03 1| B'=|0 1/2 -1/2
001 1| 0 —1/2 3/2 |
001 4] [2/3 1 —11/3]
B=|131| B'=|-1/3 0 4/3
01 1 13 0 —1/3 |
2/3 1 —11/3
Shadow prices: cgB™t =10,2,3]7 | —=1/3 0 4/3 =[1/3,0,5/3].
1/3 0 —1/3

Basic Solutions Algebraically, the extreme points are the Basic Feasible Solutions to Ax = b. The simplex
algorithm moves from one BFS (extreme point) to a neighbor by a pivot.

Suppose that B is an m x m non-singular sub-matrix of A = [a; ay - - a,].

To — CpXB — CgXN = 0.
BXB -+ NXN =b.

—Cj —cx
1 0
BXB NXN b

Multiply matrix A on the left by B™! and substitute xg = B™!(b — Nxy). To get an equivalent set of linear
equations. Solutions to Ax = b satisfy the following and vice-versa:

o — (CN — CBB_lN)XN = C%‘B_lb.

XB + B_INXN = B_lb.

The values ¢; — cgB™a; are called the reduced costs.

Simplex tableau

—(cg —cgB™IN)
1 cgB'b

XB B_lNXN Bflb

Basic Solution: I denotes the index set of the basic columns B, (note that 0 € I). J denotes the index set
of the non-basic columns N. Variables x;,7 € I are referred to as the basic variables and variables z;, j € J are
referred to as the non-basic variables. We index the rows by which basic variable they contain. The tableau
represents the equations

x; + Zbi’j$j = bi,R; 1€ 1. (4)

jeJ

The associated basic solution is obtained by putting put xx = 0 and xg = B~'b. This is feasible if B-1b > 0
and we will refer to such a solution as a Basic Feasible Solution — BFS.
Note that solutions to Ax = b are obtained by giving values to xn and then putting xg = B™'b — B"1Nxy.

8

—by,
1 bo.r

XB bi j bi r > 0 for a basic feasible solution.

Optimality condition: if by; > 0 for all j € J and x is a BF'S then x maximises the objective function
xo. Indeed, x has objective value by p and any other feasible solution y > 0 satisfies

Yo = bo,r — Z bojy; < bo,g-

jeJ

The simplex algorithm starts with an initial BF'S and does a sequence of pivots and stops when by ; > 0,7 € J.
To find an initial BF'S we use a 2-phase version of the simplex algorithm that is described below. (This is not
a circular argument!)

Unboundedness: if at some stage there is a BFS and a non-basic variable x, such that (i) by, < 0 and (ii)
b;y < 0 for i € I then the problem is unbounded. Put z, =t and z; = 0,5 € J \ {¢} and compute the basic
variable from . Then for large t

Ty = CTB_lb - tbgvg /‘ oo with ¢ and T, = bi,R - tbiyg Z 0.

Simplex pivot: We choose k, ¢ (row k € I, column ¢ € J) where by, # 0.
I+ I+/(—FkandJ<«+ J+k—{ Let B’ be obtained from B by deleting column a;, and replacing it by a,.

B’ replaces B 1 bo.r

\ Vi r

Row k becomes row ¢, after the pivot. 1

E-! 14

Divide row k by b ¢ and then subtract b; , times row k from row i # k.

br.; bi.;
by 52 and b by = by x o fori# k. Note that b, = 0.

b ¢ k.0

Remember: row operations do not change the set of solutions to a set of linear equations.

9

Then
ap ak
B'=B+[0]0]—[0]0] andso B"'B'=1+ [0 B 'a, 0] — [0 e 0],

and
(B)'=E 'B"! where E=1—[0ex 0]+ [0 B "a, 0].
Note that) .))
100 a 00 O] 1 00 —afag 0 0 O
01 0 az O 0 O 01 0 —ag/ay 0 0 O
001 a3 0 0 O 0 01 —aszfay 0 0 O
000 a 0 0 O =000 1/ag 0 0 O
00 0 a 1 0 O 0 00 —asfag 1 0 0
00 0 a 0 1 O 0 00 —agf/agy 0 1 0
| 00 0 az 0 0 1] | 00 0 —ayfag 0 O 1 |
From this we can see what replaces the identity in the columns associated with I.

Preservation of solution: It is impotant to realise that row operations do not change the set of solutions
to Ax = b. So, after a pivot, the set of solutions to the new set of equations is the same as the previous set.

Choice of pivot: we choose one so that the new basic solution is feasible and has a larger objective value
Feasibility: b = br.r/be s so we need by, > 0, assuming that by g > 0.
We need b;vR =b; g —biy % % > 0. This is automatically true if b;, < 0.

. b b; .
Otherwise we need ﬁ < b_’IZ — ratio test.
R i
e e e . b
Objective improvement — maximization: b}, = bor — by X ﬁ and so we choose by, < 0. Note that

—bp ¢ is the reduced cost. We have xy = by p — ZjGJ bo,jz; for Ax =b.

Another perspective: current solution, z; = b; g,7 € I and z; = 0,5 € J. Suppose we increase z,, keeping
xz; = 0,7 € J\ { and satisfying . Then z; <= b; r — b4z, and so the maximum we can increase z, to is
min {b; g/bi s : by > 0}. The solution we get is the same as the basic solution after the pivot. We now have
xz;=0for j € (J\{l})U{k} and a;,i € (I U{¢})\ {k} forms our new basis.

Degeneracy: A BFS is degenerate if by p = 0 for some k£ € I. If you pivot on by, in such a row, then the
RHS bpg does not change. After the pivot we still £y = x, = 0 and all other variables have the same value.
Only the status of zy, x, has changed.

Finding a starting basis: 2-phase method.
First solve

Maximise (—1)T¢
Subject to Ax+&=Db
Ty —cTx = 0.

x,§ 2 0.

10

The starting basis has basic variables &1, &, ..., &, and the original LP has feasible solutions iff the optimum
above has & = 0. Once we get to & = 0, we can remove the columns corresponding to the artificial variables
&. More precisely, if & is non-basic then we just delete the & column. If & is basic then there are two
possibilities: first assume that there is a non-zero in the & row that corresponds to a non-basic z;. In this
case we pivot on this non-zero. Because the current value of & is zero, the actual solution does not change
and we swap an artificial basic variable for a regular variable and then we can remove the artificial variable
&. If there are no non-zeros in the & row, then we can remove the & row, the corresponding row in A is
linearly dependent on other rows.

Termination: If an LP problem is non-degenerate then for every vertex, we have b; p > 0,7 € R for all

i € I. This means that by p = bo,r — bo¢ X bb’jc—”; < bo,r and so we never repeat a basis. As there are at most

(:1) bases, we must eventually terminate.

If there are degenerate bases, then this can lead to the algorithm endlessly cycling through a fixed finite
sequence of bases without actually changing the current feasible solution.

Bland’s Rule: Choose the lowest indexed non-basic variable x; for which by; < 0 and then the lowest
indexed basic variable z; with b, ; > 0 that minimises the ratio b; g/b; ; and pivot on (i, j).

If the Simplex Algorithm does not terminate then there must be a sub-sequence of bases I, = I;_1 + j; —
i,t = 1,2,...,p that repeats indefinitely from some point. Note that b;, r = 0,t = 1,2,...,p and K =
{i1,49,...,ip} = {J1,J2,- - - Jp}. And note that the actual BFS x does not change.

We reduce the tableaus by deleting rows and columns corresponding to variables not in K. Applying the
Simplex algorithms to these tableaus will result in the same endless sequence of pivots. Let ¢ = max K and
let T} be a reduced tableau in this sequence where z; is the variable that leaves the basis and let x, be the
variable that enters the basis. Next let Ty be a reduced tableau in the sequence where z; enters the basis.
Now let y be the solution to Ax = b obtained from x by changing x, to -1 and keeping all other non-basic
variables at 0. Then we have y; = b} , + b}, = b}, for i € K, where the suffix I = 1,2 refers to tableau 7;.
Computing the objective value of y in 77 and 75 we get

1 1 _ 32 2 2 12 2 2 71
bO,R - bO,s = bo,R - bO,s - E boyz‘yz = bo,R - bo,s - E :bO,i it

€K €K

Now by p = b3 r (no change in objective value in the sequence) and bj , < 0 (because x4 enters the basis) and
b5.. > 0 (because of Bland’s rule). So, 7., b5,;b;, > 0 and there exists k € K such that b3 by, , > 0. Now
k # t since the pivot element b; , > 0 and b3, < 0 (enters basis at T3). But in 75 we have bj ; > 0,5 € K\ {t}
(Bland’s rule) and so we have by , < 0,b; , > 0 implying that we should have selected x;, instead of z; as the
variable to leave the basis in 77, contradiction.

Worst-case performance of the simplex algorithm While we can guarantee that the simplex algorithm
will terminate eventually, we may not be here to see it. In a famous paper Klee and Minty showed that a
natural choice of pivot column on a specially constructed problem with 2n constraints can result in 2™ — 1
pivots. It is still unknown whether or not there a choiice of pivot column that gives an algorithm that runs
in time poly(m + n).

11

2 Duality

Linear programs come in pairs. One will be called the primal and the other will be called the dual. Which is
which is not well-defined, since the dual of the dual is the primal.

The dual of the LP in standard form is

Minimise b’y (5)
Subject to ATy > c.

As an exercise confirm that the dual of

Minimise c]x; + ¢3 X2 + C3 X3

Subject to Ay 1x; + Aj9xy + Ay 3x3 = by
Ag1x1 + Agoxy + Ay 3xs > by
Az 1x1 + AsoxXy + As3xs > bg
x; > 0, x5 < 0.

1s
Maximise b]y; +bsys + c3ys
Subject to Aflyl + Afzyz + Arf’?’y3 <c
AJy1+AZ,y2 +AJgys > co

A§1Y1 + Ag,zYz + Ag,a}’s =Cg
y22>0,y3 <0.

The relationship can be summarised: primal variables gives rise to dual constraint and vice-versa.

The primal constraint ¢ is associated with dual variable y; and the dual constraint ¢ is associated with primal
variable x;.

Equations give rise to free variables; in the context of primal minimisation, >constraints give rise to non-
negative dual variables and <constraints give rise to non-positive dual variables.

Weak duality, standard form: if x is feasible for the primal (primal feasible) and y is feasible for the
dual (dual feasible) then

cTx —bTy =c™x — (Ax)Ty = xTc —xTATy =xT(c - ATy) <.

So, if X, is primal feasible and yq is dual feasible and ¢Txy = bTyq then x(solves the primal problem and
Yo solves the dual problem.

Strong duality, standard form: if x; solves the primal problem and yq solves the dual problem then
cTxo = bTy,.

