
Geography

Start with a chip sitting on a vertex v of a graph or digraph G.

A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip
from x to y deletes the edge (x, y). In vertex geography, moving the chip from x to y deletes the
vertex x.

The problem is given a position (G, v), to determine whether this is a P or N position.

Complexity Both edge and vertex geography are Pspace-hard on digraphs. Edge geography is
Pspace-hard on an undirected graph. Only vertex geography on a graph is polynomial time solvable.

1 Undirected Vertex Geography – UVG

Theorem 1. (G, v) is an N-position in UVG iff every maximum matching of G covers v.

Proof (i) Suppose that M is a maximum matching of G which covers v. Player 1’s strategy is
now: Move along M-edge that contains current vertex.

If Player 1 were to lose, then there would exist a sequence of edges e1, f1, . . . , ek, fk such that v ∈ e1,
e1, e2, . . . , ek ∈M , f1, f2, . . . , fk /∈M and fk = (x, y) where y is the current vertex for Player 1 and
y is not covered by M . But then if A = {e1, e2, . . . , ek} and B = {f1, f2, . . . , fk} then (M \A) ∪B
is a maximum matching (same size as M) which does not cover v, contradiction.

(ii) Suppose now that there is some maximum matching M which does not cover v. Then if (v, w)
is Player 1’s move, w must be covered by M , else M is not a maximum matching. Player 2’s
strategy is now: Move along M-edge that contains current vertex. If Player 2 were to lose then
there exists e1 = (v, w), f1, . . . , ek, fk, ek+1 = (x, y) where y is the current vertex for Player 2 and y
is not covered by M . But then we have defined an augmenting path from v to y and so M is not a
maximum matching, contradiction. 2

Note that we can determine whether or not v is covered by all maximum matchings as follows: Find
the size σ of the maximum matching G. This can be done in O(n3) time on an n-vertex graph. Then
find the size σ′ of a maximum matching in G− v. Then v is covered by all maximum matchings of
G iff σ 6= σ′.

2 Undirected Edge Geography – UEG on a bipartite graph

An even kernel of G is a non-empty set S ⊆ V such that (i) S is an independent set and (ii) v /∈ S
implies that degS(v) is even, (possibly zero). (degS(v) is the number of neighbours of v in S.)

Lemma 1. If S is an even kernel and v ∈ S then (G, v) is a P-position in UEG.

Proof Any move at a vertex in S takes the chip outside S and then Player 2 can immediately
put the chip back in S. After a move from x ∈ S to y /∈ S, degS(y) will become odd and so there is
an edge back to S. making this move, makes degS(y) even again. Eventually, there will be no S : S̄
edges and Player 1 will be stuck in S. 2

We now discuss Bipartite UEG i.e. we assume that G is bipartite, G has bipartion consisting of a
copy of [m] and a disjoint copy of [n] and edges set E. Now consider the m× n 0-1 matrix A with
A(i, j) = 1 iff (i, j) ∈ E.

1

We can play our game on this matrix: We are either positioned at row i or we are positioned at
column j. If say, we are positioned at row i, then we choose a j such that A(i, j) = 1 and (i) make
A(i, j) = 0 and (ii) move the position to column j. An analogous move is taken when we positioned
at column j.

Lemma 2. Suppose the current position is row i. This is a P-position iff row i is in the span of
the remaining rows (is the sum (mod 2) of a subset of the other rows) or row i is a zero row. A
similar statement can be made if the position is column j.

Proof If row i is a zero row then vertex i is isolated and this is clearly a P-position. Otherwise,
assume the position is row 1 and there exists I ⊆ [m] such that 1 ∈ I and

r1 =
∑

i∈I\{1}

ri(mod 2) or
∑
i∈I

ri = 0(mod 2) (1)

where ri denotes row i.

I is an even kernel: If x /∈ I then either (i) x corresponds to a row and there are no x, I edges or
(ii) x corresponds to a column and then

∑
i∈I A(i, x) = 0(mod 2) from (1) and then x has an even

number of neighbours in I.

Now suppose that (1) does not hold for any I. We show that there exists a ` such that A(1, `) = 1
and putting A(1, `) = 0 makes column ` dependent on the remaining columns. Then we will be in
a P-position, by the first part.

Let e1 be the m-vector with a 1 in row 1 and a 0 everywhere else. Let A∗ be obtained by adding e1
to A as an (n + 1)th column. Now the row-rank of A∗ is the same as the row-rank of A (here we
are doing all arithmetic modulo 2). Suppose not, then if r∗i is the ith row of A∗ then there exists a
set J such that ∑

i∈J
ri = 0(mod 2) 6=

∑
i∈J

r∗i (mod 2).

