Geography

Start with a chip sitting on a vertex v of a graph or digraph G.

A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip
from x to y deletes the edge (z,y). In vertex geography, moving the chip from x to y deletes the
vertex x.

The problem is given a position (G, v), to determine whether this is a P or N position.

Complexity Both edge and vertex geography are Pspace-hard on digraphs. Edge geography is
Pspace-hard on an undirected graph. Only vertex geography on a graph is polynomial time solvable.

1 Undirected Vertex Geography — UVG

Theorem 1. (G,v) is an N-position in UVG iff every mazimum matching of G covers v.

Proof (i) Suppose that M is a maximum matching of G' which covers v. Player 1’s strategy is
now: Move along M-edge that contains current vertex.

If Player 1 were to lose, then there would exist a sequence of edges e1, f1, ..., ek, fr such that v € eq,
€1,€2,...,ex € M, f1, fa,..., fr ¢ M and fi, = (x,y) where y is the current vertex for Player 1 and
y is not covered by M. But then if A = {ej,es,...,ex} and B = {f1, fa,..., fr} then (M \ A)UB
is a maximum matching (same size as M) which does not cover v, contradiction.

(ii) Suppose now that there is some maximum matching M which does not cover v. Then if (v, w)
is Player 1’s move, w must be covered by M, else M is not a maximum matching. Player 2’s
strategy is now: Move along M-edge that contains current vertex. If Player 2 were to lose then

there exists e; = (v,w), f1,..., €k, f&, €x+1 = (x,y) where y is the current vertex for Player 2 and y
is not covered by M. But then we have defined an augmenting path from v to y and so M is not a
maximum matching, contradiction. O

Note that we can determine whether or not v is covered by all maximum matchings as follows: Find
the size o of the maximum matching G. This can be done in O(n?) time on an n-vertex graph. Then
find the size ¢’ of a maximum matching in G —v. Then v is covered by all maximum matchings of
Giff o #£0'.

2 Undirected Edge Geography — UEG on a bipartite graph

An even kernel of G is a non-empty set S C V such that (i) S is an independent set and (ii) v ¢ S
implies that degg(v) is even, (possibly zero). (degg(v) is the number of neighbours of v in S.)

Lemma 1. If S is an even kernel and v € S then (G,v) is a P-position in UEG.

Proof Any move at a vertex in .S takes the chip outside S and then Player 2 can immediately
put the chip back in S. After a move from z € S to y ¢ S, degs(y) will become odd and so there is
an edge back to S. making this move, makes degs(y) even again. Eventually, there will be no S : S
edges and Player 1 will be stuck in S. O

We now discuss Bipartite UEG i.e. we assume that G is bipartite, G has bipartion consisting of a
copy of [m] and a disjoint copy of [n] and edges set E. Now consider the m x n 0-1 matrix A with
A(i,§) = 1 iff (i, §) € E.



We can play our game on this matrix: We are either positioned at row ¢ or we are positioned at
column j. If say, we are positioned at row ¢, then we choose a j such that A(i,j) =1 and (i) make
A(Z,7) = 0 and (ii) move the position to column j. An analogous move is taken when we positioned
at column j.

Lemma 2. Suppose the current position is row i. This is a P-position iff row i is in the span of
the remaining rows (is the sum (mod 2) of a subset of the other rows) or row i is a zero row. A
similar statement can be made if the position is column j.

Proof If row i is a zero row then vertex i is isolated and this is clearly a P-position. Otherwise,
assume the position is row 1 and there exists I C [m] such that 1 € I and

ry = Z ri(mod 2) or Zri = 0(mod 2) (1)
ieI\{1} i€l
where r; denotes row 1.

I is an even kernel: If © ¢ I then either (i) x corresponds to a row and there are no z, I edges or
(ii)  corresponds to a column and then Y. _; A(i,2) = 0(mod 2) from (1) and then z has an even
number of neighbours in I.
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Now suppose that (1) does not hold for any I. We show that there exists a ¢ such that A(1,¢) =1
and putting A(1,¢) = 0 makes column ¢ dependent on the remaining columns. Then we will be in
a P-position, by the first part.

