
Notes for OR1

1 Basic Linear Programming

1.1 Some formulations

P1 To obtain your recommended daily allowances of Vitamins A, C, and K, you decide to eat apricots,
bananas and cucumbers. The percentage of the recommended daily allowance of each vitamin contained
in a serving of a given food, along with the cost of one serving of each food is given in the table below.

A C K cost
apricot 60 26 6 $ 1.53
banana 3 33 1 $ 0.37

cucumber 2 7 12 $ 0.18

Minimise 1.53x+ 0.37y + 0.18z

Subject to 60x+ 3y + 2z ≥ 100.

26x+ 33y + 7z ≥ 100.

6x+ y + 12z ≥ 100.

x, y, z ≥ 0.

Solution: x = 1.4, y = 0.3, z = 7.6. Cost is 3.62.

More generally, if there are n foods and m nutrients and each unit of food j costs cj and contains ai,j
units of nutrient i and we require ri nutrients per day, then we need to solve

Minimise
n∑︂

j=1

cjxj

Subject to
n∑︂

j=1

ai,jxj ≥ ri, i = 1, 2, . . . ,m.

xj ≥ 0, j = 1, 2, . . . , n.

P2 A company makes two products (say, P and Q) using two machines (say, A and B). Each unit of P that is
produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine
B. Each unit of Q that is produced requires 24 minutes processing time on machine A and 33 minutes
processing time on machine B. Machine A is going to be available for 40 hours and machine B is available
for 35 hours. The profit per unit of P is $25 and the profit per unit of Q is $30. Company policy is to

1

determine the production quantity of each product in such a way as to maximize the total profit given
that the available resources should not be exceeded.

Maximise 25x+ 30y

Subject to 50x+ 24y ≤ 2400.

30x+ 33y ≤ 2100.

x, y ≥ 0.

P3 An operations manager is trying to determine a production plan for the next week. There are three
products (say, P, Q, and R) to produce using four machines (say, A and B, C, and D). Each of the four
machines performs a unique process. There is one machine of each type, and each machine is available
for 2400 minutes per week.

Problem Data

Machine Product P Product Q Product R Availability
Processing time per unit on A 20 10 10 2400
Processing time per unit on B 12 28 16 2400
Processing time per unit on C 15 6 16 2400
Processing time per unit on D 10 15 0 2400
Profit per unit 45 60 50
Maximum sales 100 40 60

Maximise 45p+ 60q + 50r

Subject to 20p+ 10q + 10r ≤ 2400.

12p+ 28q + 16r ≤ 2400.

15p+ 6q + 16r ≤ 2400.

10p+ 15q + 0r ≤ 2400.

0 ≤ p ≤ 100, 0 ≤ q ≤ 40 0 ≤ r ≤ 60.

P4 Suppose you run an ice cream factory, and you anticipate monthly demand (in tons) for the for the next
n periods to be di, i = 1, 2, . . . , n. Suppose it costs c per ton to change production from one month to the
next, and s per ton to store ice cream for a month. What is the minimum cost production schedule that
meets demand?

Suppose that we produce xi tons of ice-cream in period and have yi tons in storage at the beginning of
period i. Let x0 = y1 = 0.

Minimise
n∑︂

i=1

(c|xi − xi−1|+ syi).

Subject to xi + yi ≥ di, i = 1, 2, . . . , n.

yi+1 = xi + yi − di, i = 1, 2, . . . , n− 1.

xi, yi ≥ 0, i = 1, 2, . . . , n.

2

The objective function is non-linear. Introduce another variable zi. Replace the above by

Minimise
n∑︂

i=1

(czi + syi).

Subject to xi + yi ≥ di, i = 1, 2, . . . , n.

yi+1 = xi + yi − di, i = 1, 2, . . . , n− 1.

zi ≥ xi − xi−1, i = 1, 2, . . . , n− 1. (1)

zi ≥ xi−1 − xi, i = 1, 2, . . . , n− 1. (2)

xi, yi ≥ 0, i = 1, 2, . . . , n.

In an optimum solution, zi will be as small as possible, given that it has to satisfy (1),(2), giving zi =
|xi − xi−1|.

P5 The problem is to minimise f(x) = max {aix+ bi : i = 1, 2, . . . , n}.

Minimise z.

Subject to z ≥ aix+ bi, i = 1, 2, . . . , n.

P6 A company is planning its investment strategy over the next n periods. It has m choices of investment.
If investment i is operated at level y in period t then it generates ri,ty dollars and needs ρi,j,ty units of
resource j. There will be aj,t units of resource j available in total during period t. The cost of resource
j, j = 1, 2, . . . , r in period t is bj,t dollars per unit. The company starts with A dollars to spend. Money
generated in periods 1, 2, . . . , t can be used in period t + 1, but must be available at the start of the
period. The company wishes to maximise the total amount it has in hand at the end of period n.

Maximise
n∑︂

t=1

m∑︂
i=1

(︄
ri,t −

r∑︂
j=1

ρi,j,tbj,t

)︄
yi,t

Subject to
m∑︂
i=1

ρi,j,tyi,t ≤ aj,t for all j, t.

A+
t∑︂

τ=1

m∑︂
i=1

(︄
ri,τ −

r∑︂
j=1

ρi,j,τbj,τ

)︄
yi,τ ≥

m∑︂
i=1

r∑︂
j=1

ρi,j,t+1bj,t+1yi,t+1.

yi,t ≥ 0 for all i, t.

Standard Form A is an m× n matrix of full row rank. The columns of A are aj, j = 1, 2, . . . , n.

Maximise cTx (3)

Subject to Ax = b

x ≥ 0.

Transforming to standard form:

aTx ≤ b −→ aTx+ s = b.

aTx ≥ b −→ aTx− s = b.

xj ≤ 0 Replace xj by − x′
j, x

′
j ≥ 0.

xj free Replace xj by x′
j − x′′

j , x′
j, x

′′
j ≥ 0.

Minimise cTx Maximise (−c)Tx.

Linear programs can be

3

1. Solvable: e.g. maximise x: subject to 0 ≤ x ≤ 1.

2. Infeasible: e.g. maximise x: subject to x ≤ 1, x ≥ 2.

3. Unbounded: maximise x: subject to x ≥ 0.

4

The feasible region is the set {x ∈ Rn : Ax = b,x ≥ 0}. The feasible region is a polyhedron:

(It isn’t necessarily bounded in size.)

The “corners” are called extreme points. If there is an optimal solution, then there is an extreme point with
optimal value.

The simplex algorithm starts at an extreme point and moves along the edges from extreme point to neighboring
extreme point until it finds the optimum.

All we need now is (i) an algebraic equivalent of vertex and (ii) a procedure for moving from vertex to
neighboring vertex.

The algebraic equivalent is Basic Feasible Solution and the procedure (ii) is a pivot.

5

The feasible region F here is

x+ 4y ≤ 24.

3x+ y ≤ 21.

x+ y ≤ 9.

x, y ≥ 0.

The extreme points are (0, 0), (7, 0), (6, 3), (4, 5), (0, 6).

Now add slack variables.

x+ 4y +s1 = 24.

3x+ y + s2 = 21.

x+ y +s3 = 9.

x, y, s1, s2, s3 ≥ 0.

The extreme points are
(0, 0, 24, 21, 9), (7, 0, 17, 0, 2), (6, 3, 6, 0, 0),

(4, 5, 0, 4, 0), (0, 6, 0, 15, 3).

Suppose we want to maximise z = 2x+ 3y over F .

Start at (0, 0). Choose an edge to move along that
increases z, e.g. move to (7, 0), then to (6, 3), then to
(4, 5). Now a move along an adjacent edge decreases z

– we found the maximum.

Now we keep track of which variables are basic or
non-basic. Initial basis {s1, s2, s3}, then {x, s1, s3},

then {x, y, s1} and finally {x, y, s2}. Put the
non-basic variables equal to 0 and then solve the

equations for the basic variables.

A Basic Feasible Solution (BFS) is one with n−m zero non-basic variables xj, j ∈ J ⊆ [n] \ I such that the
remaining m basic variables xi, i ∈ I = [n] \ J are (i) the unique solution to the remaining equations and (ii)
they have non-negative values. BFS’s defined by I1, I2 are neighbors if |I1 \ I2| = |I2 \ I1| = 1. The simplex
algorithm proceeds as follows: if I defines the current basis, see if there exists k ∈ I, ℓ ∈ [n] \ I such that
I ′ = (I ∪ {ℓ}) \ {k} is an improvement. If there is, replace I by I ′. Otherwise the problem is solved. All we
need now is machinery to implement this efficiently.

6

Example:

Maximise 2x1 + 3x2

Subject to x1 + 4x2 ≤ 24.

3x1 + x2 ≤ 21.

x1 + x2 ≤ 9.

x1, x2 ≥ 0.

B.V. x1 x2 x3 x4 x5 RHS
x0 −2 −3 0
x3 1 4 1 24
x4 3 1 1 21
x5 1 1 1 9
x0 −7/3 2/3 14
x3 11/3 1 −1/3 17
x1 1 1/3 1/3 7
x5 2/3 −1/3 1 2
x0 −1/2 7/2 21
x3 1 3/2 −11/2 6
x1 1 1/2 −1/2 6
x2 1 −1/2 3/2 3
x0 1/3 5/3 23
x4 2/3 1 −11/3 4
x1 1 −1/3 4/3 4
x2 1 1/3 −1/3 5

Vertex to neighboring vertex becomes basic solution to neighboring basic solution.

Sequence of bases:

B =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ B−1 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
B =

⎡⎣ 1 1 0
0 3 0
0 1 1

⎤⎦ B−1 =

⎡⎣ 1 −1/3 0
0 1/3 0
0 −1/3 1

⎤⎦
B =

⎡⎣ 1 1 4
0 3 1
0 1 1

⎤⎦ B−1 =

⎡⎣ 1 3/2 −11/2
0 1/2 −1/2
0 −1/2 3/2

⎤⎦
B =

⎡⎣ 0 1 4
1 3 1
0 1 1

⎤⎦ B−1 =

⎡⎣ 2/3 1 −11/3
−1/3 0 4/3
1/3 0 −1/3

⎤⎦

Shadow prices: cBB
−1 = [0, 2, 3]T

⎡⎣ 2/3 1 −11/3
−1/3 0 4/3
1/3 0 −1/3

⎤⎦ = [1/3, 0, 5/3]T .

7

Basic Solutions Algebraically, the extreme points are the Basic Feasible Solutions toAx = b. The simplex
algorithm moves from one BFS (extreme point) to a neighbor by a pivot.

Suppose that B is an m×m non-singular sub-matrix of A = [a1 a2 · · · an].

x0 − cTBxB − cTNxN = 0.

BxB +NxN = b.

BxB NxN b

1 0
−cTB −cTN

Multiply matrix A on the left by B−1 and substitute xB = B−1(b−NxN). To get an equivalent set of linear
equations. Solutions to Ax = b satisfy the following and vice-versa:

x0 − (cN − cBB
−1N)xN = cTBB

−1b.

xB +B−1NxN = B−1b.

The values cj − cBB
−1aj are called the reduced costs.

Simplex tableau

xB B−1NxN

1 cTBB
−1b

−(cTN − cBB
−1N)

B−1b

Basic Solution: I denotes the index set of the basic columns B, (note that 0 ∈ I). J denotes the index set
of the non-basic columns N. Variables xi, i ∈ I are referred to as the basic variables and variables xj, j ∈ J are
referred to as the non-basic variables. We index the rows by which basic variable they contain. The tableau
represents the equations

xi +
∑︂
j∈J

bi,jxj = bi,R, i ∈ I. (4)

The associated basic solution is obtained by putting put xN = 0 and xB = B−1b. This is feasible if B−1b ≥ 0
and we will refer to such a solution as a Basic Feasible Solution – BFS.
Note that solutions to Ax = b are obtained by giving values to xN and then putting xB = B−1b−B−1NxN.

8

xB bi,j

1 b0,R

−b0,j

bi,R ≥ 0 for a basic feasible solution.

Optimality condition: if b0,j ≥ 0 for all j ∈ J and x is a BFS then x maximises the objective function
x0. Indeed, x has objective value b0,R and any other feasible solution y ≥ 0 satisfies

y0 = b0,R −
∑︂
j∈J

b0,jyj ≤ b0,R.

The simplex algorithm starts with an initial BFS and does a sequence of pivots and stops when b0,j ≥ 0, j ∈ J .
To find an initial BFS we use a 2-phase version of the simplex algorithm that is described below. (This is not
a circular argument!)

Unboundedness: if at some stage there is a BFS and a non-basic variable xℓ such that (i) b0,ℓ < 0 and (ii)
bi,ℓ ≤ 0 for i ∈ I then the problem is unbounded. Put xℓ = t and xj = 0, j ∈ J \ {ℓ} and compute the basic
variable from (4). Then for large t

x0 = cTB−1b− tb0,ℓ ↗∞ with t and xi = bi,R − tbi,ℓ ≥ 0.

Simplex pivot: We choose k, ℓ (row k ∈ I, column ℓ ∈ J) where bk,ℓ ̸= 0.
I ← I + ℓ− k and J ← J + k − ℓ. Let B′ be obtained from B by deleting column ak and replacing it by aℓ.

E−1 ℓ

1

B′ replaces B 1 b′0,R

Row k becomes row ℓ, after the pivot.

b′i,R

Divide row k by bk,ℓ and then subtract bi,ℓ times row k from row i ̸= k.

b′k,j ←
bk,j
bk,ℓ

and b′i,j ← bi,j − bi,ℓ ×
bk,j
bk,ℓ

for i ̸= k, Note that b′i,ℓ = 0.