Let B be an optimal basis and let yo = cgB™*. Then (i) yo is dual feasible since the reduced costs ¢; — yg a;
are all non-positive; (i) the objective value is ¢csB~'b for both primal and dual.

12

Shadow prices: The vector m = yo = cgB™! is often called the vector of shadow prices. (It is also the
solution to the dual problem.) Suppose that we perturb the RHS b to b’ = b 4+ db. Suppose that B is the
optimal basis. If B~'b’ > 0 then the reduced costs have not changed and so B remains as the optimal basis.
The new optimal value will be ¢cgB™'b’ = ¢EB ™ 'b + ¢EB™1d = bor + > ;1 midi.

In the context of maximising the profit ¢Tx subject to Ax < b where b; represents the amount of some
resource available, m; represents the maximum price one should pay to buy one more unit of the ith resource.
In the context of minimising the cost ¢Tx subject to Ax > b where b; represents the amount of some resource
you need, 7; represents the extra cost if you need one more unit of the ith resource.

Reading off the shadow prices: The initial tableau will have an m x m identity matrix I, where the ith
cost is 0, either because it corresponds to a slack or to an artifical variable. The matrix I will be replaced by
B~ in the final tableau and the entry in the ith column of the objective row will therefore be —(0—nTe;) = ;.

Sensitivity Analysis: This can refer to computing the maximum by which we can change b, without
changing the optimal basis. If e = [0,0,...,1,...,0]7 is the vector which all 0’s except in the kth position
where it equals 1, then this amounts to finding the the interval for A such that B~*(b + X\ex) > O i.e.
bi,r + A\B;x = 0 where 3, is the element in row i, column k of B™*.

It can also refer computing the maximum by which we can change ¢, without changing the optimal basis.
This amounts to finding the interval for \ such that ¢, + A — wla, < 0ie. A < wla, — ¢.

The following states what is possible for primal and dual:

1. Primal solvable & Dual Solvable.
2. Primal unbounded & Dual infeasible.
3. Primal infeasible &Dual infeasible.

4. Dual unbounded & Primal infeasible.

Complementary slackness: A primal feasible xq and a dual feasible yqo satisfy complementary slackness
if whenever a variable is positive (slack) then the corresponding constraint is satisfied with equality (tight).
In which case x(solves the primal and ygq solves the dual. Indeed, for our standard form,

cTxo — by =x3 (c — ATyo) = 0.
Thus strong duality implies complementary slackness holds for xg, yo optimal.

Tx subject to Ax < b, which has a dual Minimise b’y subject to

For an LP in the form: Maximise c

ATy = ¢, y > 0, complementary slackness becomes (b — Axg)yo = 0 or y; > 0 implies rfx = b; where r;
denotes the ith row of A. Another way of interpreting this is that x(solves the primal if and only if then ¢
is a non-negative linear combination of the normals r; of the tight contstraints i such that rfxo = b; i.e. c is

in the cone generated by these normals.

13

Farkas Lemma: Given an m X n real matrix A and b € R" either (i) there exists x € R" such that x > 0
and Ax = b or (ii) there exists y € R™ such that yTA > 0 and y*b < 0.

First observe that we cannot have (i) and (ii). Indeed then
0>yTb=yTAx >0, contradiction.

Suppose (i) fails and so the LP in standard form with ¢ = —1 is infeasible. Now u = 0 satifies the dual
constraint A7u > ¢ and so the dual is not infeasible. So, it is unbounded and (ii) holds.

Dual simplex algorithm: A tableau is primal feasible if b, g > 0 for all ¢ € I. A tableau is dual feasible if
bo; > 0 for all j € [n]. The (primal) simplex algorithm starts with a primal feasible tableau (perhaps using
artificial variables) and does pivots that maintain primal feasibility and improve the objective value until a
tableau is reached that is both primal and dual feasible.

The dual simplex algorithm starts with a dual feasible tableau and does pivots that maintain dual feasibility
and improve the (dual) objective value until a tableau is reached that is both primal and dual feasible.

We only need to discuss the choice of pivot:

Dual feasibility: we need 0 < by = box — boe ¥ ;’Z—’Z = —bZ—j or by, < 0. Also need, for j € J\ {¢}, that
0< b{)j = bo; — bo x 77¢. This is automatically true if by ; > 0.

Otherwise we need bo; 2 2Ze dual ratio test.

Improve the dual objective: this means reduce by . Now bo r=bor — boe X 7= and so we want by, < 0.

3 Convex Sets

A set S C R" is said to be convex if x,y € S then the line segment
Lx,y)={x+(1-AN)yeS:0<\A<1}.
See Diagram 3 at the end of these notes.
Examples of convex sets:
Cl S={x:a’x=1}. x,y €S implies that
alAx+(1-Ny)=daTx+(1-NaTy=XA+(1-))=1.
C2 S = {x:a"x < 1}. Proof similar to C1.
C3 S =B(0,0): x,y €S implies that

IAx+ (1= Ny| < M|+ [(1 = Ny| < AT+ (1= \)§ = 6.
Operations on convex sets:

O1 S convex and x € R™ implies that x + S = {x +y : y € S} is convex.

14

02 S,T convex implies that A = SN T is convex. X,y € A implies that x,y € S and so L = L(x,y) C S.
Similarly, L CT andso L C SNT.

O3 Using induction we see that if S;,1 < i < k are convex then so is ﬂle S;.

O4 If S, T are convex sets and «, 5 € R then aS + T = {ax + By} is convex.
If z; = ax; + fy; € T,i=1,2 then

Az + (1 —)\)ZQ = Oé()\Xl + (1 —)\)Xg) + ﬂ()\yl + (1 —)\)yz) eT.

It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax < b} are convex
for any matrix A any vector b. So the feasible region of a linear program is a convex set.

3.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST y,z € S such that
x € L(y,z). We let ext(S) denote the set of extreme points of S.

EX1 If n =1 and S = [a, b] then ext(S) = {a, b}.
EX2 If S = B(0,1) then ext(S) = {x: |x| = 1}.
EX3 If S = {x: Ax = b} is the set of solutions to a set of linear equations, then ext(S) = 0.

Extreme points and BFS’s Let C = {x: Ax =Db,x > 0} where A has full row rank. Then the extreme
points of C' are BFS’s.

Suppose first that x is a BFS and that x = Ax; + (1 — A\)xg where 0 < A < 1. If j ¢ I then we have
0 =z; = Axy; + (1 — X)xg;, which implies that z;; = 5; = 0 (remember that \,1 — X > 0,2y, 22, > 0).
This implies that x; = x5 = x.

Now suppose that x is not a BFS. Then we can can choose a basis B and partition x as xg : xn where
xN # 0. Let Iy = {i € [: 7, = 0} and let r; denote row i of B"1N. Suppose first that there exists & € RY
such that €7r; = 0 for i € I). Then clearly x = (x; + X;)/2 where x; = x — [0, &] and x5 = x + ¢[0g, £] for
e small enough that x;,x, € C'. So, x is not an extreme point.

If & does not exist then we must have |ly| > ny = n — m, the number of columns in N. Furthermore, there
must be an n; X ny non-singular matrix N; made up of rows r; € I; C Iy. But then we see that in fact x is
a BFS with basis (I \ I;) U J. (x;,7 € I; becomes non-basic at value 0, instead of basic at value 0.)

Optimal extreme points Also, z is an extreme point of C' iff there exists ¢ such that z is the unioue
maximiser of ¢Tx over points in x € C. Indeed, if z = Ax; + (1 — A\)xy where 0 < A < 1 then ¢Tz <
max {CTX1,CTX2}- Conversely, if z is an extreme point, BFS, let B be a basis matrix for x. Then put

¢;=0,7€land ¢; =—1,7 € J. Then, CTz:OandCTX:Zjejﬁj<Oifx7éz.

4 Primal-Dual Algorithms

Here is the general idea. Suppose we have the primal and a solution y to the dual . Let Ay be the
submatrix of A formed by the columns a; for which ¢; = afy. If we can find z > 0 such that Ayz = b then

15

complementary slackness will tell us that by padding out the missing components of z with zeroes to create
x we will have that x, y are optimal for (3)), (] respectively.

If z does not exist then the Farkas Lemma implies that there exists u such that A}T,u > 0 and bTu < 0. We
replace y by y 4+ eu. If ¢; = ajy then a"u > 0 and so ¢; < a] (y + cu) and if we ensure that ¢ is small
enough that such that ¢; < aJT(y + eu) for those j for which ¢; > a]Ty then y + cu is feasible for . Also,
b ((y +eu) < bTy and so the dual value has improved. In the following, we describe a specific LP for which
this idea leads to a fast algorithm.

4.1 Primal-Dual Algorithm for the Assignment Problem

A matching M in a graph is a set of vertex disjoint edges. A vertex v is covered by M if there exists e € M
such that v € e. A matching M is perfect if every vertex of G' covered by M. For the complete bipartite
graph K4 p on vertex set A = {a;:i € [n|},B = {b;:i € [n]}, perfect matchings can be represented by
permutations of n i.e M = {(a;,bz(;)) : i € [n]}. Given a cost matrix (c(4, j), the cost of a perfect matching
M = M (m) be given by

n

(M) =) cli,n(i)).

=1

The assignment problem is that of finding a perfect matching of minimum cost.

Consider the linear program ALP:

Minimize »37, Y70, i % (6)
Subject to

D Tig =1 fori=1,2,...,n. (7)

Sy =1 for j=1,2,...,n. (8)

zi; >0 fori,j=1,2,...,n. 9)

The assignment problem is the solution to ALP where we replace @D by
xzi;=0o0r1fore,j=1,2,...,n. (10)

This is because (7)), force the set {(i,) : 2;; = 1} to be a perfect matching and (6]) is then the cost of this
matching.

In general replacing non-negativity constraints @ by integer contraints makes an LP hard to solve. Not
however in this case.

The dual of ALP is the linear program DLP:

Maximize > ", w; + > 7 v; (11)
Subject to
w+v; <c(i,j) fori,j=1,2... n (12)

The primal-dual algorithm that we describe relies on complimentary slackness to find a solution.
Complimentary Slackness: If a feasible solution x to ALP and a feasible solution u,v, to DLP satisfy

x;; > 0 implies that w; + v; = c(4, j). (13)

16

then x solves ALP and u,v, solves DLP. For then

0= Z Z(C(l,]) — U; — Uj)fEi,j = Z Z CijTij — (Z U; + Z Uj) s (14)
i=1 j=1 i=1 j=1 i=1 j=1
and the two solutions have the same objective value.

(We have used > 7" w; y 7y @5 = > u;, which follows from (7)) etc.)

The steps of the Primal-Dual algorithm are as follows:

Step 1 Choose an initial dual feasible solution. E.g. v; = 0,7 € [n] and u; = min; ¢(1, 7).