Let e; be the m-vector with a 1 in row 1 and a 0 everywhere else. Let A* be obtained by adding e;
to A as an (n + 1)th column. Now the row-rank of A* is the same as the row-rank of A (here we
are doing all arithmetic modulo 2). Suppose not, then if r} is the ith row of A* then there exists a

set J such that

Zm = 0(mod 2) # er(mod 2).

ieJ icJ
Now 1 ¢ J because r is independent of the remaining rows of A, but then )
implies ) ;. ; ri = 0(mod 2) since the last column has all zeros, except in row 1.

iesTi = 0(mod 2)

Thus rank A* = rank A and so there exists K C [n] such that

e1 = Z ck(mod 2) or eg + Z ¢, = 0(mod 2) (2)

keK keK

where ¢ denotes column k of A. Thus there exists £ € K such that A(1,¢) = 1. Now let ¢} = ¢;
for j # ¢ and ¢, be obtained from ¢, by putting A(L,¢) = 0 i.e. ¢, = ¢, + e1. But then (2) implies
that >, ¢, = 0(mod 2) (K = {k} is a possibility here).. O

Tic Tac Toe and extensions

We consider the following multi-dimensional version of Tic Tac Toe (Noughts and Crosses to the
English). The board consists of [n]?. A point on the board is therefore a vector (zy,s,...,7q)
where 1 < x; <nforl<17<d.

A line is a set points (xﬁl),zgg), .. ,:cg.d)), j ,2,...,n where each sequence z(¥) is either (i) of

=1
the form k, k, ...,k for some k € [n] or is (ii) 1,2,...,n or is (iii) n,n —1,..., 1. Finally, we cannot
have Case (i) for all s.

Thus in the (familiar) 3 x 3 case, the top row is defined by M =111 and 2 =1,2,3 and the
diagonal from the bottom left to the top right is defined by () = 3,2,1 and 2 =1,2,3
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Lemma 3. The number of winning lines in the (n,d) game is W

Proof In the definition of a line there are n choices for k in (i) and then (ii), (iii) make it up
to n+ 2. There are d independent choices for each i making (n 4 2)?. Now delete n? choices where
only Case (i) is used. Then divide by 2 because replacing (ii) by (iii) and vice-versa whenever Case
(i) does not hold produces the same set of points (traversing the line in the other direction). a

The game is played by 2 players. The Red player (X player) goes first and colours a point red.
Then the Blue player (0 player) colours a different point blue and so on. A player wins if there is
a line, all of whose points are that players colour. If neither player wins then the game is a draw.
The second player does not have a wnning strategy:

Lemma 4. Player 1 can always get at least a draw.

Proof We prove this by considering strategy stealing. Suppose that Player 2 did have a winning
strategy. Then Player 1 can make an arbitrary first move x;. Player 2 will then move with y;. Player
1 will now win playing the winning strategy for Player 2 against a first move of y;. This can be
carried out until the strategy calls for move z; (if at all). But then Player 1 can make an arbitrary
move and continue, since x; has already been made. O

2.1 Pairing Strategy

11 1 8 1 12
6 2 2 9 10
3 7 x 9 3
6 7 4 4 10
12 5 8 5 11

The above array gives a strategy for Player 2 the 5 x 5 game (d = 2,n = 5). For each of the 12
lines there is an associated pair of positions. If Player 1 chooses a position with a number ¢, then
Player 2 responds by choosing the other cell with the number ¢. This ensures that Player 1 cannot
take line i. If Player 1 chooses the * then Player 2 can choose any cell with an unused number. So,
later in the game if Player 1 chooses a cell with j and Player 2 already has the other j, then Player
1 can choose an arbitrary cell. Player 2’s strategy is to ensure that after all cells have been chosen,
he/she will have chosen one of the numbered cells asociatded with each line. This prevents Player
1 from taking a whole line. This is called a pairing strategy.

We now generalise the game to the following: We have a family F = A;, As,..., Ay C A. A move
consists of one player, taking an uncoloured member of A and giving it his colour. A player wins if
one of the sets A; is completely coloured with his colour.

A pairing strategy is a collection of distinct elements X = {z1,z2,...,2an—1,22n} such that
Zoi—1,T9; € A; for i > 1. This is called a draw forcing pairing. Player 2 responds to Player
1’s choice of x9;45,6 = 0,1 by choosing x4;43_5. If Player 1 does not choose from X, then Player
2 can choose any uncoloured element of X. In this way, Player 2 avoids defeat, because at the end
of the game Player 2 will have coloured at least one of each of the pairs xo;_1,22; and so Player 1
cannot have completely coloured A; for i =1,2,..., N.

Theorem 2. If

U4

A€eg

>2/G] VGCF (3)

then there is a draw forcing pairing.



Proof We define a bipartite graph I'. A will be one side of the bipartition and B = {by,bs, ...
,ban}. Here by;—1 and bg; both represent A; in the sense that if a € A; then there is an edge
(a,be;—1) and an edge (a, by;). A draw forcing pairing corresponds to a complete matching of B into
A and the condition (3) implies that Hall’s condition is satisfied. ad

Corollary 3. If |A;| >n fori=1,2,...,n and every x € A is contained in at most n/2 sets of F
then there is a draw forcing pairing.