Remember: row operations do not change the set of solutions to a set of linear equations.

9

Then

B′ = B+
aℓ

[0 | 0]−
ak

[0 | 0] and so B−1B′ = I+
[︁
0 B−1aℓ 0

]︁
− [0 ek 0] ,

and
(B′)−1 = E−1B−1 where E = I− [0 ek 0] +

[︁
0 B−1aℓ 0

]︁
.

Note that ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 a1 0 0 0
0 1 0 a2 0 0 0
0 0 1 a3 0 0 0
0 0 0 a4 0 0 0
0 0 0 a5 1 0 0
0 0 0 a6 0 1 0
0 0 0 a7 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −a1/a4 0 0 0
0 1 0 −a2/a4 0 0 0
0 0 1 −a3/a4 0 0 0
0 0 0 1/a4 0 0 0
0 0 0 −a5/a4 1 0 0
0 0 0 −a6/a4 0 1 0
0 0 0 −a7/a4 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
From this we can see what replaces the identity in the columns associated with I.

Preservation of solution: It is impotant to realise that row operations do not change the set of solutions
to Ax = b. So, after a pivot, the set of solutions to the new set of equations is the same as the previous set.

Choice of pivot: we choose one so that the new basic solution is feasible and has a larger objective value
Feasibility: b′ℓ,R = bk,R/bℓ,k so we need bℓ,k > 0, assuming that bk,R > 0.

We need b′i,R = bi,R − bi,ℓ × bk,R
bk,ℓ
≥ 0. This is automatically true if bi,ℓ ≤ 0.

Otherwise we need
bk,R
bk,ℓ
≤ bi,R

bi,ℓ
– ratio test.

Objective improvement – maximization: b′0,R = b0,R − b0,ℓ × bk,R
bk,ℓ

and so we choose b0,ℓ < 0. Note that

−b0,ℓ is the reduced cost. We have x0 = b0,R −
∑︁

j∈J b0,jxj for Ax = b.

Another perspective: current solution, xi = bi,R, i ∈ I and xj = 0, j ∈ J . Suppose we increase xℓ, keeping
xj = 0, j ∈ J \ ℓ and satisfying (4). Then xi ← bi,R − bi,ℓxℓ and so the maximum we can increase xℓ to is
min {bi,R/bi,ℓ : bi,ℓ > 0}. The solution we get is the same as the basic solution after the pivot. We now have
xj = 0 for j ∈ (J \ {ℓ}) ∪ {k} and ai, i ∈ (I ∪ {ℓ}) \ {k} forms our new basis.

Degeneracy: A BFS is degenerate if bk,R = 0 for some k ∈ I. If you pivot on bk,ℓ in such a row, then the
RHS bR does not change. After the pivot we still xk = xℓ = 0 and all other variables have the same value.
Only the status of xk, xℓ has changed.

Finding a starting basis: 2-phase method.
First solve

Maximise (−1)Tξ
Subject to Ax+ ξ = b

x0 − cTx = 0.

x, ξ ≥ 0.

10

The starting basis has basic variables ξ1, ξ2, . . . , ξm and the original LP has feasible solutions iff the optimum
above has ξ = 0. Once we get to ξ = 0, we can remove the columns corresponding to the artificial variables
ξ. More precisely, if ξt is non-basic then we just delete the ξt column. If ξt is basic then there are two
possibilities: first assume that there is a non-zero in the ξt row that corresponds to a non-basic xj. In this
case we pivot on this non-zero. Because the current value of ξt is zero, the actual solution does not change
and we swap an artificial basic variable for a regular variable and then we can remove the artificial variable
ξt. If there are no non-zeros in the ξt row, then we can remove the ξt row, the corresponding row in A is
linearly dependent on other rows.

Termination: If an LP problem is non-degenerate then for every vertex, we have bi,R > 0, i ∈ R for all

i ∈ I. This means that b′0,R = b0,R − b0,ℓ × bk,R
bk,ℓ

< b0,R and so we never repeat a basis. As there are at most(︁
n
m

)︁
bases, we must eventually terminate.

If there are degenerate bases, then this can lead to the algorithm endlessly cycling through a fixed finite
sequence of bases without actually changing the current feasible solution.

Bland’s Rule: Choose the lowest indexed non-basic variable xj for which b0,j < 0 and then the lowest
indexed basic variable xi with bi,j > 0 that minimises the ratio bi,R/bi,j and pivot on (i, j).

If the Simplex Algorithm does not terminate then there must be a sub-sequence of bases It = It−1 + jt −
it, t = 1, 2, . . . , p that repeats indefinitely from some point. Note that bit,R = 0, t = 1, 2, . . . , p and K =
{i1, i2, . . . , ip} = {j1, j2, . . . , jp}. And note that the actual BFS x does not change.

We reduce the tableaus by deleting rows and columns corresponding to variables not in K. Applying the
Simplex algorithms to these tableaus will result in the same endless sequence of pivots. Let t = maxK and
let T1 be a reduced tableau in this sequence where xt is the variable that leaves the basis and let xs be the
variable that enters the basis. Next let T2 be a reduced tableau in the sequence where xt enters the basis.
Now let y be the solution to Ax = b obtained from x by changing xs to -1 and keeping all other non-basic
variables at 0. Then we have yi = b1i,R + b1i,s = b1i,s for i ∈ K, where the suffix l = 1, 2 refers to tableau Tl.
Computing the objective value of y in T1 and T2 we get

b10,R − b10,s = b20,R − b20,s −
∑︂
i∈K

b20,iyi = b20,R − b20,s −
∑︂
i∈K

b20,ib
1
i,s.

Now b10,R = b20,R (no change in objective value in the sequence) and b10,s < 0 (because xs enters the basis) and
b20,s ≥ 0 (because of Bland’s rule). So,

∑︁
i∈K b20,ib

1
i,s > 0 and there exists k ∈ K such that b20,kb

1
k,s > 0. Now

k ̸= t since the pivot element b1t,s > 0 and b20,t < 0 (t enters basis at T2). But in T2 we have b
2
0,j ≥ 0, j ∈ K \{t}

(Bland’s rule) and so we have b10,s < 0, b1k,s > 0 implying that we should have selected xk instead of xt as the
variable to leave the basis in T1, contradiction.

Worst-case performance of the simplex algorithm While we can guarantee that the simplex algorithm
will terminate eventually, we may not be here to see it. In a famous paper Klee and Minty showed that a
natural choice of pivot column on a specially constructed problem with 2n constraints can result in 2n − 1
pivots. It is still unknown whether or not there a choiice of pivot column that gives an algorithm that runs
in time poly(m+ n).

11

2 Duality

Linear programs come in pairs. One will be called the primal and the other will be called the dual. Which is
which is not well-defined, since the dual of the dual is the primal.

The dual of the LP in standard form is

Minimise bTy (5)

Subject to ATy ≥ c.

As an exercise confirm that the dual of

Minimise cT1 x1 + cT2 x2 + cT3 x3

Subject to A1,1x1 +A1,2x2 +A1,3x3 = b1

A2,1x1 +A2,2x2 +A2,3x3 ≥ b2

A3,1x1 +A3,2x2 +A3,3x3 ≥ b3

x1 ≥ 0, x2 ≤ 0.

is

Maximise bT
1 y1 + bT

2 y2 + cT3 y3

Subject to AT
1,1y1 +AT

1,2y2 +AT
1,3y3 ≤ c1

AT
2,1y1 +AT

2,2y2 +AT
2,3y3 ≥ c2

AT
3,1y1 +AT

3,2y2 +AT
3,3y3 = c3

y2 ≥ 0, y3 ≤ 0.

The relationship can be summarised: primal variables gives rise to dual constraint and vice-versa.
The primal constraint i is associated with dual variable yi and the dual constraint i is associated with primal
variable xi.
Equations give rise to free variables; in the context of primal minimisation, ≥constraints give rise to non-
negative dual variables and ≤constraints give rise to non-positive dual variables.

Weak duality, standard form: if x is feasible for the primal (primal feasible) and y is feasible for the
dual (dual feasible) then

cTx− bTy = cTx− (Ax)Ty = xTc− xTATy = xT(c−ATy) ≤ 0.

So, if x0 is primal feasible and y0 is dual feasible and cTx0 = bTy0 then x0 solves the primal problem and
y0 solves the dual problem.

Strong duality, standard form: if x0 solves the primal problem and y0 solves the dual problem then
cTx0 = bTy0.
Let B be an optimal basis and let y0 = cTBB

−1. Then (i) y0 is dual feasible since the reduced costs cj −yT
0 aj

are all non-positive; (ii) the objective value is cTBB
−1b for both primal and dual.

12

Shadow prices: The vector π = y0 = cTBB
−1 is often called the vector of shadow prices. (It is also the

solution to the dual problem.) Suppose that we perturb the RHS b to b′ = b + δb. Suppose that B is the
optimal basis. If B−1b′ ≥ 0 then the reduced costs have not changed and so B remains as the optimal basis.
The new optimal value will be cTBB

−1b′ = cTBB
−1b+ cTBB

−1δ = b0,R +
∑︁

i∈I πiδi.

In the context of maximising the profit cTx subject to Ax ≤ b where bi represents the amount of some
resource available, πi represents the maximum price one should pay to buy one more unit of the ith resource.
In the context of minimising the cost cTx subject to Ax ≥ b where bi represents the amount of some resource
you need, πi represents the extra cost if you need one more unit of the ith resource.

Reading off the shadow prices: The initial tableau will have an m×m identity matrix I, where the ith
cost is 0, either because it corresponds to a slack or to an artifical variable. The matrix I will be replaced by
B−1 in the final tableau and the entry in the ith column of the objective row will therefore be−(0−πTei) = πi.

Sensitivity Analysis: This can refer to computing the maximum by which we can change bk without
changing the optimal basis. If ek = [0, 0, . . . , 1, . . . , 0]T is the vector which all 0’s except in the kth position
where it equals 1, then this amounts to finding the the interval for λ such that B−1(b + λek) ≥ 0 i.e.
bi,R + λβi,k ≥ 0 where βi,k is the element in row i, column k of B−1.
It can also refer computing the maximum by which we can change ck without changing the optimal basis.
This amounts to finding the interval for λ such that ck + λ− πTak ≤ 0 i.e. λ ≤ πTak − ck.

The following states what is possible for primal and dual:

1. Primal solvable & Dual Solvable.

2. Primal unbounded & Dual infeasible.

3. Primal infeasible &Dual infeasible.

4. Dual unbounded & Primal infeasible.

Complementary slackness: A primal feasible x0 and a dual feasible y0 satisfy complementary slackness
if whenever a variable is positive (slack) then the corresponding constraint is satisfied with equality (tight).
In which case x0 solves the primal and y0 solves the dual. Indeed, for our standard form,

cTx0 − bTy0 = xT
0 (c−ATy0) = 0.

Thus strong duality implies complementary slackness holds for x0,y0 optimal.

For an LP in the form: Maximise cTx subject to Ax ≤ b, which has a dual Minimise bTy subject to
ATy = c, y ≥ 0, complementary slackness becomes (b −Ax0)y0 = 0 or yi > 0 implies rTi x = bi where ri
denotes the ith row of A. Another way of interpreting this is that x0 solves the primal if and only if then c
is a non-negative linear combination of the normals ri of the tight contstraints i such that rTi x0 = bi i.e. c is
in the cone generated by these normals.

13

Farkas Lemma: Given an m× n real matrix A and b ∈ Rn either (i) there exists x ∈ Rn such that x ≥ 0
and Ax = b or (ii) there exists y ∈ Rm such that yTA ≥ 0 and yTb < 0.

First observe that we cannot have (i) and (ii). Indeed then

0 > yTb = yTAx ≥ 0, contradiction.

Suppose (i) fails and so the LP in standard form with c = −1 is infeasible. Now u = 0 satifies the dual
constraint ATu ≥ c and so the dual is not infeasible. So, it is unbounded and (ii) holds.

Dual simplex algorithm: A tableau is primal feasible if bi,R ≥ 0 for all i ∈ I. A tableau is dual feasible if
b0,j ≥ 0 for all j ∈ [n]. The (primal) simplex algorithm starts with a primal feasible tableau (perhaps using
artificial variables) and does pivots that maintain primal feasibility and improve the objective value until a
tableau is reached that is both primal and dual feasible.

The dual simplex algorithm starts with a dual feasible tableau and does pivots that maintain dual feasibility
and improve the (dual) objective value until a tableau is reached that is both primal and dual feasible.

We only need to discuss the choice of pivot:
Dual feasibility: we need 0 ≤ b′0,k = b0,k − b0,ℓ × bk,k

bk,ℓ
= − b0,ℓ

bk,ℓ
or bk,ℓ < 0. Also need, for j ∈ J \ {ℓ}, that

0 ≤ b′0,j = b0,j − b0,ℓ × bk,j
bk,ℓ

. This is automatically true if bk,j ≥ 0.

Otherwise we need
b0,j
bk,j
≥ b0,ℓ

bk,ℓ
– dual ratio test.

Improve the dual objective: this means reduce b0,R. Now b′0,R = b0,R − b0,ℓ × bk,R
bk,ℓ

and so we want b0,ℓ < 0.

3 Convex Sets

A set S ⊆ Rn is said to be convex if x,y ∈ S then the line segment

L(x,y) = {λx+ (1− λ)y ∈ S : 0 ≤ λ ≤ 1} .