Now 1 /∈ J because r1 is independent of the remaining rows of A, but then
∑
i∈J ri = 0(mod 2)

implies
∑
i∈J r

∗
i = 0(mod 2) since the last column has all zeros, except in row 1.

Thus rank A∗ = rank A and so there exists K ⊆ [n] such that

e1 =
∑
k∈K

ck(mod 2) or e1 +
∑
k∈K

ck = 0(mod 2) (2)

where ck denotes column k of A. Thus there exists ` ∈ K such that A(1, `) = 1. Now let c′j = cj
for j 6= ` and c′` be obtained from c` by putting A(1, `) = 0 i.e. c′` = c` + e1. But then (2) implies
that

∑
k∈K c

′
k = 0(mod 2) (K = {k} is a possibility here).. 2

Tic Tac Toe and extensions

We consider the following multi-dimensional version of Tic Tac Toe (Noughts and Crosses to the
English). The board consists of [n]d. A point on the board is therefore a vector (x1, x2, . . . , xd)
where 1 ≤ xi ≤ n for 1 ≤ i ≤ d.

A line is a set points (x
(1)
j , x

(2)
j , . . . , x

(d)
j), j = 1, 2, . . . , n where each sequence x(i) is either (i) of

the form k, k, . . . , k for some k ∈ [n] or is (ii) 1, 2, . . . , n or is (iii) n, n− 1, . . . , 1. Finally, we cannot
have Case (i) for all i.

Thus in the (familiar) 3× 3 case, the top row is defined by x(1) = 1, 1, 1 and x(2) = 1, 2, 3 and the
diagonal from the bottom left to the top right is defined by x(1) = 3, 2, 1 and x(2) = 1, 2, 3

2

Lemma 3. The number of winning lines in the (n, d) game is (n+2)d−nd

2 .

Proof In the definition of a line there are n choices for k in (i) and then (ii), (iii) make it up
to n+ 2. There are d independent choices for each i making (n+ 2)d. Now delete nd choices where
only Case (i) is used. Then divide by 2 because replacing (ii) by (iii) and vice-versa whenever Case
(i) does not hold produces the same set of points (traversing the line in the other direction). 2

The game is played by 2 players. The Red player (X player) goes first and colours a point red.
Then the Blue player (0 player) colours a different point blue and so on. A player wins if there is
a line, all of whose points are that players colour. If neither player wins then the game is a draw.
The second player does not have a wnning strategy:

Lemma 4. Player 1 can always get at least a draw.

Proof We prove this by considering strategy stealing. Suppose that Player 2 did have a winning
strategy. Then Player 1 can make an arbitrary first move x1. Player 2 will then move with y1. Player
1 will now win playing the winning strategy for Player 2 against a first move of y1. This can be
carried out until the strategy calls for move x1 (if at all). But then Player 1 can make an arbitrary
move and continue, since x1 has already been made. 2

2.1 Pairing Strategy
11 1 8 1 12
6 2 2 9 10
3 7 ∗ 9 3
6 7 4 4 10
12 5 8 5 11

The above array gives a strategy for Player 2 the 5 × 5 game (d = 2, n = 5). For each of the 12
lines there is an associated pair of positions. If Player 1 chooses a position with a number i, then
Player 2 responds by choosing the other cell with the number i. This ensures that Player 1 cannot
take line i. If Player 1 chooses the * then Player 2 can choose any cell with an unused number. So,
later in the game if Player 1 chooses a cell with j and Player 2 already has the other j, then Player
1 can choose an arbitrary cell. Player 2’s strategy is to ensure that after all cells have been chosen,
he/she will have chosen one of the numbered cells asociatded with each line. This prevents Player
1 from taking a whole line. This is called a pairing strategy.

We now generalise the game to the following: We have a family F = A1, A2, . . . , AN ⊆ A. A move
consists of one player, taking an uncoloured member of A and giving it his colour. A player wins if
one of the sets Ai is completely coloured with his colour.

A pairing strategy is a collection of distinct elements X = {x1, x2, . . . , x2N−1, x2N} such that
x2i−1, x2i ∈ Ai for i ≥ 1. This is called a draw forcing pairing. Player 2 responds to Player
1’s choice of x2i+δ, δ = 0, 1 by choosing x2i+3−δ. If Player 1 does not choose from X, then Player
2 can choose any uncoloured element of X. In this way, Player 2 avoids defeat, because at the end
of the game Player 2 will have coloured at least one of each of the pairs x2i−1, x2i and so Player 1
cannot have completely coloured Ai for i = 1, 2, . . . , N .