Step 2 Given a dual feasible solution, u,v, define the graph K, to be the bipartite graph with vertex set
A, B and an edge (i, j) whenever u; + v; = ¢(i, j).

Step 3 Find a maximum size matching M in K, .
Step 4 If M is perfect then holds and M provides a solution to the assignment problem.

Step 5 If M is not perfect, update u,v and go to Step 3.
To carry out Step 3, we proceed as follows:

Step 3a Begin with an arbitrary matching M of K, .
Step 3b Let Ay denote the set of vertices in A not covered by M.

Step 3c Let K uv be the digraph obtained from K, . by orienting matching edges from B to A and other
edges from A to B.

Step 3d Let A,;, By denote the set of vertices in A, B that are reachable by a path in f(uN from Ay. Such
paths are necessarily alternating.

Step 3e If there is a vertex b € B), that is not covered by M then there is an augmenting path P from some
a € Ay to v. In this case we use P to construct a matching M’ with |M'| > |M|. We then go to
Step 3b, with M replaced by M’. Otherwise, Step 3 is finished.

To carry out Step 5, we assume that we have finished Step 3 with M, A,;, By;. We then let
0 = min{ci,j —U; — UV Gy € AM,bj ¢ BM} > 0.
We know that 6 > 0. Otherwise, if a;, b; is the minimising pair, then we should have put b; € By,.

We then amend u,v to u*, v* via

% Ul—f-(g aiEAM. % Uj—e]GBM
u; = . and v; = '
W, Otherwise. V; Otherwise.

Observe the following:

17

L. u*, v* is feasible for DLP. u] + v} < u; + v; except for the case where a; € Ay, b; ¢ Bjs and 6 is chosen
so that the increase maintains feasiblity.

2. If b € By, for the pair u,v then it will stay in Bj; when we replace u,v by u*, v*. This is because there
is a path P = (a;, € Ay, biy,...,a;.,b;, = b) such that each edge of P contains one vertex in Ay, and
one vertex in Bjy;. Hence the sum u; + v; is unchanged for edges along P.

3. A vertex b ¢ B); contained in a pair that defines § will be in Bj; when we replace u,v by u*, v*.

In summary: if we reach Step 4 with a perfect matching then we have solved ALP. After at most n changes
of u,v in Step 5, the size of M increases by at least one. This is because updating u,v increases B); by at
least one. Thus the algorithm finishes in O(n*) time. (O(n?) time if done carefully.)

Total Unimodularity Notice that the above alogrithm solves the LP @ and satisfies the integrality
constraints . The reason for this is that all of the extreme points of the feasible region defined by ,
and @D are integral. The reason for this is that the constraint matrix of @ is totally unimodular. A matrix
A is totally unimodular if every square submatrix of A has determinant 0, £1. This for example implies that
if B is a basis matrix of A then the entries of B~! are also 0,41 and so B7!b is integer for every integer b.
Recall that B~! = (adjoint B)/detB where adjoint B is the matrix whose (i, j)th entry is equal to (—1)"*/
times the determinant of the submatrix of B obtained by deleting row j and column 1.

Vertex-edge incidence matrix The matrix of coefficients for the LP () has the following property has
the following property: the rows can be divided into two sets X, Y. Each column has two non-zeros, a 1 in a
row of X and a 1 in a row of Y. We argue by induction on s that an s X s submatrix of A has determinant
0,+£1. This is trivially true if s = 1 and so assume it is true for 1 <t < s. Let C be an s x s sub-matrix. If
C has a column of 0’s then C has determinant 0. If C has a column with at most one 1 then we can expand
its determinant by this column and use induction. If all columns have 2 two 1’s then the sum of C’s rows in
X equals the sum of C’s rows in Y and so C is singular and has deteminant 0.

5 Two person zero-sum games

We discuss here an application of linear programming to the theory of games. This theory is an attempt to
provide an analysis of situations involving conflict and competition.

Game 1: There are two players A and B and to play the game they each choose a number 1,2,3 or 4 without
the other’s knowledge and then they both simultaneously announce their numbers. If A calls 7 and B calls
J then B pays A a;; — the payoff — given in the matrix below. (if a;; < 0, this is equivalent of A paying B

—a;;.)

2 4 2 1
-2 5 1 -1
1 -5 3 0

6 2 -3 -2

This is a two person zero-sum game, zero sum because the algebraic sum of the player’s winnings is always
Zero.

18

Game 2: (Penalty kicks) Suppose that A and B play the following game of soccer. A plays in goal and B
takes penalty kicks. B can kick the ball into the left hand corner, the right hand corner or into the midle.
If A guesses correctly where B will kick then A will make a save. The payoff to A is given by the following
matrix.

KR KL KM
DR 2 -1 =2
DL -1 2 -2
M -1 -1 -1

We will be considering m x n generalisations of Game 1 and other games like Game 2 that can be reduced to
this form.

Thus there is given some m X n payoff A. In a play of the game, A chooses i € M — {1,2,...,m} and B
chooses j € N = {1,2,...,n}. These choices are made independently without either player knpowing what
the other has chosen. They then announce their choices and B pays a; ; to A.

M, N will be referred to as the sets of tactics for A,B respectively.

A match is an unending sequence of plays. A’s objective is to maximize her expected winnings from the
match and B’s objective is to minimize his expected loss.

A strategy for the match is some rule for selecting the tactic for the next play.

Let S4,Sp be sets of strategies for A, B respectively. We shall initially consider the case where S, =
{(1),...;(m)} and Sp = {(1),...,(n)} where (¢) is the pure strategy of using tactic ¢ in each play We Shall
subsequently be enlarging S4 and Sp and we therefore introduce new notation to allow for this possibility.

Thus for each u € Sy and v € S let PAY (u,v) denote the average payment of B to A.
Stable Solutions ug,vg) € S4 x Sp is a stable solution if

PAY (u,v9) < PAY (ug,vo) < PAY (ug, v) (15)
holds for all u, v.

If holds then neither A nor B has any incentive to change strategy if each assumes his opponent is not
going to change his or hers.

The subsequent analysis is concerned with finding a stable solution.

Thinking of S4 as the row indiceses and Sp as the column indices of some matrix we define

ROWMIN (u) = min PAY (u,v), u € Sa.

vESE

COLMAX (v) = max PAY (u,v), v E Sp.

UES 4

Suppose now that A chooses u. We assume that after some finite time, B will be able to deduce this choice. B

will then choose his strategy v to minimize PAY (u,v). Thus if A chooses u then she can expect her average
winnings to be ROWMIN (u).

Similarly if B chooses v he can expect his average losses to be COLM AX (v).

19

Thus if Py = ROWMIN (up) = max,es, ROWMIN (u) and Pg = COLMAX (vg) = min,es, COLMAX (v)
then A can by choosing u ensure that her average winnings are at least P4 and B by choosing vy can ensure
that his losses are at most Pg. If P4 = Pg then this seems to solve the game but is P4 = Pg always?

Theorem 1.

(CL) PASPB-

(b) Sa x Sp contains a stable solution iff Px = Pg.

Proof. (a)
Py = ROWMIN (ug) < PAY (ug, v0) < COLMAX (o) = Pp. (16)

(b) Suppose first that (ug, vg) is stable. Then, from , we have
OOLMAX(U()) = PAY(U(), Uo) = ROWM]N(U())

and hence

Py < COLMAX (vy) = ROWMIN (uo) < Pa,
which from (a) implies that P4 = Pg.

Conversely, if P4 = P then from we deduce that
ROW MIN (ug) = PAY (ug,vg) = COLMAX (vp)

which implies . O

We now consider specifically the case S4 = {(1),...,(m)} and Sg = {(1),...,(n)}.

For Game one we have P4 = Pg = 1 = a;4 and hence A plays 1 and B plays 4 solves the game and A can
guarantee to win at least 1 and B can guarantee to lose at most 1 on average.

The matrix of this game is said to have a saddle point (ig, jo) which means that (io), (jo) satisfies (L5)).

For a game who’s matrix does not have a saddle point things are more complex. Consider for example Game
two. Py = —1 and Pg = 1. It follows from Theorem [34] that no pair of pure strategies solves the game. A
knows she can average at least -1 by playing (3) and B knows he need lose no more than 1 on average by
playing (3) but note that if A plays (3) then B has an incentive to play (1) or (2) but if he plays (1) then A
will play (1) and so on.

Mixed strategies:

To break this seeming deadlock we allow the players to choose mixed strategies. A mixed strategy for A is a
vector of probabilities w = (py, ..., pm) where p; > 0 for i € M and p; +-- -+ p,, = 1. A then chooses tactic i
with probability p; for ¢« € M i.e. before each play A carries out a statistical experiment that has an outcome
1 € M with probability p;. A then plays the corresponding tactic. Similarly B’s mixed strategies are vectors
q=(q,...,q,) satisfying ¢; >0,j € Nand ¢ +---+¢, = L.

Pure strategies can be represented as vectors with a single non-zero component equal to 1. We now enlarge
SA, SB to

Sa={peR":w>0and p1+ -+ pn=1}.

17
Sp={qeR":q>0and ¢ +---+¢q, = 1}. (17)

20

We now show using the duality theory of linear programming that S4 x Sp as defined in contains a
stable solution.

We shall first show how to compute P4. Let ¢;(m) = .., @i jpi- Then

Py = max (523%}3 2 cj(ﬂ)qg) (18)

Lemma 2.

qceSp

min Zgjqj =min{&,...,&}. (19)
j=1

Proof. Let & = min{&y,...,&,} and let L be the LHS of (19)). Putting g; = 0 for j # ¢ and ¢; = 1 we have
q€ Spand Y7 §g; = &. Thus L < ¢&. However, for any q € Sp,

ij%‘ > th%' = ftij = &.
j=1 j=1 j=1

O
It follows from the lemma and that
P4 = maxmin {c¢;(7),...,c,(m)}
weSa
= maxmin {¢; (), ..., c,(m)}
Subject to
Pt tpm=1
Py Pm =20
= max & (20)
Subject to
§§Zai,jpi, jzl,...,n
i=1
prt-tpn=1
Py Pm =0
Using similar arguments we can show that
Pg = min n (21)

Subject to
n
ﬁZZaz‘,jq]’7 i=1,...,m
j=1

Gt =1
qla"'7QﬂZO

We note next that , are a pair of dual linear programs. They are both feasible and hence P4 = P and
stable solutions exist. In fact if 7% solves and q° solves (7% q°) is stable as PAY (7%, q°) = P4 = Pp.

21

Random payoff: We note that the above analysis goes through unchanged if A, B having selected tactics
I, J, the payoff to A is a random variable who’s expected value is a; ;.