See Diagram 3 at the end of these notes.

Examples of convex sets:

C1 S =
{︁
x : aTx = 1

}︁
. x,y ∈ S implies that

aT (λx+ (1− λ)y) = λaTx+ (1− λ)aTy = λ+ (1− λ) = 1.

C2 S =
{︁
x : aTx ≤ 1

}︁
. Proof similar to C1.

C3 S = B(0, δ): x,y ∈ S implies that

|λx+ (1− λ)y| ≤ |λx|+ |(1− λ)y| ≤ λδ + (1− λ)δ = δ.

Operations on convex sets:

O1 S convex and x ∈ Rn implies that x+ S = {x+ y : y ∈ S} is convex.

14

O2 S, T convex implies that A = S ∩ T is convex. x,y ∈ A implies that x,y ∈ S and so L = L(x,y) ⊆ S.
Similarly, L ⊆ T and so L ⊆ S ∩ T .

O3 Using induction we see that if Si, 1 ≤ i ≤ k are convex then so is
⋂︁k

i=1 Si.

O4 If S, T are convex sets and α, β ∈ R then αS + βT = {αx+ βy} is convex.
If zi = αxi + βyi ∈ T, i = 1,2 then

λz1 + (1− λ)z2 = α(λx1 + (1− λ)x2) + β(λy1 + (1− λ)y2) ∈ T.

It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax ≤ b} are convex
for any matrix A any vector b. So the feasible region of a linear program is a convex set.

3.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST y, z ∈ S such that
x ∈ L(y, z). We let ext(S) denote the set of extreme points of S.

EX1 If n = 1 and S = [a, b] then ext(S) = {a, b}.

EX2 If S = B(0, 1) then ext(S) = {x : |x| = 1}.

EX3 If S = {x : Ax = b} is the set of solutions to a set of linear equations, then ext(S) = ∅.

Extreme points and BFS’s Let C = {x : Ax = b,x ≥ 0} where A has full row rank. Then the extreme
points of C are BFS’s.
Suppose first that x is a BFS and that x = λx1 + (1 − λ)x2 where 0 < λ < 1. If j /∈ I then we have
0 = xj = λx1,j + (1 − λ)x2,j, which implies that x1,j = x2,j = 0 (remember that λ, 1 − λ > 0, x1,j, x2,j ≥ 0).
This implies that x1 = x2 = x.
Now suppose that x is not a BFS. Then we can can choose a basis B and partition x as xB : xN where
xN ̸= 0. Let I0 = {i ∈ I : xi = 0} and let ri denote row i of B−1N. Suppose first that there exists ξ ∈ RN

such that ξT ri = 0 for i ∈ I0. Then clearly x = (x1 + x2)/2 where x1 = x− ε[0B, ξ] and x2 = x+ ε[0B, ξ] for
ε small enough that x1,x2 ∈ C. So, x is not an extreme point.
If ξ does not exist then we must have |I0| ≥ n1 = n −m, the number of columns in N. Furthermore, there
must be an n1 × n1 non-singular matrix N1 made up of rows ri ∈ I1 ⊆ I0. But then we see that in fact x is
a BFS with basis (I \ I1) ∪ J . (xi, i ∈ I1 becomes non-basic at value 0, instead of basic at value 0.)

Optimal extreme points Also, z is an extreme point of C iff there exists c such that z is the unioue
maximiser of cTx over points in x ∈ C. Indeed, if z = λx1 + (1 − λ)x2 where 0 < λ < 1 then cTz ≤
max

{︁
cTx1, c

Tx2

}︁
. Conversely, if z is an extreme point, BFS, let B be a basis matrix for x. Then put

ci = 0, i ∈ I and cj = −1, j ∈ J . Then, cTz = 0 and cTx =
∑︁

j∈J xj < 0 if x ̸= z.

4 Primal-Dual Algorithms

Here is the general idea. Suppose we have the primal (3) and a solution y to the dual (5). Let Ay be the
submatrix of A formed by the columns aj for which cj = aT

j y. If we can find z ≥ 0 such that Ayz = b then

15

complementary slackness will tell us that by padding out the missing components of z with zeroes to create
x we will have that x,y are optimal for (3), (5) respectively.

If z does not exist then the Farkas Lemma implies that there exists u such that AT
yu ≥ 0 and bTu < 0. We

replace y by y + εu. If cj = aT
j y then aTu ≥ 0 and so cj ≤ aT

j (y + εu) and if we ensure that ε is small
enough that such that cj ≤ aT

j (y + εu) for those j for which cj > aT
j y then y + εu is feasible for (5). Also,

bT ((y+ εu) < bTy and so the dual value has improved. In the following, we describe a specific LP for which
this idea leads to a fast algorithm.

4.1 Primal-Dual Algorithm for the Assignment Problem

A matching M in a graph is a set of vertex disjoint edges. A vertex v is covered by M if there exists e ∈ M
such that v ∈ e. A matching M is perfect if every vertex of G covered by M . For the complete bipartite
graph KA,B on vertex set A = {ai : i ∈ [n]} , B = {bi : i ∈ [n]}, perfect matchings can be represented by
permutations of n i.e M =

{︁
(ai, bπ(i)) : i ∈ [n]

}︁
. Given a cost matrix (c(i, j), the cost of a perfect matching

M = M(π) be given by

c(M) =
n∑︂

i=1

c(i, π(i)).

The assignment problem is that of finding a perfect matching of minimum cost.

Consider the linear program ALP:

Minimize
∑︁n

i=1

∑︁n
j=1 ci,jxi,j (6)

Subject to ∑︁n
j=1 xi,j = 1 for i = 1, 2, . . . , n. (7)∑︁n
i=1 xi,j = 1 for j = 1, 2, . . . , n. (8)

xi,j ≥ 0 for i, j = 1, 2, . . . , n. (9)

The assignment problem is the solution to ALP where we replace (9) by

xi,j = 0 or 1 for i, j = 1, 2, . . . , n. (10)

This is because (7), (8) force the set {(i, j) : xi,j = 1} to be a perfect matching and (6) is then the cost of this
matching.

In general replacing non-negativity constraints (9) by integer contraints (10) makes an LP hard to solve. Not
however in this case.

The dual of ALP is the linear program DLP:

Maximize
∑︁n

i=1 ui +
∑︁n

j=1 vj (11)

Subject to

ui + vj ≤ c(i, j) for i, j = 1, 2, . . . , n. (12)

The primal-dual algorithm that we describe relies on complimentary slackness to find a solution.

Complimentary Slackness: If a feasible solution x to ALP and a feasible solution u,v, to DLP satisfy

xi,j > 0 implies that ui + vj = c(i, j). (13)

16

then x solves ALP and u,v, solves DLP. For then

0 =
n∑︂

i=1

n∑︂
j=1

(c(i, j)− ui − vj)xi,j =
n∑︂

i=1

n∑︂
j=1

ci,jxi,j −

(︄
n∑︂

i=1

ui +
n∑︂

j=1

vj

)︄
, (14)

and the two solutions have the same objective value.

(We have used
∑︁n

i=1 ui

∑︁n
j=1 xi,j =

∑︁n
i=1 ui, which follows from (7) etc.)

The steps of the Primal-Dual algorithm are as follows:

Step 1 Choose an initial dual feasible solution. E.g. vj = 0, j ∈ [n] and ui = minj c(i, j).

Step 2 Given a dual feasible solution, u,v, define the graph Ku,v to be the bipartite graph with vertex set
A,B and an edge (i, j) whenever ui + vj = c(i, j).

Step 3 Find a maximum size matching M in Ku,v.

Step 4 If M is perfect then (13) holds and M provides a solution to the assignment problem.

Step 5 If M is not perfect, update u,v and go to Step 3.

To carry out Step 3, we proceed as follows:

Step 3a Begin with an arbitrary matching M of Ku,v.

Step 3b Let AU denote the set of vertices in A not covered by M .

Step 3c Let K⃗u,v be the digraph obtained from Ku,v by orienting matching edges from B to A and other
edges from A to B.

Step 3d Let AM , BM denote the set of vertices in A,B that are reachable by a path in K⃗u,v from AU . Such
paths are necessarily alternating.

Step 3e If there is a vertex b ∈ BM that is not covered by M then there is an augmenting path P from some
a ∈ AU to v. In this case we use P to construct a matching M ′ with |M ′| > |M |. We then go to
Step 3b, with M replaced by M ′. Otherwise, Step 3 is finished.

To carry out Step 5, we assume that we have finished Step 3 with M,AM , BM . We then let

θ = min {ci,j − ui − vj : ai ∈ AM , bj /∈ BM} > 0.

We know that θ > 0. Otherwise, if ai, bj is the minimising pair, then we should have put bj ∈ BM .

We then amend u,v to u∗,v∗ via

u∗
i =

{︄
ui + θ ai ∈ AM .

ui Otherwise.
and v∗j =

{︄
vj − θ j ∈ BM .

vj Otherwise.

Observe the following:

17

1. u∗,v∗ is feasible for DLP. u∗
i + v∗j ≤ ui + vj except for the case where ai ∈ AM , bj /∈ BM and θ is chosen

so that the increase maintains feasiblity.

2. If b ∈ BM for the pair u,v then it will stay in BM when we replace u,v by u∗,v∗. This is because there
is a path P = (ai1 ∈ AU , bi1 , . . . , aik , bik = b) such that each edge of P contains one vertex in AM and
one vertex in BM . Hence the sum ui + vj is unchanged for edges along P .

3. A vertex b /∈ BM contained in a pair that defines θ will be in BM when we replace u,v by u∗,v∗.

In summary: if we reach Step 4 with a perfect matching then we have solved ALP. After at most n changes
of u,v in Step 5, the size of M increases by at least one. This is because updating u,v increases BM by at
least one. Thus the algorithm finishes in O(n4) time. (O(n3) time if done carefully.)

Total Unimodularity Notice that the above alogrithm solves the LP (6) and satisfies the integrality
constraints (10). The reason for this is that all of the extreme points of the feasible region defined by (7), (8)
and (9) are integral. The reason for this is that the constraint matrix of (6) is totally unimodular. A matrix
A is totally unimodular if every square submatrix of A has determinant 0,±1. This for example implies that
if B is a basis matrix of A then the entries of B−1 are also 0,±1 and so B−1b is integer for every integer b.
Recall that B−1 = (adjoint B)/detB where adjoint B is the matrix whose (i, j)th entry is equal to (−1)i+j

times the determinant of the submatrix of B obtained by deleting row j and column i.

Vertex-edge incidence matrix The matrix of coefficients for the LP (6) has the following property has
the following property: the rows can be divided into two sets X, Y . Each column has two non-zeros, a 1 in a
row of X and a 1 in a row of Y . We argue by induction on s that an s× s submatrix of A has determinant
0,±1. This is trivially true if s = 1 and so assume it is true for 1 ≤ t < s. Let C be an s× s sub-matrix. If
C has a column of 0’s then C has determinant 0. If C has a column with at most one 1 then we can expand
its determinant by this column and use induction. If all columns have 2 two 1’s then the sum of C’s rows in
X equals the sum of C’s rows in Y and so C is singular and has deteminant 0.

5 Two person zero-sum games

We discuss here an application of linear programming to the theory of games. This theory is an attempt to
provide an analysis of situations involving conflict and competition.

Game 1: There are two players A and B and to play the game they each choose a number 1,2,3 or 4 without
the other’s knowledge and then they both simultaneously announce their numbers. If A calls i and B calls
j then B pays A ai,j – the payoff – given in the matrix below. (if ai,j < 0, this is equivalent of A paying B
−ai,j.) ⎡⎢⎢⎣

2 4 2 1
−2 5 1 −1
1 −5 3 0
6 2 −3 −2

⎤⎥⎥⎦
This is a two person zero-sum game, zero sum because the algebraic sum of the player’s winnings is always
zero.

18

Game 2: (Penalty kicks) Suppose that A and B play the following game of soccer. A plays in goal and B
takes penalty kicks. B can kick the ball into the left hand corner, the right hand corner or into the midle.
If A guesses correctly where B will kick then A will make a save. The payoff to A is given by the following
matrix. ⎡⎢⎢⎣

KR KL KM
DR 2 −1 −2
DL −1 2 −2
M −1 −1 −1

⎤⎥⎥⎦
We will be considering m×n generalisations of Game 1 and other games like Game 2 that can be reduced to
this form.

Thus there is given some m × n payoff A. In a play of the game, A chooses i ∈ M − {1, 2, . . . ,m} and B
chooses j ∈ N = {1, 2, . . . , n}. These choices are made independently without either player knpowing what
the other has chosen. They then announce their choices and B pays ai,j to A.

M,N will be referred to as the sets of tactics for A,B respectively.

A match is an unending sequence of plays. A’s objective is to maximize her expected winnings from the
match and B’s objective is to minimize his expected loss.

A strategy for the match is some rule for selecting the tactic for the next play.

Let SA, SB be sets of strategies for A, B respectively. We shall initially consider the case where SA =
{(1), . . . , (m)} and SB = {(1), . . . , (n)} where (t) is the pure strategy of using tactic t in each play We Shall
subsequently be enlarging SA and SB and we therefore introduce new notation to allow for this possibility.

Thus for each u ∈ SA and v ∈ SB let PAY (u, v) denote the average payment of B to A.

Stable Solutions u0, v0) ∈ SA × SB is a stable solution if

PAY (u, v0) ≤ PAY (u0, v0) ≤ PAY (u0, v) (15)

holds for all u, v.