Theorem 2. If ∣∣∣∣∣ ⋃
A∈G

A

∣∣∣∣∣ ≥ 2|G| ∀G ⊆ F (3)

then there is a draw forcing pairing.

3

Proof We define a bipartite graph Γ. A will be one side of the bipartition and B = {b1, b2, . . .
, b2N}. Here b2i−1 and b2i both represent Ai in the sense that if a ∈ Ai then there is an edge
(a, b2i−1) and an edge (a, b2i). A draw forcing pairing corresponds to a complete matching of B into
A and the condition (3) implies that Hall’s condition is satisfied. 2

Corollary 3. If |Ai| ≥ n for i = 1, 2, . . . , n and every x ∈ A is contained in at most n/2 sets of F
then there is a draw forcing pairing.

Proof The degree of a ∈ A is at most 2(n/2) in Γ and the degree of each b ∈ B is at least n.
This implies (via Hall’s condition) that there is a complete matching of B into A. 2

Consider Tic tac Toe when case d = 2. If n is even then every array element is in at most 3 lines
(one row, one column and at most one diagonal) and if n is odd then every array element is in at
most 4 lines (one row, one column and at most two diagonals). Thus there is a draw forcing pairing
if n ≥ 6, n even and if n ≥ 9, n odd. (The cases n = 4, 7 have been settled as draws. n = 7 required
the use of a computer to examine all possible strategies.

In general we have

Lemma 5. If n ≥ 3d − 1 and n is odd or if n ≥ 2d − 1 and n is even, then there is a draw forcing
pairing of (n, d) Tic tac Toe.

Proof We only have to estimate the number of lines through a fixed point c = (c1, c2, . . . , cd).
If n is odd then to choose a line L through c we specify, for each index i whether L is (i) constant
on i, (ii) increasing on i or (iii) decreasing on i. This gives 3d choices. Subtract 1 to avoid the all
constant case and divide by 2 because each line gets counted twice this way.

When n is even, we observe that once we have chosen in which positions L is constant, L is
determined. Suppose c1 = x and 1 is not a fixed position. Then every other non-fixed position is
x or n − x + 1. Asuning w.l.o.g. that x ≤ n/2 we see that x < n − x = 1 and the positions with
x increase together at the same time as the positions with n − x + 1 decrease together. Thus the
number of lines through c in this case is bounded by

∑d−1
i=0

(
d
i

)
= 2d − 1. 2

2.2 Quasi-probabilistic method

We now prove a theorem of Erdős and Selfridge.

Theorem 4. If |Ai| ≥ n for i ∈ [N] and N < 2n−1, then Player 2 can get a draw in the game
defined by F .

Proof At any point in the game, let Cj denote the set of elements in A which have been
coloured with Player j’s colour, j = 1, 2 and U = A \ C1 ∪ C2. Let

Φ =
∑

i:Ai∩C2=∅

2−|Ai∩U |.

Suppose that the players choices are x1, y1, x2, y2, . . . ,. Then we observe that immediately after
Player 1’s first move, Φ < N2−(n−1) < 1.

We will show that Player 2 can keep Φ < 1 through out. Then at the end, when U = ∅, Φ =∑
i:Ai∩C2=∅ 1 < 1 implies that Ai ∩ C2 6= ∅ for all i ∈ [N].

So, now let Φj be the value of Φ after the choice of x1, y1, . . . , xj . then if U,C1, C2 are defined at

4

precisely this time,

Φj+1 − Φj = −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U | +
∑

i:Ai∩C2=∅
yj /∈Ai,xj+1∈Ai

2−|Ai∩U |

≤ −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U | +
∑

i:Ai∩C2=∅
xj+1∈Ai

2−|Ai∩U |

We deduce that Φj+1 − Φj ≤ 0 if Player 2 chooses yj to maximise over y,
∑

i:Ai∩C2=∅
y∈Ai

2−|Ai∩U |.

In this way, Player 2 keeps Φ < 1 and obtains a draw. 2

In the case of (n, d) Tic Tac Toe, we see that Player 2 can force a draw if (see Lemma 3)

(n+ 2)d − nd

2
< 2n−1

which is implied, for n large, by
n ≥ (1 + ε)d log2 d

where ε > 0 is a small positive constsnt.

5

Shannon Switching Game Start with a connected multi-graph G = (V,E).
Two players: Player A goes first and deletes edges and player B fortifies edges making them invul-
nerable to deletion by B. Player B wins iff the fortified edges contain a spanning tree of G.