The above LP formulations can be slightly simplified. We can assume that a; ; > 0 for all 4, j. This is because
adding a positive constant ¢ to each entry of A will not change the optimal strategies. It will merely increase
the optimal payoff by c. It follows that the maximum value of ¢ in (20)) is positive. We can therefore replace
pi by x; = p;/€ and then we find

P! =Minimum ¢! = Minimum ZIZ subject to Z a; ;x; > 1 for all j, le = 1. (22)
i=1 i=1 i=1

Pg' =Maximum 7! = Maximum Zyj subject to Zaiyjjj <1 for all 1, Zyj =1 (23)
j=1 j=1 j=1

5.1 Dominance

If A(i,7) > A(i, j") for all i then player B will never use strategy j. It is preferable for her /him to use strategy
j" instead. So, column j can be removed from the matrix A.

Similarly, if A(7,j) < A(¢,7) for all j then player A will never use strategy i. It is preferable for her/him to
use strategy ¢’ instead. So, row ¢ can be removed from the matrix A.

Repeated use of this idea can reduce a game substantially.

5.2 Latin Square Game

Suupose that every row sum is equal to R > 0 and every column sum is equal to C' > 0 where mR = nC'.
Then both players can choose uniformly. Consider the two LP’s , that solve the game: putting
x; = 1/C and y; = 1/R gives two feasible solutions with the same objective value.

5.3 Non-singular games

Suppose that A is non-singular and that 1TA7'1 > 0. Then the value of the game is V = 5r3—7. Then,
i IT“}A and y = % solve , respectively.

5.4 Symmetric games

A game is symmetric if AT = —A i.e if A is anti-symmetric. Then the game has value 0. If A and B both
use strategy p then because p” Ap = 0 for anti-symmetric A, we see that PAY (p,p) = 0. This implies that
0>Py=Pg>0.

22

6 Integer Programming

This is the name given to Linear Programming problems which have an extra constraint in that some or all
of the variables have to be integer.

6.1 Examples

Capital budgeting A firm has n projects that it would like to undertake but because of budget limitations
not all can be selected. In particular project j is expected to produce a revenue of c; but requires an
investment of a; ; in time period ¢ fori = 1,,...m. The capital available in time period i is b;. The problem of
maximising revenue subject to the budget constraints can be formulated as follows: let z; = 0/1 correspond
to not proceeding or respectively proceeding with project 7 then we have to

n
Maximise Z CiT;
j=1
n
Subject to Z a; jx; < by, 1=1,...

Jj=1

E

0<z; <1, z; integer for j =1,2,...,n.

Depot location We consider here a simple problem of this type: a company has selected m possible sites
for distribution of its products in a certain area. There are n customers in the area and the transportation
cost of supplying the whole of customer j’s requirements over the given planning period from potential site ¢
is ¢; ;. Should site ¢ be developed it will cost f; to construct a depot there. Which sites should be selected to
minimise the total construction plus transport cost?

To do this we introduce variables vy, ..., ¥y,, which can only take values 0 or 1 and correspond to a particular
site being not developed or developed respectively. We next define z;; to be the fraction of customer j’s
requirements supplied from depot 7 in a given solution. The problem can then be expressed,

m n m
Minimise E E cm-xm—i- E fiyi
i=1

i=1 j=1

Subject to » mi;=1, j=12....n
i=1
[lﬁ'@jﬁ@/u i:1,2,...,m,j21,2,...,n
;5 > 0,0 <wy; <1,y; integer, 1=1,2,....m,5=1,2,....n.
Note that if y; = 0 then f;y; = 0 and there is no contribution to the total cost. Also, z; ; < y; implies x; ; = 0
and no goods are distributed from site ¢. This corresponds exactly to there not being a depot at location 1.

On the other hand, if y; = 1, then f;y; = f; which is the cost of constructing depot ¢. Also, x;; < y; becomes
x;; < 1 which holds anyway from the first constraint.

Set Covering Let Sj,Ss,...,5, be a family of subsets of a set S = {1,2,...,m}. A covering of S is a
subfamily S; for j € I such that S = |J ier Si- Assume that each subset .S; has a cost ¢; > 0 associated with

23

it. We define the cost of a cover to be the sum of the costs of the subsets included in the cover.

The problem of finding a cover of minimum cost is of particular practical significance. As an integer program
it can be specififed as follows: define the m x n matrix A = [a; ;] by

1 ies;
Qi = .
0 ¢ ¢ Sj.
Let z;,j =1,2,...,n be 0 /1 variables with z; = 1(0) to mean set S; is included (respectively not included)
in the cover. The problem is to

n
Minimize E CiT;

J=1

Subject to ¥ ajjz; > 1, i=1,2,...,m. (24)
j=1
z;=0o0rl,j=1,2,...,n.

The m inequality constraints have the following significance: since z; = 0 or 1 and the coefficients ; ;y are
also 0 or 1 we see that Z?Zl a; jx; can be zero only if z; = 0 for all j such that a; ; = 1. In other words only
if no set S}, is chosen such that i € S;. The inequalities are put in to avoid this.

As an example consider the following simplified airline crew scheduling preblem. An airline has m scheduled
flight-iegs per week in its current service. A flight-leg being a single flight flown by a single crew e.g. London
- Paris leaving Heathrow at 10.30 am. Let S;,j = 1,2,...,n be the collection of all possible weekly sets of
flight-legs that can be flown by a single crew. Such a subset must take account of restrictions like a crew
arriving in Paris at 11.30 am, cannot take a flight out of New York at 12.00 pm. and so if ¢; is the cost of
set S; of flight-legs then the problem of minimising cost subject to covering all flight-legs is a set coverirg
problem. Note that if crews are not allowed to be passengers on a Flight e.g. so that they can be flown to
their next flight, then we have to make an equality — the set partitioning problem.

General terminology The most general problem called the mized integer programming problem can be
specified as

Minimise zo = ¢Tx
Subject to Ax =b
x; >0, 1=12...,n.
x; integer for j € 1

where I C [n].

When [= [n] and all the quantities ¢;, a; ;, b; are integer then we have a pure integer programming problem.

Further uses of integer variables
(i) If a variable = can only take a finite number of values py, pa, . . ., pm, then we can replace x by the expression

T = piwy + PpoWs + - A Py, Wy F Wy Fwy, =1, wy;=0o0r 1Lfori=1,2,...,m.

24

For example X might be the output of a plant which can be small p;, medium ps or large ps. The cost c(x)
of the plant could be represented by cyw; + esws + c3ws where ¢qin the cdost of a small plant etc.

(i) In L.P. one generally consider all constraints to be holding simultaneously. It is possible that the variable
might have to satisfy one or other of a set of constraints.

0<z<Mand (0<z<1ORuz>2).

We replace this by
r<1+M1—-46)and x >2— Mjand z > 0,5 =0/1.

Hardness Integer programming problems generally take much longer to solve then the corresponding linear
program obtained by ignoring integrality. It is wise therefore to consider the possibility of solving as a straight
forward L.P. and then rounding e.g, in the trim-loss problem. This is not always possible for example if z is
a 0/1 variable such that x = 0 means do build a plant and z = 1 means build a plant then rounding z1/2 is
not very satisfactory.

6.2 A cutting plane algorithm for the pure problem

The rationale behind this approach is:-

Step 1 Solve the continuous problem as an L.P. i.e. ignore integrality.

Step 2 If by chance the optimal basic variables are all integer then the optimum solution has been found.
Otherwise,

Step 3 Generate a cut i.e. a constraint which is satisfied by all integer solutions to the problem but not by
the current L.P. solution.

Step 4 Add this new constraint and go to Step 1.

It is straight forward to show that if at any stage the current L.P. Solution x is integer it is the optimal integer
solution. This is because x is optimal over a region containing all feasible integer solutions. The problem is to
define cuts that ensure the convergence of the algorithm in a finite number of steps. The first finite algorithm
was devised by R.E, Gomory. It is based on the following construction: let

a1y + asxy + -+ apx, =0

be an equation which is to be satisfied by non-negative integers =1, xs, ..., z, and let S be the set of possible
integer solutions.

For a real number £ we define [£]| to be the largest integer which is less than or equal to £. Thus £ = [£] + ¢
where 0 < ¢ < 1.
65| =6, [3] =3, |—4.5] = —5.

25

Now let a; = |a;| + f; and b = |b| + f. Then we have

n

> (lag) + f)ay = [b] + f

=1
and hence

Z fiwg = f=1b] = laj]a;. (25)

j=1
Now for € S, the RHS of is an integer and the LHS is at least —f > —1. This implies that
ijxj_fe {0717}
j=1
Suppose now that one has solved the LP relaxation and the solution is not integer. Therefore there is a basic
variable x; with
ZT; —+ Z bm’l’j = b@o
Jgl

where b, is not an integer. (Here I is the set of indices of basic variables and the b; ; are the coefficients of
the simplex tableaux.)

Putting f; = b;; — [b;;| for j ¢ I and f = b; o — [b;o] we see that

> fiwi>f (26)

i¢l
for all integer solutions to our problem.

Now f > 0 since b; o is not an integer and so (26)) is not satisfied by the current L.P. solution since z; = 0 for

j ¢ I and so (20)) is a cut.

The initial continuous problem solved by the algorithm is the L.P. problem obtained by ingoring integrality.

Statement of the Algorithm

Step 1 Solve current continuous problem.
Step 2 If the solution is integral it is the optimal integer solution, otherwise.

Step 3 Choose a basic variable x;, which is currently non-integer, construct the corresponding constraint
and add it to the problem. Go to step 1.

We note that the tableau obtained after adding the cut is dual feasible and so the dual simplex algorithm
can be used to re-optimise.

26

Example:

Maximise x1 + 45
Subject to 2x1 + 4xy < 7.
10z + 32, < 14.

x1, 2y > 0 and integer.

B.V. T i) xT3 T4 51 52 RHS
o —1 —4 0

rs 2 4 1 7

Ty 10 3 1 14

Zo 1 1 7

T2 /2 1 1/4 7/4 cut made from this row
z 172 —3/4 1 35/4
& —1/2 —1/4 1 —3/4
%o 1/2 2 11/2
To 1 1 1

Ty -5 1 17 —4
1 1/2 —2 3/2

T 1/10 37/10 51/10 cut made from this row
To 1 1 1

s 1 ~1/5 -17/5 4/5

z 1 1/10 —3/10 11/10
& ~1/10 -7/10 1 —1/10
o 3 5

T2 1 1 1

3 1 1 -2 1

T —1 1 1

Ty 7 —-10 1

e One can show that the Gomory cuts) ;Ji > f when expressed in terms of the original non-basic
variables have the form) ;W5 < W where the w;, W are integer and the value of W, after
solving the current continuous problem is W + ¢ where 0 < € < 1 assuming the current solution is non-
integer, Thus the cut is obtained by moving a hyperplane parallel to itself to an extent which cannot
exclude an integer solution. It is worth noting that the plane can usually be moved further without
excluding integer points thus generating deeper cuts. For a discussion on how this can be done see the
reference given for integer programming,

After adding a cut and carrying out one iteration of the dual simplex algorithm the slack variable
corresponding to this cut becomes non-basic, If during a succeeding iteration this slack variable becomes
basic then it may be discarded along with its current row without affecting termination. This means
that the tableau never has more than n + 1 rows or m + n columns.