If (15) holds then neither A nor B has any incentive to change strategy if each assumes his opponent is not
going to change his or hers.

The subsequent analysis is concerned with finding a stable solution.

Thinking of SA as the row indiceses and SB as the column indices of some matrix we define

ROWMIN(u) = min
v∈SB

PAY (u, v), u ∈ SA.

COLMAX(v) = max
u∈SA

PAY (u, v), v ∈ SB.

Suppose now that A chooses u. We assume that after some finite time, B will be able to deduce this choice. B
will then choose his strategy v to minimize PAY (u, v). Thus if A chooses u then she can expect her average
winnings to be ROWMIN(u).

Similarly if B chooses v he can expect his average losses to be COLMAX(v).

19

Thus if PA = ROWMIN(u0) = maxu∈SA
ROWMIN(u) and PB = COLMAX(v0) = minv∈SB

COLMAX(v)
then A can by choosing u0 ensure that her average winnings are at least PA and B by choosing v0 can ensure
that his losses are at most PB. If PA = PB then this seems to solve the game but is PA = PB always?

Theorem 1.

(a) PA ≤ PB.

(b) SA × SB contains a stable solution iff PA = PB.

Proof. (a)
PA = ROWMIN(u0) ≤ PAY (u0, v0) ≤ COLMAX(v0) = PB. (16)

(b) Suppose first that (u0, v0) is stable. Then, from (15), we have

COLMAX(v0) = PAY (u0, v0) = ROWMIN(u0)

and hence
PB ≤ COLMAX(v0) = ROWMIN(u0) ≤ PA,

which from (a) implies that PA = PB.

Conversely, if PA = PB then from (16) we deduce that

ROWMIN(u0) = PAY (u0, v0) = COLMAX(v0)

which implies (15).

We now consider specifically the case SA = {(1), . . . , (m)} and SB = {(1), . . . , (n)}.

For Game one we have PA = PB = 1 = a1,4 and hence A plays 1 and B plays 4 solves the game and A can
guarantee to win at least 1 and B can guarantee to lose at most 1 on average.

The matrix of this game is said to have a saddle point (i0, j0) which means that (i0), (j0) satisfies (15).

For a game who’s matrix does not have a saddle point things are more complex. Consider for example Game
two. PA = −1 and PB = 1. It follows from Theorem 34 that no pair of pure strategies solves the game. A
knows she can average at least -1 by playing (3) and B knows he need lose no more than 1 on average by
playing (3) but note that if A plays (3) then B has an incentive to play (1) or (2) but if he plays (1) then A
will play (1) and so on.

Mixed strategies:
To break this seeming deadlock we allow the players to choose mixed strategies. A mixed strategy for A is a
vector of probabilities π = (p1, . . . , pm) where pi ≥ 0 for i ∈M and p1+ · · ·+ pm = 1. A then chooses tactic i
with probability pi for i ∈M i.e. before each play A carries out a statistical experiment that has an outcome
i ∈ M with probability pi. A then plays the corresponding tactic. Similarly B’s mixed strategies are vectors
q = (q1, . . . , qn) satisfying qj ≥ 0, j ∈ N and q1 + · · ·+ qn = 1.

Pure strategies can be represented as vectors with a single non-zero component equal to 1. We now enlarge
SA, SB to

SA = {p ∈ ℜm : π ≥ 0 and p1 + · · ·+ pm = 1} .
SB = {q ∈ ℜn : q ≥ 0 and q1 + · · ·+ qn = 1} .

(17)

20

We now show using the duality theory of linear programming that SA × SB as defined in (17) contains a
stable solution.

We shall first show how to compute PA. Let cj(π) =
∑︁

i∈M ai,jpi. Then

PA = max
π∈SA

(︄
min
q∈SB

n∑︂
j=1

cj(π)qj

)︄
(18)

Lemma 2.

min
q∈SB

n∑︂
j=1

ξjqj = min {ξ1, . . . , ξn} . (19)

Proof. Let ξt = min {ξ1, . . . , ξn} and let L be the LHS of (19). Putting ˆ︁qj = 0 for j ̸= t and ˆ︁qt = 1 we haveˆ︁q ∈ SB and
∑︁n

j=1 ξjˆ︁qj = ξt. Thus L ≤ ξt. However, for any q ∈ SB,

n∑︂
j=1

ξjqj ≥
n∑︂

j=1

ξtqj = ξt

n∑︂
j=1

qj = ξt.

It follows from the lemma and (18) that

PA = max
π∈SA

min {c1(π), . . . , cn(π)}

= maxmin {c1(π), . . . , cn(π)}
Subject to

p1 + · · ·+ pm = 1

p1, . . . , pm ≥ 0

= max ξ (20)

Subject to

ξ ≤
m∑︂
i=1

ai,jpi, j = 1, . . . , n

p1 + · · ·+ pm = 1

p1, . . . , pm ≥ 0

Using similar arguments we can show that

PB = min η (21)

Subject to

η ≥
n∑︂

j=1

ai,jqj, i = 1, . . . ,m

q1 + · · ·+ qn = 1

q1, . . . , qn ≥ 0

We note next that (20), (21) are a pair of dual linear programs. They are both feasible and hence PA = PB and
stable solutions exist. In fact if π0 solves (20) and q0 solves (21) (π0,q0) is stable as PAY (π0,q0) = PA = PB.

21

Random payoff: We note that the above analysis goes through unchanged if A, B having selected tactics
I, J , the payoff to A is a random variable who’s expected value is ai,j.

The above LP formulations can be slightly simplified. We can assume that ai,j > 0 for all i, j. This is because
adding a positive constant c to each entry of A will not change the optimal strategies. It will merely increase
the optimal payoff by c. It follows that the maximum value of ξ in (20) is positive. We can therefore replace
pi by xi = pi/ξ and then we find

P−1
A =Minimum ξ−1 = Minimum

m∑︂
i=1

xi subject to
m∑︂
i=1

ai,jxi ≥ 1 for all j,
m∑︂
i=1

xi = 1. (22)

P−1
B =Maximum η−1 = Maximum

n∑︂
j=1

yj subject to
n∑︂

j=1

ai,jjj ≤ 1 for all i,
n∑︂

j=1

yj = 1. (23)

5.1 Dominance

If A(i, j) ≥ A(i, j′) for all i then player B will never use strategy j. It is preferable for her/him to use strategy
j′ instead. So, column j can be removed from the matrix A.

Similarly, if A(i, j) ≤ A(i′, j) for all j then player A will never use strategy i. It is preferable for her/him to
use strategy i′ instead. So, row i can be removed from the matrix A.

Repeated use of this idea can reduce a game substantially.

5.2 Latin Square Game

Suupose that every row sum is equal to R > 0 and every column sum is equal to C > 0 where mR = nC.
Then both players can choose uniformly. Consider the two LP’s (22), (23) that solve the game: putting
xi = 1/C and yj = 1/R gives two feasible solutions with the same objective value.

5.3 Non-singular games

Suppose that A is non-singular and that 1TA−11 > 0. Then the value of the game is V = 1
1TA−11

. Then,

xT = 1TA−1

V
and y = A−11

V
solve (22), (23) respectively.

5.4 Symmetric games

A game is symmetric if AT = −A i.e if A is anti-symmetric. Then the game has value 0. If A and B both
use strategy p then because pTAp = 0 for anti-symmetric A, we see that PAY (p, p) = 0. This implies that
0 ≥ PA = PB ≥ 0.

22

6 Integer Programming

This is the name given to Linear Programming problems which have an extra constraint in that some or all
of the variables have to be integer.

6.1 Examples

Capital budgeting A firm has n projects that it would like to undertake but because of budget limitations
not all can be selected. In particular project j is expected to produce a revenue of cj but requires an
investment of ai,j in time period i fori = 1, , ...m. The capital available in time period i is bi. The problem of
maximising revenue subject to the budget constraints can be formulated as follows: let xj = 0/1 correspond
to not proceeding or respectively proceeding with project j then we have to

Maximise
n∑︂

j=1

cjxj

Subject to
n∑︂

j=1

ai,jxj ≤ bi, i = 1, . . . ,m.

0 ≤ xj ≤ 1, xj integer for j = 1, 2, . . . , n.

Depot location We consider here a simple problem of this type: a company has selected m possible sites
for distribution of its products in a certain area. There are n customers in the area and the transportation
cost of supplying the whole of customer j’s requirements over the given planning period from potential site i
is ci,j. Should site i be developed it will cost fi to construct a depot there. Which sites should be selected to
minimise the total construction plus transport cost?

To do this we introduce variables y1, . . . , ym which can only take values 0 or 1 and correspond to a particular
site being not developed or developed respectively. We next define xi,j to be the fraction of customer j’s
requirements supplied from depot i in a given solution. The problem can then be expressed,

Minimise
m∑︂
i=1

n∑︂
j=1

ci,jxi,j +
m∑︂
i=1

fiyi

Subject to
m∑︂
i=1

xi,j = 1, j = 1, 2, . . . , n

xi,j ≤ yi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

xi,j ≥ 0, 0 ≤ yi ≤ 1, yi integer, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Note that if yi = 0 then fiyi = 0 and there is no contribution to the total cost. Also, xi,j ≤ yi implies xi,j = 0
and no goods are distributed from site i. This corresponds exactly to there not being a depot at location i.

On the other hand, if yi = 1, then fiyi = fi which is the cost of constructing depot i. Also, xi,j ≤ yi becomes
xi,j ≤ 1 which holds anyway from the first constraint.

Set Covering Let S1, S2, . . . , Sn be a family of subsets of a set S = {1, 2, . . . ,m}. A covering of S is a
subfamily Sj for j ∈ I such that S =

⋃︁
j∈I Si. Assume that each subset Sj has a cost cj > 0 associated with

23

it. We define the cost of a cover to be the sum of the costs of the subsets included in the cover.

The problem of finding a cover of minimum cost is of particular practical significance. As an integer program
it can be specififed as follows: define the m× n matrix A = [ai,j] by

ai,j =

{︄
1 i ∈ Sj.

0 i /∈ Sj.

Let xj, j = 1, 2, . . . , n be 0 /1 variables with xj = 1(0) to mean set Sj is included (respectively not included)
in the cover. The problem is to

Minimize
n∑︂

j=1

cjxj

Subject to
n∑︂

j=1

ai,jxj ≥ 1, i = 1, 2, . . . ,m. (24)

xj = 0 or 1, j = 1, 2, . . . , n.

The m inequality constraints have the following significance: since xj = 0 or 1 and the coefficients i,jy are
also 0 or 1 we see that

∑︁n
j=1 ai,jxj can be zero only if xj = 0 for all j such that ai,j = 1. In other words only

if no set Sj, is chosen such that i ∈ Sj. The inequalities are put in to avoid this.

As an example consider the following simplified airline crew scheduling preblem. An airline has m scheduled
flight-iegs per week in its current service. A flight-leg being a single flight flown by a single crew e.g. London
- Paris leaving Heathrow at 10.30 am. Let Sj, j = 1, 2, . . . , n be the collection of all possible weekly sets of
flight-legs that can be flown by a single crew. Such a subset must take account of restrictions like a crew
arriving in Paris at 11.30 am, cannot take a flight out of New York at 12.00 pm. and so if cj is the cost of
set Sj of flight-legs then the problem of minimising cost subject to covering all flight-legs is a set coverirg
problem. Note that if crews are not allowed to be passengers on a Flight e.g. so that they can be flown to
their next flight, then we have to make (24) an equality – the set partitioning problem.

General terminology The most general problem called the mixed integer programming problem can be
specified as

Minimise x0 = cTx

Subject to Ax = b

xj ≥ 0, j = 1, 2, . . . , n.

xj integer for j ∈ I

where I ⊆ [n].

When I = [n] and all the quantities cj, ai,j, bi are integer then we have a pure integer programming problem.

Further uses of integer variables
(i) If a variable x can only take a finite number of values p1, p2, . . . , pm, then we can replace x by the expression

x = p1w1 + p2w2 + · · ·+ pmwm, w1 + w2 + · · ·+ wm = 1, wi = 0 or 1 for i = 1, 2, . . . ,m.

24

For example X might be the output of a plant which can be small p1, medium p2 or large p3. The cost c(x)
of the plant could be represented by c1w1 + e2w2 + c3w3 where c1in the cdost of a small plant etc.

(ii) In L.P. one generally consider all constraints to be holding simultaneously. It is possible that the variable
might have to satisfy one or other of a set of constraints.

0 ≤ x ≤M and (0 ≤ x ≤ 1 OR x ≥ 2).

We replace this by
x ≤ 1 +M(1− δ) and x ≥ 2−Mδ and x ≥ 0, δ = 0/1.

Hardness Integer programming problems generally take much longer to solve then the corresponding linear
program obtained by ignoring integrality. It is wise therefore to consider the possibility of solving as a straight
forward L.P. and then rounding e.g, in the trim-loss problem. This is not always possible for example if x is
a 0/1 variable such that x = 0 means do build a plant and x = 1 means build a plant then rounding x1/2 is
not very satisfactory.

6.2 A cutting plane algorithm for the pure problem

The rationale behind this approach is:-

Step 1 Solve the continuous problem as an L.P. i.e. ignore integrality.

Step 2 If by chance the optimal basic variables are all integer then the optimum solution has been found.
Otherwise,

Step 3 Generate a cut i.e. a constraint which is satisfied by all integer solutions to the problem but not by
the current L.P. solution.