Theorem 5. Player B wins iff G contains two edge disjoint spanning trees.

Proof (a) Here we assume that G has two edge disjoint spanning trees T1, T2 We prove this
by induction on |V |. If |V | = 2 then G must contain at least two parallel edges joining the two
vertices and so B can win. Suppose next that |V | > 2. Suppose that A deletes an edge e = (x, y)
of T2 red. This breaks T2 into two sub-trees T ′2, T

′′
2 . B will choose an edge f = (u, v) ∈ T1 with one

end in V (T ′2) and the other end in V (T ′′2). Now contract the edge f . In the new graph G∗, both T1
and T2 become spanning trees T ∗1 and T ∗2 and they are edge disjoint. It follows by induction that
B can win the game on G∗ and then wins the game on G by uncontracting the edge f . Of course
f is chosen first of all still!

If A chooses an edge x in neither of the trees then B can choose an arbitrary edge f of T1. Now let
e be any edge of the unique cycle contained in T2 + e. B can continue playing on G− x as though
e was the deleted edge. We can contract f as before and apply the above inductive argument.

(b) For this part we use a Theorem due to Nash-Williams:

Theorem 6. Let k be a positive integer. Then G contains k edge disjoint spanning trees iff for
every partition P = (V1, V2, . . . , V`) of V we have

e(P) = |E(P)| =
∑

1≤i<j≤`

e(Vi, Vj) ≥ k(`− 1). (4)

Here E(P) is the set of edges joining different parts of the partition and e(Vi, Vj) is the number of
edges joining Vi and Vj.

Let us apply Theorem 6 with k = 2. If G does not contain two edge disjoint spanning trees, then it
contains a partition P = (V1, V2, . . . , V`) with e(P) ≤ 2`−3. A starts by deleting an edge e ∈ E(P).
B will fortify an edge f = (u, v). If u, v join different sets in the partition P then we can merge
them and consider P ′ which has one less part and satisfies e(P ′) ≤ e(P) − 2 (edegs e, f have gone
from the count). Otherwise B chooses an edge entirely inside a part of P and the number of parts
does not change, but e(P) goes down by one. Eventually, we come to a point where one part is
joined to the rest of the graph by a single edge (2`− 3 = 1 when ` = 2) and A wins by deleting this
edge. 2

Sketch of proof of Theorem 6

If P = (V1, V2, . . . , V`) is a partition and T is a spanning tree then T contains at least ` − 1 edges
of E(P) and the only if part is straightforward.

Suppose now that (4) holds for all partitions. Let F be the set of edge disjoint forests containing
the maximum number of edges. If F = (F1, F2, . . . , Fk) ∈ F and e ∈ E \ E[F] then every Fi + e
contains a cycle. If e′ belongs to this cycle then F ′ ∈ F where F ′j = Fj for j 6= i and F ′i = Fi+e

′−e.
We say that F ′ is obtained from F by a replacement.

Consider now a fixed F 0 = (F 0
1 , F

0
2 , . . . , F

0
k) ∈ F and let F0 be the set of k-tples in F that can be

obtained from F 0 by a sequence of replacements. Then let

E0 =
⋃

F∈F0

(E \ E([F]).

Claim 1. For every e0 ∈ E \E([F 0] there exists a set U ⊆ V that contains the endpoints of e0 and
induces a connected tree in F 0

i for 1 ≤ i ≤ k.

6

Assume the claim for the moment. Suppose that not every F 0
i is a spanning tree. Then G contains

at least k(|V | − 1) edges (from (4) applied to the parttion of V into singletons) and so there exists
e0 ∈ E \ E[F 0]. Shrink the vertices of the set U in the claim to a single vertex vU to obtain a
graph G′. Apply induction to G′ to get a set of k disjoint spanning trees T ′1, T

′
2, . . . , T

′
k of G′. Now

expand vU back to U . Each T ′i expands to a spanning tree of G. In this way we get k edge-disjoint
spanning trees of G.

Proof of Claim 1

Let G0 = (V,E0) and let C0 be the component of G0 that contains e0. Let U = V (C0). First verify
that if F = (F1, F2, . . . , Fk) ∈ F0 and F ′ is obtained from F by a replacement and x, y are the ends
of a path in F ′i ∩ U then x, y are joined by a path xFiy ⊆ U . (Exercise).

We now show that F 0
i ∩ U is connected. Let (x, y) be an edge of C0. Since C0 is connected, we

only have to show that F 0
i contains a path from x to y, all of whose vertices belong to U . But

this follows by using the exercise and backwards induction starting from some F ∈ F0 for which Fi
contains the edge (x, y). 2

7