A valid cut can be generated from any row containing a non-integral variable, One strategy is to choose
the variable with the largest fractional part as this helps’ to produce a "large’ change in the objective

27

valve. It is interesting that finitness of the algorithm has not been proved for this strategy although
finitness has been proved for the strategy of always choosing the ‘topmost’ row the tableau with a
non-integer variable.

e The behaviour of this algorithm has been erratic. It has for example worked well on set covering
problems but in other cases the algorithm has to be terminated because of excessive use of computer
time, This raises an important point; if the algorithm is stopped prematurely then one does not have a
good sub-optimal solution to use. Thus in some sense the algorithm is unreliable,

7 Branch and bound

We consider the problem Fjy:
Minimize f(z) subject to x € Sp.

Here Sy is our set of feasible solutions and f : Sy — R.

As we proceed in Branch-and-Bound we create a set of sub-problems P. A sub-problem P € P is defined by
the description of a subset Sp C Sy. We also keep a lower bound bp where

bp <min{f(z): =z € Sp}.

At all times we act as if we have z* € 5y, some known feasible solution to Py and v* = f(2*). If we do not
actually have a solution z* then we let v* = —oo. We will have a procedure BOUND that computes bp for a

sub-problem P. In many cases, BOUND sometimes produces a solution xp € Sy and sometimes determines
that Sp = 0.

We initialize P = {Fy}.

Branch and Bound:

Step 1 If P = () then x* solves the problem.

Step 2 Choose P € P. P+ P\ {P}.

Step 3 Bound: Run BOUND(P) to compute bp.

Step 4 If Sp = () or bp > v* then we consider P to be solved and go to Step 1.

Step 5 If BOUND generates xp € Sy and f(zp) < v* then we update, z* <— zp,v* < f(xp).

Step 6 Branch: Split P into a number of subproblems @Q;,i = 1,2,...,¢, where Sp = Ule Sg;- And
Sq, # Sp is a strict subset for i =1,2,...,¢.

Step 7 P+ PU{Q1,Q2,...,Q}.

Assuming Sy is finite, this procedure will eventually terminate with P = (). This is because the feasible sets
Sp are getting smaller and smaller as we branch.

Most often the procedure BOUND has the following form: while it may be difficult to solve P directly, we may
be able to find Tp O Sp such that there is an efficient algorithm that determines whether or not Tp =) and

28

finds £p € Tp that minimizes f(€),€ € Tp, if Tp # 0. In this case, bp = f({p) and Step 5 is implemented if
&p € Sp. We call the problem of minimizing f(§), & € Tp, a relazed problem.

Examples:

Ex. 1 Integer Linear Programming. Here Sp is the set of integer solutions and T'p is the set of solutions,
if we ignore integrality. The procedure BOUND solves the linear program. If the solution £p is not
integral, we choose a variable z, whose value is (¢ Z and form 2 sub-problems by adding = < [z] to
one and x > [z] to the other.

Ex. 2 Traveling Salesperson Person Problem (TSP): Here Sp is the set of tours i.e. single directed
cycles that cover all the vertices. We can take T to be the set of collections of vertex disjoint directed
cycles that cover all the vertices. More precisely, to solve the TSP we must minimise y ., C(I, 7 (7))
as 7 ranges over all cyclic permutations. Our relaxation is to minimise » ., C'(I,7(i)) as m ranges
over all permutations, i.e. the assignment problem. We branch as follows. Suppose that the as-
signment solution consists of cycles C,Cs,...,Ci, k > 2. Choose a cycle, (| say. Suppose that

Cy = (v1,v9,...,v,) as a sequence of vertices. Then in @1 we disallow 7(vy) = vy, in Q5 we insist that
7(v1) = vq, but that m(vy) # vs, in Q3 we insist that w(vy) = vq, m(ve) = v3, but that m(vs) # vy and
SO on.

Ex. 3 Implicit Enumeration: Here the problem is

Minimize chxj subject to Zamxj > b, i€ [m], x;€{0,1},j € [n].

J=1 J=1

A sub-problem is assciated with two sets I,O C [n]. This the sub-problem P;o where we add the
constraints x; = 1,7 € I,z; = 0,5 € O. We also check to see if x; = 1,7 € I,z; = 0,5 ¢ I gives
an improved feasible solution. As a bound br,o we use ., max {c;, 0}. To test feasibility we check
that ngo max {a;;,0} > b;,i € [m|. To branch, we split P;o into P10 and Prougy for some
j¢IuO.

8 P v NP: informally

We want some formal way of saying that a problem is efficiently solvable or otherwise. We are given an
algorithm A that solves a set of problems Z. A problem will be of the form

“does instance I € Z have property P”. (27)

Each problem instance I € P has a size o(I). (Size could be the number of bits needed to describe the
problem or more loosely the number vertices in a graph problem or m + n for a linear program in standard
form.) Let T'(A, I) denote the time (in steps) that A takes to solve I. We say that A runs in polynomial time
if T(A,I) = O(c(I)°) where ¢ is some constant independent of I. Then P is the set of problems that can
be solved in polynomial time. Examples include “does G have a perfect matching?”; “can G be properly 2-
colored?”; “is this set of linear equations solvable?”. An optimization problem can be put into this framework
by using binary search on problems of the form “is the minimal value at most L?”. It turns out that Linear
Programming is solvable in polynomial time.

P is relatively small compared to the set of problems NP that arise in optimization. A problem (27)) is in
NP if there is a witness w(I) that can be used in polynomial time to verify I € Z. For example, if Z is

29

the set of graphs and P is the set of graphs with a Hamilton cycle (i.e. one that goes through each vertex
exactly once) then w(I) would be such a cycle. Informally, a problem is in N P if when I give you a proposed
solution, it is easy to check the truth of this.

Reductions A polynomial time reduction PRT of Z; to Z, if there is a map ¢ : Z; — Z, such that (i)
o(f(I)) is polynomially related to o(I) and ¢(I) can be computed in polynomial time and (ii) I € Z; iff
o(I) € Zy. In other words, we can solve an instance of Z; in polynomial time if we can solve an instance of
7T, in polynomial time. Notice that if there is a PRT of Z; to Z; and a PRT of Z, to Z3 then there is a PRT
of Il to Ig.

3
SATISFIABILITY \
CLIQUE (=1 INTEGER SATISFIABILITY WITH AT
‘ PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET | .
//C{J'U‘ER\ PACKTNG CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED ST EXACT CLIQUE
NODE SET ARC SET HAMILTON COVERTNG COVER COVER
CIRCUTT // \\
} 3=DIMENSTONAL HITTING STEINER
KNAPSACK .
HAMILTON
CIRCUIT
SEQUENCING PARTITION
5
MAX CUT lIt |
"
5]
z
FIGUEE 1 - Complete Problems ?:
»
3

A problem Z in NP is said to be NP-complete if every problem in N P has a PRT to Z. Cook proved that SAT
is N P-complete: we have a set C of m clauses consisting of sets of literals x; or z; =1 —z;,7 =1,2,...,n.
C is satisfiable if there is an assignment of values 0 or 1 to the z; such that every clause contains at least one
literal of value 1.

Example: {1, %2, x3},{Z1, 23, T4}, {xa, x4} is satisfied by taking 1 = 0,25 = 0,23 = 0,24 = 1. On the other
hand {xy, 22}, {x1,Z2},{Z1, 22}, {Z1, T2} cannot be satisfied.

30

If Z; is N P-complete and it has a PRT to Z, then Z, is also N P-complete. If there is a polynomial time
algorithm for any N P-complete problem then there is a polynomial time algorithm for solving any problem
in NP. By now there are thousands of naturally defined NP-complete problems. At present, no one has
found a polynomial time algorithm for any of these. It is therefore conjectured that there are no poynomial
time algorithms for any N P-complete problems and that NP # P.

9 Approximation Algorithms

If solving an optimization problem is considered to be hard, then we can sometimes efficiently find approximate
solutions with guarantees how far from optimum they are. An a-approximation algorithm for a minimisation
problem computes a solution whose value is at most av*, where v* is the minimum value for the problem.
(For maximisation we have at least av*.)

9.1 Traveling Salesperson Problem — TSP
9.1.1 Unrestricted

There is no polynomial time M-approximation algorithm unless P=NP. Given a graph G, give a cost of 1 to
each edge of G and Mn + 1 to each non-edge. Then, the TSP has a tour of length n iff G is Hamiltonian.
Otherwise the cost of the tour is at least (M + 1)n. An M-approximation algorithm could tell if G is
Hamiltonian. If G is Hamiltonian, it produces a tour of length at most Mn < (M + 1)n, implying that G is
Hamiltonian. Otherwise it produces a tour of length at least (M + 1)n, implying that the minimum length
tour is greater than n, so GG is not Hamiltonian.

9.1.2 Triangle Inequality

We assume next that the costs C(i,7),1 < 4,j < n satisfy the triangular inequality i.e. C(i,j) + C(J, k) >
C(i, k).

Tree heuristic

Step 1 Find a minimum cost spanning tree 7'

Step 2 Double the edges of T' to make an Eulerian multigraph K. (Eulerian because all degrees are even.
Such a graph contains a closed walk that goes through each edge exactly once.)

Step 3 Construct an Euler tour iy, s, ..., 4, o through the edges of K.

Step 4 Shortcut the Euler tour until it is a Hamilton cycle H. I.e. go through the vertices iy,is,..., in
sequence and skip over any vertex that has already been visited.

Theorem 3. The tour H found by the tree heuristic satisfies C(H) < 2C*, where C* is the minimum cost
of a tour.

31

Proof. We observe that
C(H) < C(K)<20(T) <2C".

C(K) we use the triangle inequality repeatedly to argue that C(ji,J2) + C(j;,j3) + -

For C(H) +
C(j1, jr)- The other inequalities are obvious. O

<
C(Jr-1,7k) >

Christofides’ heuristic A simple idea reduces the 2 to 3/2.

Step 1 Find a minimum cost spanning tree 7'

Step 2 Let O be the set of vertices of T of odd degree. |O| is even.

Step 3 Find a minimum cost matching M that covers O.

Step 4 Let K = M +T. K is Eulerian.