Step 4 Add this new constraint and go to Step 1.

It is straight forward to show that if at any stage the current L.P. Solution x is integer it is the optimal integer
solution. This is because x is optimal over a region containing all feasible integer solutions. The problem is to
define cuts that ensure the convergence of the algorithm in a finite number of steps. The first finite algorithm
was devised by R.E, Gomory. It is based on the following construction: let

a1x1 + a2x2 + · · ·+ anxn = b

be an equation which is to be satisfied by non-negative integers x1, x2, . . . , xn and let S be the set of possible
integer solutions.

For a real number ξ we define ⌊ξ⌋ to be the largest integer which is less than or equal to ξ. Thus ξ = ⌊ξ⌋+ ε
where 0 ≤ ε < 1.

⌊6.5⌋ = 6, ⌊3⌋ = 3, ⌊−4.5⌋ = −5.

25

Now let aj = ⌊aj⌋+ fj and b = ⌊b⌋+ f . Then we have

n∑︂
j=1

(⌊aj⌋+ fj)xj = ⌊b⌋+ f

and hence
n∑︂

j=1

fjxj − f = ⌊b⌋ −
n∑︂

j=1

⌊aj⌋xj. (25)

Now for x ∈ S, the RHS of (25) is an integer and the LHS is at least −f > −1. This implies that

n∑︂
j=1

fjxj − f ∈ {0, 1, . . .} .

Suppose now that one has solved the LP relaxation and the solution is not integer. Therefore there is a basic
variable xi with

xi +
∑︂
j /∈I

bi,jxj = bi,0

where bi,0 is not an integer. (Here I is the set of indices of basic variables and the bi,j are the coefficients of
the simplex tableaux.)

Putting fi = bi,j − ⌊bi,j⌋ for j /∈ I and f = bi,0 − ⌊bi,0⌋ we see that∑︂
j /∈I

fjxj > f (26)

for all integer solutions to our problem.

Now f > 0 since bi,0 is not an integer and so (26) is not satisfied by the current L.P. solution since xj = 0 for
j /∈ I and so (26) is a cut.

The initial continuous problem solved by the algorithm is the L.P. problem obtained by ingoring integrality.

Statement of the Algorithm

Step 1 Solve current continuous problem.

Step 2 If the solution is integral it is the optimal integer solution, otherwise.

Step 3 Choose a basic variable xi, which is currently non-integer, construct the corresponding constraint (26)
and add it to the problem. Go to step 1.

We note that the tableau obtained after adding the cut is dual feasible and so the dual simplex algorithm
can be used to re-optimise.

26

Example:

Maximise x1 + 4x2

Subject to 2x1 + 4x2 ≤ 7.

10x1 + 3x2 ≤ 14.

x1, x2 ≥ 0 and integer.

B.V. x1 x2 x3 x4 ξ1 ξ2 RHS
x0 −1 −4 0
x3 2 4 1 7
x4 10 3 1 14

x0 1 1 7
x2 1/2 1 1/4 7/4 cut made from this row
x4 17/2 −3/4 1 35/4
ξ1 −1/2 −1/4 1 −3/4

x0 1/2 2 11/2
x2 1 1 1
x4 −5 1 17 −4
x1 1 1/2 −2 3/2

x0 1/10 37/10 51/10 cut made from this row
x2 1 1 1
x3 1 −1/5 −17/5 4/5
x1 1 1/10 −3/10 11/10
ξ2 −1/10 −7/10 1 −1/10

x0 3 5
x2 1 1 1
x3 1 −1 −2 1
x1 −1 1 1
x4 7 −10 1

• One can show that the Gomory cuts
∑︁

j fj > f when expressed in terms of the original non-basic
variables have the form

∑︁
j wjxj ≤ W where the wj,W are integer and the value of

∑︁
j wjxj after

solving the current continuous problem is W + ε where 0 < ε < 1 assuming the current solution is non-
integer, Thus the cut is obtained by moving a hyperplane parallel to itself to an extent which cannot
exclude an integer solution. It is worth noting that the plane can usually be moved further without
excluding integer points thus generating deeper cuts. For a discussion on how this can be done see the
reference given for integer programming,

• After adding a cut and carrying out one iteration of the dual simplex algorithm the slack variable
corresponding to this cut becomes non-basic, If during a succeeding iteration this slack variable becomes
basic then it may be discarded along with its current row without affecting termination. This means
that the tableau never has more than n+ 1 rows or m+ n columns.

• A valid cut can be generated from any row containing a non-integral variable, One strategy is to choose
the variable with the largest fractional part as this helps’ to produce a ”large’ change in the objective

27

valve. It is interesting that finitness of the algorithm has not been proved for this strategy although
finitness has been proved for the strategy of always choosing the ‘topmost’ row the tableau with a
non-integer variable.

• The behaviour of this algorithm has been erratic. It has for example worked well on set covering
problems but in other cases the algorithm has to be terminated because of excessive use of computer
time, This raises an important point; if the algorithm is stopped prematurely then one does not have a
good sub-optimal solution to use. Thus in some sense the algorithm is unreliable,

7 Branch and bound

We consider the problem P0:
Minimize f(x) subject to x ∈ S0.

Here S0 is our set of feasible solutions and f : S0 → ℜ.

As we proceed in Branch-and-Bound we create a set of sub-problems P . A sub-problem P ∈ P is defined by
the description of a subset SP ⊆ S0. We also keep a lower bound bP where

bP ≤ min {f(x) : x ∈ SP} .

At all times we act as if we have x∗ ∈ S0, some known feasible solution to P0 and v∗ = f(x∗). If we do not
actually have a solution x∗ then we let v∗ = −∞. We will have a procedure bound that computes bP for a
sub-problem P . In many cases, bound sometimes produces a solution xP ∈ S0 and sometimes determines
that SP = ∅.

We initialize P = {P0}.

Branch and Bound:

Step 1 If P = ∅ then x∗ solves the problem.

Step 2 Choose P ∈ P . P ← P \ {P}.

Step 3 Bound: Run bound(P) to compute bP .

Step 4 If SP = ∅ or bP ≥ v∗ then we consider P to be solved and go to Step 1.

Step 5 If bound generates xP ∈ S0 and f(xP) < v∗ then we update, x∗ ← xP , v
∗ ← f(xP).

Step 6 Branch: Split P into a number of subproblems Qi, i = 1, 2, . . . , ℓ, where SP =
⋃︁ℓ

i=1 SQi
. And

SQi
̸= SP is a strict subset for i = 1, 2, . . . , ℓ.

Step 7 P ← P ∪ {Q1, Q2, . . . , Qℓ}.

Assuming S0 is finite, this procedure will eventually terminate with P = ∅. This is because the feasible sets
SP are getting smaller and smaller as we branch.

Most often the procedure bound has the following form: while it may be difficult to solve P directly, we may
be able to find TP ⊇ SP such that there is an efficient algorithm that determines whether or not TP = ∅ and

28

finds ξP ∈ TP that minimizes f(ξ), ξ ∈ TP , if TP ̸= ∅. In this case, bP = f(ξP) and Step 5 is implemented if
ξP ∈ S0. We call the problem of minimizing f(ξ), ξ ∈ TP , a relaxed problem.

Examples:

Ex. 1 Integer Linear Programming. Here SP is the set of integer solutions and TP is the set of solutions,
if we ignore integrality. The procedure bound solves the linear program. If the solution ξP is not
integral, we choose a variable x, whose value is ζ /∈ Z and form 2 sub-problems by adding x ≤ ⌊z⌋ to
one and x ≥ ⌈z⌉ to the other.

Ex. 2 Traveling Salesperson Person Problem (TSP): Here SP is the set of tours i.e. single directed
cycles that cover all the vertices. We can take TP to be the set of collections of vertex disjoint directed
cycles that cover all the vertices. More precisely, to solve the TSP we must minimise

∑︁n
i=1C(I, π(i))

as π ranges over all cyclic permutations. Our relaxation is to minimise
∑︁n

i=1 C(I, π(i)) as π ranges
over all permutations, i.e. the assignment problem. We branch as follows. Suppose that the as-
signment solution consists of cycles C1, C2, . . . , Ck, k ≥ 2. Choose a cycle, C1 say. Suppose that
C1 = (v1, v2, . . . , vr) as a sequence of vertices. Then in Q1 we disallow π(v1) = v2, in Q2 we insist that
π(v1) = v2, but that π(v2) ̸= v3, in Q3 we insist that π(v1) = v2, π(v2) = v3, but that π(v3) ̸= v4 and
so on.

Ex. 3 Implicit Enumeration: Here the problem is

Minimize
n∑︂

j=1

cjxj subject to
n∑︂

j=1

ai,jxj ≥ bi, i ∈ [m], xj ∈ {0, 1} , j ∈ [n].

A sub-problem is assciated with two sets I, O ⊆ [n]. This the sub-problem PI,O where we add the
constraints xj = 1, j ∈ I, xj = 0, j ∈ O. We also check to see if xj = 1, j ∈ I, xj = 0, j /∈ I gives
an improved feasible solution. As a bound bI,O we use

∑︁
j /∈O max {cj, 0}. To test feasibility we check

that
∑︁

j /∈O max {ai,j, 0} ≥ bi, i ∈ [m]. To branch, we split PI,O into PI∪{j},O and PI,O∪{j} for some
j /∈ I ∪O.

8 P v NP: informally

We want some formal way of saying that a problem is efficiently solvable or otherwise. We are given an
algorithm A that solves a set of problems I. A problem will be of the form

“does instance I ∈ I have property P”. (27)

Each problem instance I ∈ P has a size σ(I). (Size could be the number of bits needed to describe the
problem or more loosely the number vertices in a graph problem or m + n for a linear program in standard
form.) Let T (A, I) denote the time (in steps) that A takes to solve I. We say that A runs in polynomial time
if T (A, I) = O(σ(I)c) where c is some constant independent of I. Then P is the set of problems that can
be solved in polynomial time. Examples include “does G have a perfect matching?”; “can G be properly 2-
colored?”; “is this set of linear equations solvable?”. An optimization problem can be put into this framework
by using binary search on problems of the form “is the minimal value at most L?”. It turns out that Linear
Programming is solvable in polynomial time.

P is relatively small compared to the set of problems NP that arise in optimization. A problem (27) is in
NP if there is a witness w(I) that can be used in polynomial time to verify I ∈ I. For example, if I is

29

the set of graphs and P is the set of graphs with a Hamilton cycle (i.e. one that goes through each vertex
exactly once) then w(I) would be such a cycle. Informally, a problem is in NP if when I give you a proposed
solution, it is easy to check the truth of this.

Reductions A polynomial time reduction PRT of I1 to I2 if there is a map ϕ : I1 → I2 such that (i)
σ(f(I)) is polynomially related to σ(I) and ϕ(I) can be computed in polynomial time and (ii) I ∈ I1 iff
ϕ(I) ∈ I2. In other words, we can solve an instance of I1 in polynomial time if we can solve an instance of
I2 in polynomial time. Notice that if there is a PRT of I1 to I2 and a PRT of I2 to I3 then there is a PRT
of I1 to I3.

A problem I in NP is said to be NP-complete if every problem in NP has a PRT to I. Cook proved that SAT
is NP -complete: we have a set C of m clauses consisting of sets of literals xj or x̄j = 1 − xj, j = 1, 2, . . . , n.
C is satisfiable if there is an assignment of values 0 or 1 to the xj such that every clause contains at least one
literal of value 1.
Example: {x1, x̄2, x3} , {x̄1, x3, x̄4} , {x2, x4} is satisfied by taking x1 = 0, x2 = 0, x3 = 0, x4 = 1. On the other
hand {x1, x2} , {x1, x̄2} , {x̄1, x2} , {x̄1, x̄2} cannot be satisfied.

30

If I1 is NP -complete and it has a PRT to I2 then I2 is also NP -complete. If there is a polynomial time
algorithm for any NP -complete problem then there is a polynomial time algorithm for solving any problem
in NP . By now there are thousands of naturally defined NP-complete problems. At present, no one has
found a polynomial time algorithm for any of these. It is therefore conjectured that there are no poynomial
time algorithms for any NP -complete problems and that NP ̸= P .

9 Approximation Algorithms

If solving an optimization problem is considered to be hard, then we can sometimes efficiently find approximate
solutions with guarantees how far from optimum they are. An α-approximation algorithm for a minimisation
problem computes a solution whose value is at most αv∗, where v∗ is the minimum value for the problem.
(For maximisation we have at least αv∗.)

9.1 Traveling Salesperson Problem – TSP

9.1.1 Unrestricted

There is no polynomial time M -approximation algorithm unless P=NP. Given a graph G, give a cost of 1 to
each edge of G and Mn + 1 to each non-edge. Then, the TSP has a tour of length n iff G is Hamiltonian.
Otherwise the cost of the tour is at least (M + 1)n. An M -approximation algorithm could tell if G is
Hamiltonian. If G is Hamiltonian, it produces a tour of length at most Mn < (M + 1)n, implying that G is
Hamiltonian. Otherwise it produces a tour of length at least (M + 1)n, implying that the minimum length
tour is greater than n, so G is not Hamiltonian.

9.1.2 Triangle Inequality

We assume next that the costs C(i, j), 1 ≤ i, j ≤ n satisfy the triangular inequality i.e. C(i, j) + C(J, k) ≥
C(i, k).

Tree heuristic

Step 1 Find a minimum cost spanning tree T .

Step 2 Double the edges of T to make an Eulerian multigraph K. (Eulerian because all degrees are even.
Such a graph contains a closed walk that goes through each edge exactly once.)

Step 3 Construct an Euler tour i1, i2, . . . , i2n−2 through the edges of K.

Step 4 Shortcut the Euler tour until it is a Hamilton cycle H. I.e. go through the vertices i1, i2, . . . , in
sequence and skip over any vertex that has already been visited.

Theorem 3. The tour H found by the tree heuristic satisfies C(H) ≤ 2C∗, where C∗ is the minimum cost
of a tour.

31

Proof. We observe that
C(H) ≤ C(K) ≤ 2C(T) ≤ 2C∗.

For C(H) ≤ C(K) we use the triangle inequality repeatedly to argue that C(j1, j2) + C(jj, j3) + · · · +
C(jk−1, jk) ≥ C(j1, jk). The other inequalities are obvious.

Christofides’ heuristic A simple idea reduces the 2 to 3/2.

Step 1 Find a minimum cost spanning tree T .

Step 2 Let O be the set of vertices of T of odd degree. |O| is even.

Step 3 Find a minimum cost matching M that covers O.

Step 4 Let K = M + T . K is Eulerian.

Step 5 Construct an Euler tour i1, i2, . . . , i2n−2 through the edges of K.

Step 6 Shortcut the Euler tour until it is a Hamilton cycle H.

Theorem 4. The tour H found by the Christofides’ heuristic satisfies C(H) ≤ 3C∗/2.

Proof. This follows from the fact that C(M) ≤ C∗/2. Start with the optimal tour. Shortcut the vertices that
are not in O. What is left has cost at most C∗ and is the union of two disjoint matchings. Each of them have
cost at least that of M .

9.2 Knapsack problem

We consider the problem

Maximize
n∑︂

i=1

pixi

Subject to
n∑︂

i=1

aixi ≤ B

xi = 0/1, i = 1, 2, . . . , n

We will assume that p1/a1 ≥ p2/a2 ≥ · · · ≥ pn/an.

9.2.1 Greedy Algorithm

Find i such that A = a1 + a2 + · · ·+ ai−1 ≤ B < a1 + a2 + · · ·+ ai. Then choose the better of {1, 2, . . . , i− 1}
and {i}. (We associate the set {j : xj = 1} with a solution.)

Let T = p1 + p2 + · · ·+ pi−1. We have the maximum value

OPT ≤ T +
B − A

ai
pi.

32

This follows from the fact that its RHS is the optimal value allowing fractional values for the xj.

T ≥ OPT

2
or pi ≥

B − A

ai
pi ≥

OPT

2
.

9.2.2 Profit rounding algorithm

Let ˆ︁pi = ⌊Npi/pmax⌋ for i = 1, 2, . . . , n. Here pmax = maxi∈[n] pi and N = ⌈n/ε⌉. We solve the knapsack
problem with profits ˆ︁pi. Because the profits are “small” (≤ N), we can solve the new problem in polynomial
time via Dynamic programming.

Theorem 5. The solution produced in this way has value at least (1− ε)OPT .

Proof. We first discuss the solution of the knapsack problem. Let

gr(p) =minimum a1x1 + . . .+ arxr (28)

Subject to ˆ︁p1x1 + · · ·+ ˆ︁prxr ≥ p

xi = 0/1 for i ∈ [r].

Note that

gr(p) = min

{︄
gr−1(p) xr = 0.

ar + gr(p− ˆ︁pr) xr ≥ 1.
(29)

We evaluate (29) for p = 0, 1, . . . , Nn and r = 1, 2, . . . , n. This takes O(N2) = O(n3/ε) time.

If we know gn(p), 0 ≤ p ≤ Nn, then

OPT = gn(p
∗) where gn(p

∗) ≤ B and gn(p
∗ + 1) > B.

We now verify the quality of the solution. Let ˆ︁S define the solution to (28) and let S∗ define the solution to
the actual knapsack problem. Then ∑︂

i∈ˆ︁S
ˆ︁pi ≥∑︂

i∈S∗

ˆ︁pi.
Therefore ∑︂

i∈ˆ︁S
pi ≥

∑︂
i∈ˆ︁S
⌊︃
piN

pmax

⌋︃
pmax

N
=

pmax

N

∑︂
i∈ˆ︁S
ˆ︁pi ≥ pmax

N

∑︂
i∈S∗

ˆ︁pi. (30)

But,

pmax

N

∑︂
i∈S∗

⌊︃
Npi
pmax

⌋︃
≥ pmax

N

∑︂
i∈S∗

(︃
piN

pmax

− 1

)︃
≥
∑︂
i∈S∗

pi −
npmax

N
≥∑︂

i∈S∗

pi − εpmax ≥
∑︂
i∈S∗

pi − εOPT = (1− ε)OPT.

33

9.3 Set cover

9.3.1 Primal-Dual algorithm

Recall the set cover problem of Section 6.1. The dual of the LP relaxation (24) is

Maximise
m∑︂
i=1

yi. (31)

Subject to
m∑︂
i=1

ai,jyi ≤ cj, j=1,2,. . . ,n. (32)

yj ≥ 0, j = 1, 2, . . . , n.

The constraints (32) can be re-expressed as ∑︂
i:j∈Si

yi ≤ cj. (33)

Consider the following algorithm:

Step 1 y← 0, J ← ∅.

Step 2 while there exists i /∈
⋃︁

j∈J Sj do increase yi until
there is some ℓ with i ∈ Sℓ such that

∑︁
k∈Sℓ

yk = cℓ.
J ← J ∪ {ℓ}.

Let J∗ define the optimum cover and let ˆ︁J be produced by the above algorithm.

Theorem 6. Let fi be the number of sets Sj that contain i and let f = maxi fi. The above algorithm produces

a set-cover ˆ︁J and c(ˆ︁J) ≤ fc(J∗).

Proof. It is clear from Step 2 that ˆ︁J defines a cover. Let ˆ︁y denote y at the end of the algorithm. It is also
clear that ˆ︁y satisfies (33) and so it satisfies the dual constraints. Let zLP ≤ c(J∗) denote the value of the
optimum solution to (24). Then,

∑︂
j∈ ˆ︁J

cj =
∑︂
j∈ ˆ︁J
∑︂
i∈Sj

ˆ︁yj = m∑︂
i=1

|
{︂
j ∈ ˆ︁J : i ∈ Sj

}︂
| =

m∑︂
i=1

fiˆ︁yi ≤ f

m∑︂
i=1

ˆ︁yi ≤ fzLP ≤ fc(J∗).

9.3.2 Greedy Algorithm

In this algorithm we add sets to our cover according to the average cost of newly covered elements.

Step 1 J ← ∅, ˆ︁Sj ← Sj, j = 1, 2, . . . , n.

Step 2 ℓ = argminj:ˆ︁Sj ̸=∅
cj

|ˆ︁Sj |
.

34

Step 3 J ← J ∪ {ℓ}, ˆ︁Sj ← ˆ︁Sj \ ˆ︁Sℓ, j = 1, 2, . . . , n.

Let Hk =
∑︁k

t=1 k
−1 denote the Harmonic number k. Once again, let J∗ define the optimum cover and let ˆ︁J

be produced by the above algorithm.

Theorem 7. The above algorithm produces a set-cover ˆ︁J and c(ˆ︁J) ≤ Hn · c(J∗).

Proof. Let nk denote the number of uncovered elements at the start of the kth iteration. Now at the start of
iteration k,

min
j:ˆ︁Sj ̸=∅

cj

|ˆ︁Sj|
≤
∑︁

j∈J∗ cj∑︁
j∈J∗ |ˆ︁Sj|

=
c(J∗)∑︁
j∈J∗ |ˆ︁Sj|

≤ c(J∗)

nk

. (34)

Thus, if ℓ minimises the fraction on the LHS of eqrefg1, then

cℓ ≤
|ˆ︁Sℓ| · c(J∗)

nk

=
(nk − nk+1)c(J

∗)

nk

.

And then if there are K iterations altogether,

∑︂
ℓ∈ ˆ︁J

cℓ ≤
K∑︂
k=1

(nk − nk+1)c(J
∗)

nk

≤ c(J∗)
K∑︂
k=1

(︃
1

nk

+
1

nk − 1
+ · · ·+ 1

nk+1 + 1

)︃
= Hn · c(J∗).

9.4 Submodular functions

A function f : 2X → R is submodular if for every A,B ⊆ X,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B). (35)

Note that if f, g satisfy (35), then so does f + g.

Example: Simple plant location problem Here f refers to profit:

f(S) = −
∑︂
i∈S

fi +
n∑︂

j=1

max {pi,j : i ∈ S} .

The constant function is clearly submodular and this deals with
∑︁

i fi. Then we observe that for reals
x1, x2, . . . , xn,

max {xi : i ∈ A ∩B}+max {xi : i ∈ A ∪B} ≤ max {xi : i ∈ A}+max {xi : i ∈ B} .

(Assume that the largest xi is for i ∈ A. Then, max {xi : i ∈ A ∪B} = max {xi : i ∈ A} and
max {xi : i ∈ A ∩B} ≤ max {xi : i ∈ B}.)

f is monotone increasing if
f(B) ≥ f(A) whenever B ⊇ A.

Greedy Algorithm:
Step 0: S0 = ∅.
Step i: Si = Si−1 ∪ {xi} where xi /∈ Si−1 maximises f(Si−1 ∪ {x}).

35

Theorem 8. If f is monotone increasing and submdular and if f(∅) = 0 then after k steps of Greedy

f(Sk) ≥ (1− e−1)f(S∗
k),

where S∗
k maximises f over sets of size k.

Proof. Let ∆(v | T) = f(T ∪ {v})− f(v). If S ⊇ T and v /∈ S then

f(S ∪ {v}) + f(T) ≤ f(T ∪ {v}) + f(S) (A = T ∪ {v} , B = S),

which implies that
∆(v | S) ≤ ∆(v | T). (36)

(The larger the set, the smaller the gain from v.)

Note that (36) is still true if v ∈ S, from monotonicity. Let S∗
k = {v∗1, . . . , v∗k}.

f(S∗
k) ≤ f(S∗

k ∪ Si)

= f(Si) +
k∑︂

j=1

∆(v∗j | Si ∪
{︁
v∗1, . . . , v

∗
j−1

}︁
≤ f(Si) +

k∑︂
j=1

∆(v∗j | Si)

≤ f(Si) +
k∑︂

j=1

(f(Si+1)− f(Si))

= f(Si) + k(f(Si+1)− f(Si)).

We re-write the last line as

f(S∗
k)− f(Si+1) ≤

(︃
1− 1

k

)︃
(f(S∗

k)− f(Si)).

This implies that

f(S∗
k)− f(Sk) ≤

(︃
1− 1

k

)︃k

(f(S∗
k)− f(∅)) ≤ e−1f(S∗

k).

9.5 Local Search

This is a general approach to solving hard problems in Combinatorial Optimisation. Suppose that the problem
is to

Maximise f(x) Subject to x ∈ X. (37)

One proceeds as follows: for each x ∈ X we define a neighborhood Nx ⊆ X containing x. It is defined so
that finding max {f(y) : y ∈ Nx} can be done efficiently. We can then find a good (not necesarily optimal
solution as follows: let x0 ∈ X be chosen in some way. Then define the sequence x0,x1, . . . ,xm where xi

maximises f(y) : y ∈ Nxi−1
. The value m will the smallest i such that xi = xi−1.

36

9.5.1 MaxCut

We are given a connected graph G = (V,E) and a function w : E → Z+. We let X = 2V and f(S) = w(S, S̄)
i.e. f(S) is the weight of the cut S : S̄. We then let NS = {T : |T \ S|+ |S \ T | = 1}. Let W =

∑︁
e∈E w(e).

Theorem 9. Local search finds a solution ˆ︁S such that f(ˆ︁S) ≥ OPT/2. It requires at most W iterations.

Proof.

f(ˆ︁S) ≥ f(ˆ︁S ∪ {v}) for v /∈ ˆ︁S implies that w(v, ˆ︁S) ≥ w(v, ˆ︁S¯).
f(ˆ︁S) ≥ f(ˆ︁S \ {v}) for v ∈ ˆ︁S implies that w(v, ˆ︁S¯) ≥ w(v, ˆ︁S).

So,

4f(ˆ︁S) = 2
∑︂
v∈ˆ︁S

w(v, ˆ︁S¯) + 2
∑︂
v/∈ˆ︁S

w(v, ˆ︁S)
≥
∑︂
v∈ˆ︁S

w(v, ˆ︁S¯) +∑︂
v/∈ˆ︁S

w(v, ˆ︁S) +∑︂
v∈ˆ︁S

w(v, ˆ︁S) +∑︂
v/∈ˆ︁S

w(v, ˆ︁S¯)
= 2W ≥ 2OPT.

The bound W on the number of iterations might be excessive. We can reduce this to a polynomial at
a small degradation in performance. Let wmax = max {w(e) : e ∈ E} and N = |E|wmax/(εW). Then let
w∗(e) = ⌈Nw(e)/wmax⌉ for e ∈ E and W ∗ =

∑︁
e∈E w∗(e).

Suppose we run the above algorithm, using w∗ in place of w. Then we have∑︂
e∈ˆ︁S

Nw(e)

wmax

+ |E| ≥ W ∗

2
≥ NW

2wmax

.

So,

w(ˆ︁S) ≥ W

2
− wmax|E|

N
≥ W

(︃
1

2
− ε

)︃
.

The running time is at most nW ∗ ≤ 2n|E|/ε.