Step 5 Construct an Euler tour iy, s, ..., 49, o through the edges of K.

Step 6 Shortcut the Euler tour until it is a Hamilton cycle H.

Theorem 4. The tour H found by the Christofides’ heuristic satisfies C(H) < 3C*/2.

Proof. This follows from the fact that C'(M) < C*/2. Start with the optimal tour. Shortcut the vertices that
are not in O. What is left has cost at most C* and is the union of two disjoint matchings. Each of them have
cost at least that of M. O

9.2 Knapsack problem

We consider the problem

n
Maximize E DiT;
i=1
n

Subject toZaixi <B
i=1
r;=0/1,i=1,2,...,n

We will assume that py/a; > pa/ag > -+ > pu/a,.

9.2.1 Greedy Algorithm

Find i such that A =a;+ay+---+a;_1 < B < a;+as+---+a;. Then choose the better of {1,2,...,i— 1}
and {i}. (We associate the set {j : x; = 1} with a solution.)

Let T'=p; +p2+ -+ pi—1. We have the maximum value
—A

)

B
OPT < T+ Pi-

32

This follows from the fact that its RHS is the optimal value allowing fractional values for the x;.

OPT B—A OPT
T > 5 or p; > Di > 7
a;

9.2.2 Profit rounding algorithm

Let p; = [NDi/Pmax] for i = 1,2,...,n. Here pnax = max;epnp; and N = [n/e|. We solve the knapsack
problem with profits p;. Because the profits are “small” (< N), we can solve the new problem in polynomial
time via Dynamic programming.

Theorem 5. The solution produced in this way has value at least (1 —e)OPT.

Proof. We first discuss the solution of the knapsack problem. Let

g-(p) =minimum a7 + ... + a,x, (28)
Subject to p1xy + -+ prxr > p
x; =0/1 for i € [r].

Note that

. gr71<p) Ty = 0.
. _ 29
g (P) mm{ar-l—gr(p—@) 2 > 1 ()

We evaluate forp=20,1,...,Nnand r = 1,2,...,n. This takes O(N?) = O(n?®/e) time.
If we know g,(p),0 < p < Nn, then
OPT = g,(p*) where g,(p") < B and ¢,(p* + 1) > B.

We now verify the quality of the solution. Let S define the solution to and let S* define the solution to
the actual knapsack problem. Then
PIZEDI

icS i€S*

NEDD Lpz meax Prmax S5 > Pmax sz (30)

p "
ieS jeg B ieS €S

Therefore

But,

max Nz max zN max
[() mn e

S5t [Pmax
Z Di — EPmax > Z pi —eOPT = (1 —¢)OPT.

1€S* 1€S*

33

9.3 Set cover
9.3.1 Primal-Dual algorithm

Recall the set cover problem of Section [6.1] The dual of the LP relaxation (24) is

Maximise Z Ui (31)
i=1
Subject to Zamyi < ¢, j=1,2,... n. (32)

i=1
y; >0,j=1,2,...,n.

The constraints can be re-expressed as

Z yi < ¢j. (33)

1:JES;

Consider the following algorithm:

Stepl y« 0, J <« 0.

Step 2 while there exists i ¢ (J,c; S; do increase y; until
there is some ¢ with 7 € Sy such that Zk‘GSg Yr = Cq.
J <« Ju{{}.

Let J* define the optimum cover and let J be produced by the above algorithm.

Theorem 6. Let f; be the number of sets S; that contain i and let f = max; f;. The above algorithm produces
a set-cover J and c¢(J) < fe(J*).

Proof. 1t is clear from Step 2 that J defines a cover. Let y denote y at the end of the algorithm. It is also
clear that y satisfies and so it satisfies the dual constraints. Let zpp < ¢(J*) denote the value of the
optimum solution to ([24)). Then,

Se=> > Gi=d{ieTie S =D fi < FY 0 < fre < felJ).
=1 i=1 =1

jeJ jeJ 1€5;

9.3.2 Greedy Algorithm
In this algorithm we add sets to our cover according to the average cost of newly covered elements.

Stepl J(-@, gj%Sj,jzl,Q,...,n.

Q

Step 2 (= argmin, 5 =

1551

34

Step 3 J « JU{(}, S; < S\ S, j=1,2,....n

Let H, = Zle k! denote the Harmonic number k. Once again, let J* define the optimum cover and let J
be produced by the above algorithm.

~

Theorem 7. The above algorithm produces a set-cover J and ¢(J) < H,, - ¢(J*).

Proof. Let n; denote the number of uncovered elements at the start of the kth iteration. Now at the start of
iteration k,

min - < Zjer G _ o) o) (34)
5:8;70 | S} ZjeJ* Sjl Zjej* |51 T
Thus, if ¢ minimises the fraction on the LHS of eqrefgl, then
_ 18- el) (e =)oY
- Ty N ’
And then if there are K iterations altogether,
(ng —n K 1
k— kJrl * *
< < J oot —— | =H, -c(J).
DS D (et et) = el
te] k=1
O

9.4 Submodular functions

A function f: 2% — R is submodular if for every A, B C X,
f(ANB) + f(AUB) < f(A) + f(B). (35)
Note that if f, g satisfy , then so does f + g.

Example: Simple plant location problem Here f refers to profit:

Zf,—i—Zmax{p” ieSt.

€S
The constant function is clearly submodular and this deals with). f;. Then we observe that for reals
L1, X2y ..., Tn,
max{x;:i € ANB}+max{z;:i € AUB} <max{x;:i € A} + max{z; :i € B}.
(Assume that the largest z; is for i € A. Then, max{z; :i € AU B} = max{z; :i € A} and
max {x; : i € AN B} <max{x;:i € B}.)
f is monotone increasing if
f(B) > f(A) whenever B D A.

Greedy Algorithm:
Step 0: S, = 0.
Step 1: Sl =951 U {IZ} where ZT; ¢ Si—l maximises f(Si—l U {I‘})

35

Theorem 8. If f is monotone increasing and submdular and if f(0) =0 then after k steps of Greedy

F(S) = (1 —e 1) f(SK),

where S} mazximises f over sets of size k.

Proof. Let A(v |T) = f(TU{v})— f(v). If SO T and v ¢ S then
FSU{oh) + A(T) < f(TUfo}) + f(S) (A=TU{v},B=Y5),

which implies that
AW S) < Aw|T). (36)

(The larger the set, the smaller the gain from v.)
Note that is still true if v € S, from monotonicity. Let Sy = {v],...,vi}.
f(Sp) < f(SpUsS;)

k
= f(S)+ > A | S;u{vi,... v}
j=1

k
< f(Si) + ZA(v}f | S5)

We re-write the last line as .

0= i) < (1= 7) U5~ £50).
This implies that
1\" —1 (o
s = s < (1=) (8D - 70) £ 185

9.5 Local Search

This is a general approach to solving hard problems in Combinatorial Optimisation. Suppose that the problem
is to

Maximise f(x) Subject to x € X. (37)
One proceeds as follows: for each x € X we define a neighborhood Ny C X containing x. It is defined so
that finding max {f(y) : y € Ny} can be done efficiently. We can then find a good (not necesarily optimal

solution as follows: let xo € X be chosen in some way. Then define the sequence xg,x,...,X,;, where X;
maximises f(y) :y € Nx,_,. The value m will the smallest 7 such that x; = x;_;.

36

9.5.1 MaxCut

We are given a connected graph G' = (V, E) and a function w : £ — Z,. We let X = 2" and f(S) = w(S, S)
ie. f(9) is the weight of the cut S : S. We then let Ng = {T": [T\ S|+ [S\T|=1}. Let W =3"__pw(e).

Theorem 9. Local search finds a solution S such that f(§) > OPT/2. It requires at most W iterations.
Proof.

f(S) > f(§\ {v}) for v € S implies that w(v,§) > w(v,g).

So,

ves vgS
>Zw(v,§)—|—z v7§)+2w(0,§)+2w(v,§)
ves v%g ves vgS
=2W > 20PT.

]

The bound W on the number of iterations might be excessive. We can reduce this to a polynomial at
a small degradation in performance. Let wya.x = max{w(e):e € E} and N = |E|wmax/(eW). Then let
w*(e) = [Nw(e)/Wmax | for e € B and W* =" _pw*(e).
Suppose we run the above algorithm, using w* in place of w. Then we have
N * N
3wy B AW

T 2Wmax

< Wax 2

So,

The running time is at most nW* < 2n|E|/e.

37

10 Non-linear Optimization Problems

We consider the following problem:
Minimize f(x) subject to x € S, (38)

where x = (21, x2,...,2,) and S C R".
Example: f(x) =cTx and S = {x € R": Ax = b,x > 0} - Linear Programming.
Local versus Global Optima: x* is a global minimum if it is an actual minimizer in (38)).

x* is a local minimum if there exists 6 > 0 such that f(x*) < f(x) for all x € B(x*) N S, where B(x,0) =
{y : |y — x| < d} is the ball of radius J, centred at x.

See Diagram 1 at the end of these notes.

If S = () then we say that the problem is unconstrained, otherwise it is constrained.

11 Convex sets and functions

11.1 Convex Functions

A function f:R"™ — R is said to be conver if
FOx+ (1= Ny) < M(x) + (1= Vf(y).
See Diagram 2 at the end of these notes.

Examples of convex functions:

F1 A linear function f(x) = a’x is convex.

F2 If n =1 then f is convex iff
fly) =2 @)+ f'(2)(y — z) for all z,y. (39)

Proof. Suppose first that f is convex. Then for 0 < A <1,
fla+AMy—2)) <A =A)f(x) +Af(y)

Thus, putting h = A(y —) we have

f((x+h) — f(x))
h

fly) > fz)+ (y —).

Taking the limit as A — 0 implies (39).
Now suppose that holds. Choose z # y and 0 < A < 1 and let z = Az + (1 — \)y. Then we have

f(@) = f(z) + [(z)(x — z) and f(y) = f(2) + f'(2)(y — 2).
Multiplying the first inequality by A and the second by 1 — A\ and adding proves that

M (@) + (1= fy) = f(2).

38

F3 If n > 1 then f is convex iff f(y) > f(x) + (Vf(x))T(y — x) for all x,y.
Apply F2 to the function h(t) = f(tx + (1 —t)y).

F4 A n=1and f is twice differentiable then f is convex iff f”(z) > 0 for all z € R.

Proof. Taylor’s theorem implies that
F) = @)+ @)y —) + 37" () — 2)? where = € [r,y].

We now just apply (39). O

F5 It follows from F4 that e** is convex for any a € R.

F6 x%is convex on R, for a > 1 or a < 0. x% is concave for 0 < a < 1.
Here f is concave iff —f is convex.