37

10 Non-linear Optimization Problems

We consider the following problem:

Minimize f(x) subject to x ∈ S, (38)

where x = (x1, x2, . . . , xn) and S ⊆ ℜn.

Example: f(x) = cTx and S = {x ∈ ℜn : Ax = b,x ≥ 0} – Linear Programming.

Local versus Global Optima: x∗ is a global minimum if it is an actual minimizer in (38).

x∗ is a local minimum if there exists δ > 0 such that f(x∗) ≤ f(x) for all x ∈ B(x∗) ∩ S, where B(x, δ) =
{y : |y − x| ≤ δ} is the ball of radius δ, centred at x.

See Diagram 1 at the end of these notes.

If S = ∅ then we say that the problem is unconstrained, otherwise it is constrained.

11 Convex sets and functions

11.1 Convex Functions

A function f : Rn → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

See Diagram 2 at the end of these notes.

Examples of convex functions:

F1 A linear function f(x) = aTx is convex.

F2 If n = 1 then f is convex iff
f(y) ≥ f(x) + f ′(x)(y − x) for all x, y. (39)

Proof. Suppose first that f is convex. Then for 0 < λ ≤ 1,

f(x+ λ(y − x)) ≤ (1− λ)f(x) + λf(y).

Thus, putting h = λ(y − x) we have

f(y) ≥ f(x) +
f((x+ h)− f(x))

h
(y − x).

Taking the limit as λ→ 0 implies (39).

Now suppose that (39) holds. Choose x ̸= y and 0 ≤ λ ≤ 1 and let z = λx+ (1− λ)y. Then we have

f(x) ≥ f(z) + f ′(z)(x− z) and f(y) ≥ f(z) + f ′(z)(y − z).

Multiplying the first inequality by λ and the second by 1− λ and adding proves that

λf(x) + (1− λ)f(y) ≥ f(z).

38

F3 If n ≥ 1 then f is convex iff f(y) ≥ f(x) + (∇f(x))T(y − x) for all x,y.
Apply F2 to the function h(t) = f(tx+ (1− t)y).

F4 A n = 1 and f is twice differentiable then f is convex iff f ′′(z) ≥ 0 for all z ∈ R.

Proof. Taylor’s theorem implies that

f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(z)(y − x)2 where z ∈ [x, y].

We now just apply (39).

F5 It follows from F4 that eax is convex for any a ∈ R.

F6 xa is convex on R+ for a ≥ 1 or a ≤ 0. xa is concave for 0 ≤ a ≤ 1.
Here f is concave iff −f is convex.

F7 Suppose that A is a symmetric n× n positive semi-definite matrix. Then Q(x) = xTAx is convex.
By positive semi-definite we mean that Q(x) ≥ 0 for all x ∈ Rn.
We have

Q(λx+ (1− λ)y)− λQ(x)− (1− λ)Q(y) (40)

=λ2Q(x) + (1− λ)2Q(y) + 2λ(1− λ)xTAy − λQ(x)− (1− λ)Q(y) (41)

=− λ(1− λ)Q(y − x) ≤ 0. (42)

F8 If n ≥ 1 then f is convex iff ∇2F =
[︂

∂f2

dxidxj

]︂
is positive semi-definite for all x.

Apply F7 to the function h(t) = f(x+ td) for all x,d ∈ Rn.

Operations on convex functions

E1 If f, g are convex, then f + g is convex.

E2 If λ > 0 and f is convex, then λf is convex.

E3 If f, g are convex then h = max {f, g} is convex.

Proof.

h(λx+ (1− λ)y) = max {f(λx+ (1− λ)y),g(λx+ (1− λ)y)} (43)

≤ max {λf(x) + (1− λ)f(y), λg(x) + (1− λ)g(y)} (44)

≤ λmax {f(x), g(x)}+ (1− λ)max {f(y),g(y)} (45)

= λh(x) + (1− λ)h(y). (46)

Jensen’s Inequality
If f is convex and ai ∈ Rn, λi ∈ R+, 1 ≤ i ≤ m and λ1 + λ2 + · · ·+ λm = 1 then

f

(︄
m∑︂
i=1

λiai

)︄
≤

m∑︂
i=1

f(λiai).

39

The proof is by induction on m. m = 2 is from the definition of convexity and then we use

m∑︂
i=1

λiai = λmam + (1− λm)
m−1∑︂
i=1

λi

1− λm

ai.

Application: Arithmetic versus geometric mean.
Suppose that a1, a2, . . . , am ∈ R+. Then

a1 + a2 + · · ·+ am
m

≥ (a1a2 · · · am)1/m. (47)

− log(x) is a convex function for x ≥ 0. So, applying (47),

− log

(︄
m∑︂
i=1

λiai

)︄
≤

m∑︂
i=1

− log(λiai).

Now let λi = 1/m for i = 1, 2, . . . ,m.

11.2 Convex Sets

A set S ⊆ Rn is said to be convex if x,y ∈ S then the line segment

L(x,y) = {λx+ (1− λ)y ∈ S : 0 ≤ λ ≤ 1} .

See Diagram 3 at the end of these notes.

Examples of convex sets:

C1 S =
{︁
x : aTx = 1

}︁
. x,y ∈ S implies that

aT (λx+ (1− λ)y) = λaTx+ (1− λ)aTy = λ+ (1− λ) = 1.

C2 S =
{︁
x : aTx ≤ 1

}︁
. Proof similar to C1.

C3 S = B(0, δ): x,y ∈ S implies that

|λx+ (1− λ)y| ≤ |λx|+ |(1− λ)y| ≤ λδ + (1− λ)δ = δ.

C4 If f is convex, then the level set {x : f(x) ≤ 0} is convex.
f(x), f(y) ≤ 0 implies that f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ 0.

Operations on convex sets:

O1 S convex and x ∈ Rn implies that x+ S = {x+ y : y ∈ S} is convex.

O2 S, T convex implies that A = S ∩ T is convex. x,y ∈ A implies that x,y ∈ S and so L = L(x,y) ⊆ S.
Similarly, L ⊆ T and so L ⊆ S ∩ T .

O3 Using induction we see that if Si, 1 ≤ i ≤ k are convex then so is
⋂︁k

i=1 Si.

40

O4 If S, T are convex sets and α, β ∈ R then αS + βT = {αx+ βy} is convex.
If zi = αxi + βyi ∈ T, i = 1, 2 then

λz1 + (1− λ)z2 = α(λx1 + (1− λ)x2) + β(λy1 + (1− λ)y2) ∈ T.

It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax ≤ b} are convex
for any matrix A any vector b.

We now prove something that implies the importance of the above notions. Most optimization algorithms
can only find local minima. We do however have the following theorem:

Theorem 10. Let f, S both be convex in (38). Then if x∗ is a local minimum, it also a global minimum.

Proof.
See Diagram 4 at the end of these notes.

Let δ be such that x∗ minimises f in B(x∗, δ)∩ S and suppose that x ∈ S \B(x∗, δ). Let z = λx∗ + (1− λ)x
be the point on L(x∗,x) at distance δ from x∗. Note that z ∈ S by convexity of S. Then by the convexity of
f we have

f(x∗) ≤ f(z) ≤ λf(x∗) + (1− λ)f(x)

and this implies that f(x∗) ≤ f(x).

The following shows the relationship between convex sets and functions.

Lemma 11. let f1, f2, . . . , fm be convex functions on Rn. Let b ∈ Rm and let

S = {x ∈ Rn : fi(x) ≤ bi, i = 1, 2, . . . ,m} .

Then S is convex.

Proof. It follows from O3 that we can consider the case m = 1 only and drop the subscript. Suppose now
that x,y ∈ S i.e. f(x), f(y) ≤ b. Then for 0 ≤ λ ≤ 1

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λb+ (1− λ)b = b.

So, λx+ (1− λ)y ∈ S.

12 Algorithms

12.1 Line search – n = 1

Here we consider the simpler problem of minimising a convex (more generally unimodal) function f : R→ R.

See Diagram 5 at the end of these notes.

We assume that we are given a0, a1 such that a0 ≤ x∗ ≤ a1 where x∗ minimises f . This is not a significant
assumption. We can start with a0 = 0 and then consider the sequences ζi = f(2i), ξi = f(−2i) until we find
ζi−1 ≤ min {ζ0, ζi} (resp. ξi−1 ≤ min {ξ0, ξi}). Then we know that x∗ ∈ [ζ0, ζi] (resp. x

∗ ∈ [ξ0, ξi]).

41

Assume then that we have an interval [a0, a1] of uncertainty for x∗. Furthermore, we will have evaluated f at
two points in this interval, two points inside the interval at a2 = a0 + α2(a1 − a0) and a3 = a0 + α(a1 − a0)
respectively. We will determine α shortly. And at each iteration we make one new function evaluation and
decrease the interval of uncertainty by a factor α. There are two possibilities:

(i) f(a2) ≤ f(a3). This implies that x∗ ∈ [a0, a3]. So, we evaluate f(a0+α2(a3−a0)) and make the changes
ai → a′i:

a′0 ← a0, a
′
1 ← a3, a

′
2 ← a0 + α2(a3 − a0), a

′
3 ← a2.

(ii) f(a2) > f(a3). This implies that x∗ ∈ [a2, a1]. So, we evaluate f(a0+) and make the changes ai → a′i:

a′0 ← a2, a
′
1 ← a1, a

′
2 ← a3, a

′
3 ← a2 + α2(a1 − a0).

In case (i) we see that a′1− a′0 = a3− a0 = α(a1− a0) and so the interval has shrunk by the required amount.
Next we see that a′2−a′0 = α2(a3−a0) = α2(a′1−a0). Furthermore, a′3−a′0 = a2−a0 = α2(a1−a0) = α(a′1−a′0).

In case (ii) we see that a′1 − a′0 = a1 − a2 = a1 − (a0 + α2(a1 − a0)) = (1 − α2)(a1 − a0). So, shrink by α in
this case we choose α to satisfy 1− α2 = α. This gives us

α =

√
5− 1

2
– the golden ratio.

Next we see that a′2 − a′0 = a3 − a2 = (α − α2)(a1 − a0) =
α−α2

α
(a′1 − a′0) = (1 − α)(a′1 − a′0) = α2(a′1 − a′0).

Finally, we have a′3 − a′0 = a2 + α2(a1 − a0)− a2 = α2(a1 − a0) = α(a′1 − a′0).

Thus to achieve an accuracy within δ of x∗ we need to take t steps, where αtD ≤ δ where D is our initial
uncertainty.

12.2 Gradient Descent

See Diagram 6 at the end of these notes.

Here we consider the unconstrained problem. At a point x ∈ Rn, if we move a small distance h in direction
d then we have

f(x+ hd/|d|) = f(x) + h(∇f)T d

|d|
+O(h2) ≥ f(x)− h|∇f |+O(h2).

Thus, at least infinitessimally, the best direction is −∇f . So, for us, the steepest algorithm will follow a
sequence of points x0,x1, . . . ,xk, . . ., where

xk+1 = xk − αk∇f(xk).

Then we have

|xk+1 − x∗|2 = |xk − x∗|2 − 2αk∇f(xk)
T (xk − x∗) + α2

k|∇f(xk)
2| (48)

≤ |xk − x∗|2 − 2αk(f(xk)− f(x∗)) + α2
k|∇f(xk)|2. (49)

The inequality comes from F3.

42

Applying (49) repeatedly we get

|xk − x∗|2 ≤ |x0 − x∗|2 − 2
k∑︂

i=1

αi(f(xi)− f(x∗)) +
K∑︂
i=1

α2
i |∇f(xk)|2. (50)

Putting R = |x0 − x∗|, we see from (50) that

2
k∑︂

i=1

αi(f(xi)− f(x∗)) ≤ R2 +
K∑︂
i=1

α2
i |∇f(xk)|2. (51)

On the other hand,

k∑︂
i=1

αi(f(xi)− f(x∗)) ≥

(︄
k∑︂

i=1

αi

)︄
min {f(xk)− f(x∗) : i ∈ [k]} =

(︄
k∑︂

i=1

αi

)︄
(f(xmin − f(x∗)), (52)

where f(xmin) = min {f(xi) : i ∈ [k]}.

Combining (51) and (52) we get

f(xmin)− f(x∗) ≤ R2 +G2
∑︁k

i=1 α
2
i

2
∑︁k

i=1 αi

, (53)

where G = max {|∇f(xi)| : i ∈ [κ]}.

So, if we choose αk so that
∑︁∞

i=1 αi =∞ and
∑︁∞

i=1 α
2
i = O(1) then

|f(xmin)− f(x∗)| → 0 as k →∞. (54)

As an example, we could let αi = 1/i.

13 Separating Hyperplane

See Diagram 7 at the end of these notes.

Theorem 12. Let C be a convex set in Rn and suppose x /∈ C. Then there exists 0 ̸= a ∈ Rn and b ∈ R
such that (i) aTx ≥ b and (ii) C ⊆

{︁
y ∈ Rn : aTy ≤ b

}︁
.

Proof.
Case 1: C is closed.
Let z be the closest point in C to x. Let a = x− z ̸= 0 and b = (x− z)Tz. Then

aTx− b = (x− z)Tx− (x− z)Tz = |x− z|2 > 0.

This verifies (i). Suppose (ii) fails and there exists y ∈ C such that aTy > b. Let w ∈ C be the closest point
to x on the line segment L(y, z) ⊆ C. The triangle formed by x,w, z has a right angle at w and an acute
angle at z. This implies that |x−w| < |x− z|, a contradiction.

Case 2: x /∈ C̄.
We observe that C̄ ⊇ C and is convex (exercise). We can thus apply Case 1, with C̄ replacing C.

43

Case 3: x ∈ C̄ \C. Every ball B(x, δ) contains a point of Rn \ C̄ that is distinct from x. Choose a sequence
xn, /∈ C̄, n ≥ 1 that tends to x. For each xn, let an, bn = aT

nzn define a hyperplane that separates xn from
C̄, as in Case 2. We can assume that |an| = 1 (scaling) and that bn is in some bounded set and so there
must be a convergent subsequence of (an, bn), n ≥ 1 that converges to (a, b), |a| = 1. Assume that we re-label
so that this subsequence is (an), n ≥ 1. Then for y ∈ C̄ we have aT

ny ≤ bn for all n. Taking limits we see
that aTy ≤ b. Furthermore, for y /∈ C̄ we see that for large enough n, aT

ny > bn. taking limits we see that
aTy ≤ b.

Corollary 13. Suppose that S, T ⊆ Rn are convex and that S ∩ T = ∅. Then there exists a, b such that
aTx ≤ b for all x ∈ S and aTx ≥ b for all x ∈ T .

Proof. Let W = S + (−1)T . Then 0 /∈ W and applying Theorem 12 we see that there exists a such that
aTz ≤ 0 for all z ∈ W . Now put

b =
1

2

(︃
sup
x∈S

aTx+ inf
x∈T

aTx

)︃
.

Corollary 14 (Farkas Lemma). For an m× n matrix and b ∈ Rm, exactly one of the following holds:

(i) There exists x ∈ Rn such that x ≥ 0, Ax = b.

(ii) There exists u ∈ Rm such that uTA ≥ 0 and uTb < 0.

Proof. We cannot have both (i), (ii) holding. For then we have

0 ≤ uTAx = uTb < 0.

Suppose then that (i) fails to hold. Let S = {y : y = Ax for some x ≥ 0}. Then b /∈ S and since S is closed
there exists α, β such that (a) αTb ≤ β and (b) αTAx ≥ β for all x ≥ 0. This implies that αT (b−Ax) ≤ 0
for all x ≥ 0. This then implies that u = α satisfies (ii).

13.1 Convex Hulls

See Diagram 8 at the end of these notes.

Given a set S ⊆ Rn, we let

conv(S) =

{︄∑︂
i∈I

λixi : (i) |I| <∞, (ii)
∑︂
i∈I

λi = 1, (iii) λi > 0, i ∈ I, (iv) xi ∈ S, i ∈ I

}︄
.

Clearly S ⊆ conv(S), since we can take |I| = 1.

Lemma 15. conv(S) is a convex set.

Proof. Let x =
∑︁

i∈I λixi,y =
∑︁

j∈J µjyj ∈ conv(S). Let K = I ∪ J and put λi = 0, i ∈ J \ I and
µj = 0, j ∈ I \ J . Then for 0 ≤ α ≤ 1 we see that

αx+ (1− α)y =
∑︂
i∈K

(αλ1 + (1− α)µi)xi and
∑︂
i∈K

(αλ1 + (1− α)µi) = 1

implying that αx+ (1− α)y ∈ conv(S) i.e. conv(S) is convex.

44

Lemma 16. If S is convex, then S = conv(S).

Proof. Exercise.

Corollary 17. conv(conv(S)) = conv(S) for all S ⊆ Rn.

Proof. Exercise.

13.1.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST y, z ∈ S such that
x ∈ L(y, z). We let ext(S) denote the set of extreme points of S.

EX1 If n = 1 and S = [a, b] then ext(S) = {a, b}.

EX2 If S = B(0, 1) then ext(S) = {x : |x| = 1}.

EX3 If S = {x : Ax = b} is the set of solutions to a set of linear equations, then ext(S) = ∅.

Theorem 18. Let S be a closed, bounded convex set. Then S = conv(ext(S)).

Proof. We prove this by induction on the dimension n. For n = 1 the result is trivial, since then S must be
an interval [a, b].

Inductively assume the result for dimensions less than n. Clearly, S ⊇ T = conv(ext(S)) and suppose there
exists x ∈ S \ T . Let z be the closest point of T to x and let H =

{︁
y : aTy = b

}︁
be the hyperplane defined

in Theorem 12. Let b∗ = max
{︁
aTy : y ∈ S

}︁
. We have b∗ <∞ since S is bounded. Let H∗ =

{︁
y : aTy = b∗

}︁
and let S∗ = S ∩H∗.

We observe that if w is a vertex of S∗ then it is also a vertex of S. For if w = λw1 + (1 − λ)w2,w1,w2 ∈
S, 0 < λ < 1 then we have

b∗ = aTw = λaTw1 + (1− λ)aTw2 ≤ λb∗ + (1− λ)b∗ = b∗.

This implies that aTw1 = aTw2 = b∗ and so w1,w2 ∈ S∗, contradiction.

Now consider the point w on the half-line from z through x that lies in S∗ i.e

w = z+
b∗ − b

aTx− b
(x− z).

Now by induction, we can write w =
∑︁k

i=1 λiwi where w1,w2, . . . ,wk are extreme points of S∗ and hence of
S. Also, x = µw + (1− µ)z for some 0 < µ ≤ 1 and so x ∈ ext(S).

The following is sometimes useful.

Lemma 19. Suppose that S is a closed bounded convex set and that f is a convex function. The f achieves
its maximum at an extreme point.

45

Proof. Suppose the maximum occurs at x = λ1x1 + · · · + λkxk where 0 ≤ λ1, . . . , λk ≤ 1 and λ1 + · · · +
λk = 1 and x1, . . . ,xk ∈ ext(S). Then by Jensen’s inequality we have f(x) ≤ λ1f(x1) + · · · + λkf(xk) ≤
max {f(xi) : 1 ≤ i ≤ k}.

This explains why the solutions to linear programs occur at extreme points.

14 Lagrangean Duality

See Diagram 9 at the end of these notes.

Here we consider the primal problem

Minimize f(x) subject to gi(x) ≤ 0, i = 1, 2, . . . ,m, (55)

where f, g1, g2, . . . , gm are convex functions on Rn.

The Lagrangean

L(x,λ) = f(x) +
m∑︂
i=1

λig(x).

The dual problem is

Maximize ϕ(λ) subject to λ ≥ 0 where ϕ(λ) = min
x∈Rn

L(x,λ). (56)

We note that ϕ is a concave function. It is the minimum of a collection of convex (actually linear) functions
of λ – see E3.

D1 :Linear programming. Let f(x) = cTx and gi(x) = −aT
i x+ bi for i = 1, 2, . . . ,m. Then

L(x,λ) =
(︁
cT − λTA

)︁
x+ bTλ where A has rows a1, . . . , am.

It follows that Aλ ̸= c implies that ϕ(λ) = −∞. So the dual problem is

Minimize bTλ subject to ATλ = c.

Weak Duality: If λ is feasible for (56) and x is feasible for (55) then f(x) ≥ ϕ(λ).

ϕ(λ) ≤ L(x,λ) ≤ f(x) since λi ≥ 0, gi(x) ≤ 0, i = 1, 2, . . . ,m. (57)

Now note that ϕ(λ) = −∞, unless cT = λTA, since x is unconstrained in the definition of ϕ. And if
cT = λTA then ϕ(λ) = bTλ. So, the dual problem is to
Maximize bTλ subject to cT = λTA and λ ≥ 0, i.e. the LP dual.

Strong Duality: We give a sufficient condition Slater’s Constraint Condition for tightness in (57).

Theorem 20. Suppose that there exists a point x∗ such that gi(x
∗) < 0, i = 1, 2, . . . ,m. Then

max
λ≥0

ϕ(λ) = min
x:gi(x)≤0,i∈[m]

f(x).

46

Proof. Let

A = {u, t) : ∃x ∈ Rn, gi(x) ≤ ui, i = 1, 2, . . . ,m and f(x) ≤ t} .
B =

{︁
(0, s) ∈ Rm+1 : s < f ∗}︁ where f ∗ = min

x:gi(x)≤0,i∈[m]
f(x).

Now A ∩ B = ∅ and so from Corollary 13 there exists λ, γ, b such that (λ, γ) ̸= 0 and

b ≤ min
{︁
λTu+ γt : (u, t) ∈ A

}︁
. (58)

b ≥ max
{︁
λTu+ γt : (u, t) ∈ B

}︁
. (59)

We deduce from (58) that λ ≥ 0 and ḡ ≥ 0. If γ < 0 or λi < 0 for some i then the minimum in (58) is −∞.
We deduce from (59) that γt < b for all t < f ∗ and so γf ∗ ≤ b. And from (58) that

γf(x) +
m∑︂
i=1

λigi(x) ≥ b ≥ γf ∗ for all x ∈ Rn. (60)

If γ > 0 then we can divide (60) by γ and see that L(x,λ) ≥ f ∗, and together with weak duality, we see that
L(x,λ) = f ∗.

If γ = 0 then substituting x∗ into (60) we see that
∑︁m

i=1 λigi(x
∗) ≥ 0 which then implies that λ = 0,

contradiction.

15 Conditions for a minimum: First Order Condition

15.1 Unconstrained problem

We discuss necessary conditons for a to be a (local) minimum. (We are not assuming that f is convex.) We
will assume that our functions are differentiable. Then Taylor’s Theorem

f(a+ h) = f(a) + (∇f(a))Th+ o(|h|)

implies that
∇f(a) = 0 (61)

is a necessary condition for a to be a local minimum. Otherwise,

f (a− t∇f(a)) ≤ f(a)− t|∇f(a)|2/2

for small t > 0.

Of course (61) is not sufficient in general, a could be a local maximum. Generally spealking, one has to look
at second order conditions to distinguish between local minima and local maxima.

However,

Lemma 21. If f is convex then (61) is also a sufficient condition.

Proof. This follows directly from F3.

47

15.2 Constrained problem

We will consider Problem (55), but we will not assume convexity, only differentiability. The condition cor-
responding to (61) is the Karush-Kuhn-Tucker or KKT condition. Assume that f, g1, g2, . . . , gm are differen-
tiable. Then (subject to some regularity conditions, a necessary condition for a to be a local minimum (or
maximum) to Problem (55) is that there exists λ such that

gi(a) ≤ 0, 1 ≤ i ≤ m. (62)

λi ≥ 0 1 ≤ i ≤ m. (63)

∇f(a) +
m∑︂
i=1

λi∇gi(a) = 0. (64)

λigi(a) = 0, 1 ≤ i ≤ m. Complementary Slackness (65)

The second condition says that only active constraints (gi(a) = 0) are involved in the first condition.

One deals with gi(x) ≥ 0 via −gi(x) ≤ 0 (and λi ≤ 0) and gi(x) = 0 by gi(x) ≥ 0 and −gi(x) ≤ 0 (and λi

not constrined to be non-negative or non-positive).

In the convex case, we will see that (64), (63) and (65) are sufficient for a global minimum.

15.2.1 Heuristic Justification of KKT conditions

See Diagram 10 at the end of these notes.

Suppose that a is a local minimum and assume w.l.o.g. that gi(a) = 0 for i = 1, 2, . . . ,m. Then (heuristically)
Taylor’s theorem implies that if (i) hT∇gi(a) ≤ 0, i = 1, 2, . . . ,m then (ii) we should have hT∇f(a) ≥ 0.
(The heuristic argument is that (i) holds then we should have (iii) a + h feasible for small h and then we
should have (ii) since we are at a local minimum. You need a regularity condition to ensure that (ii) implies
(iii).)

Applying Corollary 14 we see that the KKT conditions hold. We let A have columns ∇gi(a), i = 1, 2, . . . ,m.
Then the KKT conditions are Aλ = −∇f(a).

Convex case: Suppose now that f, g1, . . . , gm are all convex functions and that (x∗,λ∗) satisfies the KKT
conditions. Now λ∗ ≥ 0 implies that ϕ(x) = L(x,λ∗) is a convex function of x. Equation (64) and Lemma
21 implies that x∗ minimises ϕ. But then for any feasible x we have

f(x∗) = ϕ(x∗) ≤ ϕ(x) = f(x) +
m∑︂
i=1

λ∗
i gi(x) ≤ f(x).

For much more on this subject see Convex Optimization, by Boyd and Vendenberghe.

48

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

49

50

51

52

53

54

55

56

57

58

	Basic Linear Programming
	Some formulations

	Duality
	Convex Sets
	Extreme Points

	Primal-Dual Algorithms
	Primal-Dual Algorithm for the Assignment Problem

	Two person zero-sum games
	Dominance
	Latin Square Game
	Non-singular games
	Symmetric games

	Integer Programming
	Examples
	A cutting plane algorithm for the pure problem

	Branch and bound
	P v NP: informally
	Approximation Algorithms
	Traveling Salesperson Problem – TSP
	Unrestricted
	Triangle Inequality

	Knapsack problem
	Greedy Algorithm
	Profit rounding algorithm

	Set cover
	Primal-Dual algorithm
	Greedy Algorithm

	Submodular functions
	Local Search
	MaxCut

	Non-linear Optimization Problems
	Convex sets and functions
	Convex Functions
	Convex Sets

	Algorithms
	Line search – n=1
	Gradient Descent

	Separating Hyperplane
	Convex Hulls
	Extreme Points

	Lagrangean Duality
	Conditions for a minimum: First Order Condition
	Unconstrained problem
	Constrained problem
	Heuristic Justification of KKT conditions