F7 Suppose that A is a symmetric n x n positive semi-definite matrix. Then Q(x) = x? Ax is convex.
By positive semi-definite we mean that Q(x) > 0 for all x € R".

We have
QAx+ (1-Ny) —2Q(x) — (1 - N)Q(y) (40)
—N2Q(x) + (1 = A2Q(y) + 2\(1 — MxTAy — AQ(x) — (1 - N)Q(y) (41)
=—A1-)M)Q(y —x)<0. (42)

F8 If n > 1 then f is convex iff V2F = [a—ﬂ] is positive semi-definite for all x.

d:cidajj

Apply F7 to the function hA(t) = f(x + td) for all x,d € R".

Operations on convex functions

E1 If f, g are convex, then f + ¢ is convex.
E2 If A > 0 and f is convex, then Af is convex.

E3 If f, g are convex then h = max {f, g} is convex.

Proof.
h(Ax + (1 = A)y) = max {f(Ax + (1 = N)y), g(Ax+ (1 = N)y)} (43)
< max {Af(x) + (1 =N f(y), A\g(x) + (1 - Ne(y)} (44)
< Amax {f(x), g(x)} + (1 — A) max {f(y). g(y)} (45)
= M(x) + (1 — Nh(y). (46)
O

Jensen’s Inequality
If fisconvex and a; e R" \; e Ry, 1 <i<mand A\y + s+ ---+ \,, =1 then

f (Z)\iai) < Z f(Nay).

1=1

39

The proof is by induction on m. m = 2 is from the definition of convexity and then we use

m—1

Z)\az—)\mam—i— (1—A 21 s

=1 m

Application: Arithmetic versus geometric mean.
Suppose that a1, as,...,a,, € Ry. Then

a; +ag + -+ am
m

l/m‘

> (arag - - ap,)

—log(x) is a convex function for z > 0. So, applying (47),

—log (i)\iaz) < i —log(\;a;).
i—1 i=1

Now let \; =1/m fori=1,2,....m

11.2 Convex Sets

A set S C R"” is said to be convex if x,y € S then the line segment
Lix,y)={x+(1-NyeS:0<I<1}.
See Diagram 3 at the end of these notes.
Examples of convex sets:
Cl S={x:a’x=1}. x,y € S implies that
T _ T T, _ —
a'(Ax+(1-Ny)=ra'x+(1-Na'y=1+(1-A) =1
C2 S = {x:a’x < 1}. Proof similar to C1.
C3 S = B(0,0): x,y € S implies that

IAx 4 (1= Ny| < [Ax|+ |1 = Ny| <A+ (1 —X\)d =0

C4 If f is convex, then the level set {x : f(x) < 0} is convex.
f(x), f(y) <0 implies that f(Ax + (1 = A)y) < Af(x)+ (1 - A)f(y) <0.

Operations on convex sets:

O1 S convex and x € R™ implies that x + S = {x+y : y € S} is convex.

02 S,T convex implies that A = SN T is convex. X,y € A implies that x,y € S and so L = L(x,y) C

Similarly, LC T andso L C SNT.

03 Using induction we see that if S;, 1 < i < k are convex then so is ﬂle S;.

40

(47)

S.

O4 If S, T are convex sets and «, 5 € R then aS + T = {ax + By} is convex.
If z; = ax; + By; € T,i = 1,2 then

Az1 4 (1 — N)zg = a(Ax; + (1 — N)x2) + B(Ay1 + (1 = N)yq) € T.

It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax < b} are convex
for any matrix A any vector b.

We now prove something that implies the importance of the above notions. Most optimization algorithms
can only find local minima. We do however have the following theorem:

Theorem 10. Let f,.S both be convex in . Then if x* is a local minimum, it also a global minimum.

Proof.
See Diagram 4 at the end of these notes.

Let ¢ be such that x* minimises f in B(x*,§) NS and suppose that x € S\ B(x*,d). Let z = A\x* + (1 — \)x
be the point on L(x*,x) at distance § from x*. Note that z € S by convexity of S. Then by the convexity of
f we have

fx) < fz) S A + (1= A)f(x)
and this implies that f(x*) < f(x). O

The following shows the relationship between convex sets and functions.

Lemma 11. let fi, fo, ..., fm be convex functions on R™. Let b € R™ and let
S={xeR": fi(x) <b,i=1,2,...,m}.
Then S is convez.
Proof. Tt follows from O3 that we can consider the case m = 1 only and drop the subscript. Suppose now
that x,y € S ie. f(x),f(y) <b. Then for 0 <A <1
FOX+ (1= N)y) S AF() + (1= N f(y) < Ab+ (1=)b =1,
So, Ax+ (1 =Ny € S. O

12 Algorithms

12.1 Line search —n =1

Here we consider the simpler problem of minimising a convex (more generally unimodal) function f: R — R.
See Diagram 5 at the end of these notes.

We assume that we are given ag, a; such that ag < 2* < a7 where x* minimises f. This is not a significant
assumption. We can start with ag = 0 and then consider the sequences ¢; = f(2%),& = f(—2") until we find

Gio1 <min{¢p, G;} (resp. &1 <min{&,&}). Then we know that x* € [(y, (] (resp. z* € [£o,&]).

41

Assume then that we have an interval [ag, a;] of uncertainty for z*. Furthermore, we will have evaluated f at
two points in this interval, two points inside the interval at as = ag + a?(a; — ag) and az = ag + a(a; — ap)
respectively. We will determine « shortly. And at each iteration we make one new function evaluation and
decrease the interval of uncertainty by a factor a. There are two possibilities:

(i) f(as) < f(az). This implies that z* € [ag, as]. So, we evaluate f(ag+a?(as—ap)) and make the changes
a; — al:
/ / / 2 /
ay < ag, @y < as, ay < ag + a(ag — ap), ay < as.

(i) f(az) > f(ag). This implies that z* € [as, a1]. So, we evaluate f(ap+) and make the changes a; — a:

/ / / / 2
ay < a2, @y < a1, ah < ag, as < as + a-(a; — ap).

In case (i) we see that a] —ay = a3 — ap = a(a; — ap) and so the interval has shrunk by the required amount.

Next we see that a)—af, = a*(az—ag) = a*(a} —ag). Furthermore, aj—af, = as—ag = a*(a; —ay) = ala)—ay).

In case (i) we see that a} — af = a1 — ag = a; — (ag + a*(a; — ap)) = (1 — @?)(a; — ag). So, shrink by « in
this case we choose a to satisfy 1 — o? = . This gives us

V5 —1
2

— the golden ratio.

Next we see that a} — af = az — az = (@ — &®)(ay — ag) = =2(a} — a) = (1 — a)(a] — af) = &*(a} — ap).

Finally, we have aj — afy = as + o*(a1 — ag) — az = &*(a1 — ap) = a(a) — af).

Thus to achieve an accuracy within § of z* we need to take t steps, where a’!D < § where D is our initial
uncertainty.

12.2 Gradient Descent

See Diagram 6 at the end of these notes.

Here we consider the unconstrained problem. At a point x € R", if we move a small distance h in direction
d then we have

fx+hd/[d]) = f(x) + h(Vf)T%| +O0(h?) = f(x) = bV f| + O(h?).

Thus, at least infinitessimally, the best direction is —V f. So, for us, the steepest algorithm will follow a
sequence of points xg,X1,...,Xg, ..., where

Xk+1 = Xk — Oéka<Xk).
Then we have

%1 — X =[x — X — 200,V f(x5)" (36 — X¥) + 0|V f (x0)?)] (48)
< fxp = X PP = 200 (f (x0) — f(x*) 4+ i |V f(x0)]*. (49)

The inequality comes from F3.

42

Applying repeatedly we get
k K
e =" < [xo =X =2 i f(xi) = fF(x) + Y ol [V (xi)]”
i=1 =1

Putting R = |x¢ — X*|, we see from that

On the other hand,

> ai(fxi) — f(x) > (Z ai) min {f(xx) — f(x") - i € [k]} = <Z ai> (f Kmin — f(x7)),

i=1 i=1 i=1
where f(Xmim) = min {f(x;) : ¢ € [k]}.
Combining and we get

2 2 Nk 2
f(Xmin) _ f(X*) S R+ GkZizl @
2% i

9

where G = max {|V f(x;)| : i € [x]}.
So, if we choose ay, so that Y oo a; = co and >, a? = O(1) then
|f(xmm) - f(x*)l — 0 as k — oo.

As an example, we could let a; = 1/i.

13 Separating Hyperplane

See Diagram 7 at the end of these notes.

(52)

(53)

(54)

Theorem 12. Let C' be a convex set in R™ and suppose x ¢ C. Then there exists 0 # a € R™ and b € R

such that (1) a"x > b and (ii)) C C {y € R" : a’y < b}.

Proof.
Case 1: C is closed.
Let z be the closest point in C' to x. Let a=x —2z# 0 and b= (x — z)”z. Then

a'x—b=(x-2)"x-(x—-2)"z=|x—2z*>0.

This verifies (i). Suppose (ii) fails and there exists y € C such that a’y > b. Let w € C be the closest point
to x on the line segment L(y,z) C C. The triangle formed by x,w,z has a right angle at w and an acute

angle at z. This implies that |x — w| < |x — z|, a contradiction.

Case 2: x¢ C.)
We observe that C' O C' and is convex (exercise). We can thus apply Case 1, with C' replacing C.

43

Case 3: x € C'\ C. Every ball B(x,d) contains a point of R\ C that is distinct from x. Choose a sequence
Xn, & C,n > 1 that tends to x. For each x,, let a,, b, = alz, define a hyperplane that separates x,, from
C, as in Case 2. We can assume that |a,| = 1 (scaling) and that b, is in some bounded set and so there
must be a convergent subsequence of (a,, b,),n > 1 that converges to (a,b), |]a| = 1. Assume that we re-label
so that this subsequence is (a,),n > 1. Then for y € C' we have aly < b, for all n. Taking limits we see
that a’y < b. Furthermore, for y ¢ C we see that for large enough n, al'y > b,. taking limits we see that
aly <b. m

Corollary 13. Suppose that S, T C R" are convexr and that SNT = (. Then there exists a,b such that
alx <bforallxc S anda’™x > b forallx € T.

Proof. Let W = S 4+ (—=1)T. Then 0 ¢ W and applying Theorem [12| we see that there exists a such that
a’z <0 for all z € W. Now put

1
b= — (sup alx + in% aTx) .

2 x€ES x€<

Corollary 14 (Farkas Lemma). For an m x n matriz and b € R™, exactly one of the following holds:

(i) There exists x € R™ such that x > 0, Ax = b.

(ii) There ezists u € R™ such that uTA > 0 and u™b < 0.

Proof. We cannot have both (i), (ii) holding. For then we have
0<uTAx=uTb<o0.

Suppose then that (i) fails to hold. Let S = {y : y = Ax for some x > 0}. Then b ¢ S and since S is closed
there exists a, 3 such that (a) a’b < 8 and (b) @’ Ax > 3 for all x > 0. This implies that a” (b — Ax) <0
for all x > 0. This then implies that u = « satisfies (ii). O

13.1 Convex Hulls

See Diagram 8 at the end of these notes.

Given a set S C R", we let
conv(S) = {Z Aix; : (i) |I] < oo, (i) A =1, (iii) A; > 0,i € I, (iv) x; € S,i € 1} .
iel iel
Clearly S C conv(S5), since we can take |I| = 1.

Lemma 15. conv(S) is a convez set.

Proof. Let x =) .., \iX;,y = ngJﬂJYj € conv(S). Let K = IUJ and put \; = 0,5 € J\ I and
pj=0,7 €I\ J. Then for 0 <a <1 we see that

ax+ (1 —a)y = Z(ax\l + (1 — a)u;)x; and Z(a)\l +(1—a)) =1

ieK 11314

implying that ax + (1 — a)y € conv(S) i.e. conv(S) is convex. O

44

Lemma 16. If S is convex, then S = conv(S).

Proof. Exercise. m

Corollary 17. conv(conv(S)) = conv(S) for all S C R™.

Proof. Exercise. O

13.1.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST y,z € S such that
x € L(y,z). We let ext(S) denote the set of extreme points of S.

EX1 If n =1 and S = [a, b] then ext(S) = {a, b}.

EX2 If S = B(0,1) then ext(S) = {x: |x| = 1}.

EX3 If S = {x: Ax = b} is the set of solutions to a set of linear equations, then ext(S) = 0.

Theorem 18. Let S be a closed, bounded convex set. Then S = conv(ext(S)).

Proof. We prove this by induction on the dimension n. For n = 1 the result is trivial, since then S must be

an interval [a, b].

Inductively assume the result for dimensions less than n. Clearly, S O T' = conv(ext(S)) and suppose there
exists x € S\ T. Let z be the closest point of 7" to x and let H = {y caly = b} be the hyperplane defined
in Theorem . Let b* = max {ay : y € S}. We have b* < oo since S is bounded. Let H* = {y : ay = b*}
and let S* =SnN H*.

We observe that if w is a vertex of S* then it is also a vertex of S. For if w = Awy + (1 — A\)wy, wy, wWo €
S,0 < A < 1 then we have

bv* =a’w = Xa’w; + (1 — Nalwy <A+ (1 = \)b* = b
This implies that a’w; = a’wy = b* and so w;, wy € S*, contradiction.

Now consider the point w on the half-line from z through x that lies in S* i.e

n b*—0b ()

w=z+——(x—12).

alx —b

Now by induction, we can write w = Zle Aiw; where wy, wy, ..., w; are extreme points of S* and hence of
S. Also, x = uw + (1 — p)z for some 0 < 4 < 1 and so x € ext(5). O

The following is sometimes useful.

Lemma 19. Suppose that S is a closed bounded convez set and that f is a convex function. The [achieves
1ts maximum at an extreme point.

45

Proof. Suppose the maximum occurs at x = \x; + -+ + \gxg where 0 < Aq, ..., 0, < 1 and A\; + -+
Ar = 1 and xyp,...,x; € ext(S). Then by Jensen’s inequality we have f(x) < A\ f(x1) + -+ + A\ f(xx)
max {f(x;): 1 <i<k}.

CITIN +

This explains why the solutions to linear programs occur at extreme points.

14 Lagrangean Duality

See Diagram 9 at the end of these notes.

Here we consider the primal problem
Minimize f(x) subject to ¢;(x) <0,i=1,2,...,m, (55)
where f, g1, 02, ..., gm are convex functions on R".
The Lagrangean .
L(x,A) = f(x) + Y hig(x).
i=1
The dual problem is

Maximize ¢(A) subject to A > 0 where ¢(A) = min L(x, A). (56)

xeR”

We note that ¢ is a concave function. It is the minimum of a collection of convex (actually linear) functions
of A —see E3.

Tx and g;(x) = —al'x + b; for i = 1,2,...,m. Then

D1 :Linear programming. Let f(x) =c
L(x,A) = (CT —)\TA) x + b7 X where A has rows ay, ..., a,,.
It follows that AX # c implies that ¢(A) = —oo. So the dual problem is

Minimize b” X subject to A”X = c.

Weak Duality: If X is feasible for and x is feasible for then f(x) > &(N).
O(A) < L(x,A) < f(x) since \; > 0,¢;(x) <0,i=1,2,...,m. (57)

Now note that ¢(A) = —oo, unless cT = ATA, since x is unconstrained in the definition of ¢. And if
cT = ATA then ¢(X\) = b”A. So, the dual problem is to
Maximize b” X subject to ¢T = ATA and A > 0, i.e. the LP dual.

Strong Duality: We give a sufficient condition Slater’s Constraint Condition for tightness in (57)).

Theorem 20. Suppose that there exists a point xX* such that g;(x*) < 0,1 =1,2,...,m. Then

A) = I .
rilg())(QS() x:gi(xr)rlglgie[m} f(X)

46

Proof. Let
A={u,t): Ix eR" g;(x) <wuy,i =1,2,...,mand f(x) < t}.
B=1{(0,s) e R™*':s < f*} where f*= min f(x).

x:9;(x)<0,3€[m]
Now AN B = () and so from Corollary [13| there exists X, ~, b such that (A,7) # 0 and

b<min{Au+t:(ut) € A}. (58)
b > max {Au+t: (u,t) € B}. (59)

We deduce from that A>0and g > 0. If y < 0 or \; < 0 for some ¢ then the minimum in is —oo0.
We deduce from that vt < b for all t < f* and so vf* < b. And from that

vf(x)+ Z Nigi(X) > b >~ f* for all x € R™. (60)
i=1

If v > 0 then we can divide by 7 and see that L(x,A) > f*, and together with weak duality, we see that
L(x,A) = f*~.

If v = 0 then substituting x* into (60) we see that Y ", N\;g:(x*) > 0 which then implies that A = 0,
contradiction. O]

15 Conditions for a minimum: First Order Condition

15.1 Unconstrained problem

We discuss necessary conditons for a to be a (local) minimum. (We are not assuming that f is convex.) We
will assume that our functions are differentiable. Then Taylor’s Theorem

fa+h) = f(a) + (Vf(a))"h+ o([h|)

implies that
Vf(a)=0 (61)

is a necessary condition for a to be a local minimum. Otherwise,
fla—tVf(a)) < f(a) —t|Vf(a)]*/2
for small ¢ > 0.

Of course ([61]) is not sufficient in general, a could be a local maximum. Generally spealking, one has to look
at second order conditions to distinguish between local minima and local maxima.

However,

Lemma 21. If f is convex then is also a sufficient condition.

Proof. This follows directly from F3. O

47

15.2 Constrained problem

We will consider Problem (55]), but we will not assume convexity, only differentiability. The condition cor-
responding to (61)) is the Karush-Kuhn-Tucker or KKT condition. Assume that f, g1, go,. .., gm are differen-
tiable. Then (subject to some regularity conditions, a necessary condition for a to be a local minimum (or
maximum) to Problem (5] is that there exists A such that

gi(a) <0, 1<i<m (62)

N>0 1<i<m (63)

Vf(a)+) AiVgi(a) =0 (64)
i=1

Aigi(a) =0, 1<i<m. Complementary Slackness (65)

The second condition says that only active constraints (g;(a) = 0) are involved in the first condition.

One deals with g;(x) > 0 via —g;(x) < 0 (and A; < 0) and g¢;(x) = 0 by ¢g;(x) > 0 and —g;(x) < 0 (and \;
not constrined to be non-negative or non-positive).

In the convex case, we will see that , and are sufficient for a global minimum.

15.2.1 Heuristic Justification of KKT conditions

See Diagram 10 at the end of these notes.

Suppose that a is a local minimum and assume w.l.o.g. that g;(a) = 0for i = 1,2,...,m. Then (heuristically)
Taylor’s theorem implies that if (i) hTVg;(a) < 0,4 = 1,2,...,m then (ii) we should have h’V f(a) > 0.
(The heuristic argument is that (i) holds then we should have (iii) a + h feasible for small h and then we
should have (ii) since we are at a local minimum. You need a regularity condition to ensure that (ii) implies

(iii).)

Applying Corollary [14] we see that the KKT conditions hold. We let A have columns Vg;(a),i =1,2,...,m.
Then the KKT conditions are AX = —V f(a).

Convex case: Suppose now that f,gi,..., g, are all convex functions and that (x*, A*) satisfies the KKT
conditions. Now A* > 0 implies that ¢(x) = L(x, A*) is a convex function of x. Equation and Lemma
implies that x* minimises ¢. But then for any feasible x we have

F(x*) = d(x*) < o(x) = f(x) + Z Nigi(x) < f(x).

For much more on this subject see Convex Optimization, by Boyd and Vendenberghe.

48

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Q'l(l%((:m 4_

Local Glooa
- Miaioum Mo mwm

49

QNNM\ Al

Convay C“nd,‘m

Won- Convax V“M\”W\

20

B‘\QS(am 3

Convey Sel

Non- Convay Seb

o1

DN\P)(QN\L‘

. % B(X*)g)

52

0\' Q\I*)\’Gm 5

23

Qiﬁs(ﬁﬂ\ é

o4

Y 0.0y O)

95

Q'HXS)(Q“\ %

26

O\Q&(omq

57

D\(&&V v VO

28

	Basic Linear Programming
	Some formulations

	Duality
	Convex Sets
	Extreme Points

	Primal-Dual Algorithms
	Primal-Dual Algorithm for the Assignment Problem

	Two person zero-sum games
	Dominance
	Latin Square Game
	Non-singular games
	Symmetric games

	Integer Programming
	Examples
	A cutting plane algorithm for the pure problem

	Branch and bound
	P v NP: informally
	Approximation Algorithms
	Traveling Salesperson Problem – TSP
	Unrestricted
	Triangle Inequality

	Knapsack problem
	Greedy Algorithm
	Profit rounding algorithm

	Set cover
	Primal-Dual algorithm
	Greedy Algorithm

	Submodular functions
	Local Search
	MaxCut

	Non-linear Optimization Problems
	Convex sets and functions
	Convex Functions
	Convex Sets

	Algorithms
	Line search – n=1
	Gradient Descent

	Separating Hyperplane
	Convex Hulls
	Extreme Points

	Lagrangean Duality
	Conditions for a minimum: First Order Condition
	Unconstrained problem
	Constrained problem
	Heuristic Justification of KKT conditions