Proof The degree of a € A is at most 2(n/2) in I' and the degree of each b € B is at least n.
This implies (via Hall’s condition) that there is a complete matching of B into A. O

Consider Tic tac Toe when case d = 2. If n is even then every array element is in at most 3 lines
(one row, one column and at most one diagonal) and if n is odd then every array element is in at
most 4 lines (one row, one column and at most two diagonals). Thus there is a draw forcing pairing
ifn>6,neven and if n > 9, n odd. (The cases n = 4,7 have been settled as draws. n = 7 required
the use of a computer to examine all possible strategies.

In general we have

Lemma 5. Ifn > 3% —1 and n is odd or if n > 2% — 1 and n is even, then there is a draw forcing
pairing of (n,d) Tic tac Toe.

Proof We only have to estimate the number of lines through a fixed point ¢ = (¢, ¢a,...,cq).
If n is odd then to choose a line L through ¢ we specify, for each index ¢ whether L is (i) constant
on i, (ii) increasing on i or (iii) decreasing on i. This gives 3¢ choices. Subtract 1 to avoid the all
constant case and divide by 2 because each line gets counted twice this way.

When n is even, we observe that once we have chosen in which positions L is constant, L is
determined. Suppose ¢; = x and 1 is not a fixed position. Then every other non-fixed position is
xz orn—x+ 1. Asuning w.l.o.g. that x < n/2 we see that z < n — x = 1 and the positions with
x increase together at the same time as the positions with n — x 4+ 1 decrease together. Thus the
number of lines through c in this case is bounded by Z?:_Ol (f) =27 1. a

2.2 Quasi-probabilistic method

We now prove a theorem of Erdés and Selfridge.

Theorem 4. If |A;| > n fori € [N] and N < 2"~ then Player 2 can get a draw in the game
defined by F.

Proof At any point in the game, let C; denote the set of elements in A which have been
coloured with Player j’s colour, j = 1,2 and U = A\ C; U Cs. Let

o = Z 9—lAinU[
it A;NCo=0

Suppose that the players choices are x1,y1,22,9s2,...,. Then we observe that immediately after
Player 1’s first move, ® < N2-("=1) <1,

We will show that Player 2 can keep ® < 1 through out. Then at the end, when U = (), & =
> ia,ncy—p L < 1 implies that A; N Cy # () for all i € [N].

So, now let ®; be the value of ® after the choice of z1,y1,...,2;. then if U,Cq,Cy are defined at



precisely this time,

(pj+1 . q)J - _ E 27\AiﬂU| + E 27|AiﬁU|
i:A;NCo=0 i:A;NCo=0
y; €A yjEAi,cj 1 1€A;
< - E 9—lAinUl 2: 9—14:nU|
it A;NCa=0 i:A;NCa=0
y; €A; zj+1€A;

We deduce that ®;41 — ®; < 0 if Player 2 chooses y; to maximise over ¥, Z 2~ 14U

i:A;NCo=0
yEeA;

In this way, Player 2 keeps ® < 1 and obtains a draw.

In the case of (n,d) Tic Tac Toe, we see that Player 2 can force a draw if (see Lemma 3)

2d_ d
(n+ ) n <2n71

which is implied, for n large, by
n > (14 ¢€)dlog, d

where € > 0 is a small positive constsnt.



Shannon Switching Game Start with a connected multi-graph G = (V, E).
Two players: Player A goes first and deletes edges and player B fortifies edges making them invul-
nerable to deletion by B. Player B wins iff the fortified edges contain a spanning tree of G.

Theorem 5. Player B wins iff G contains two edge disjoint spanning trees.

Proof (a) Here we assume that G has two edge disjoint spanning trees Ty, T, We prove this
by induction on |V|]. If |[V]| = 2 then G must contain at least two parallel edges joining the two
vertices and so B can win. Suppose next that |[V| > 2. Suppose that A deletes an edge e = (x,y)
of T; red. This breaks T, into two sub-trees T4, Ty'. B will choose an edge f = (u,v) € T} with one
end in V(73) and the other end in V(7%'). Now contract the edge f. In the new graph G*, both T}
and T» become spanning trees 17 and 75 and they are edge disjoint. It follows by induction that
B can win the game on G* and then wins the game on G by uncontracting the edge f. Of course
f is chosen first of all still!

If A chooses an edge x in neither of the trees then B can choose an arbitrary edge f of T7. Now let
e be any edge of the unique cycle contained in T + e. B can continue playing on G — z as though
e was the deleted edge. We can contract f as before and apply the above inductive argument.

(b) For this part we use a Theorem due to Nash-Williams:

Theorem 6. Let k be a positive integer. Then G contains k edge disjoint spanning trees iff for
every partition P = (V1,Va, ..., Vi) of V we have

e(P)=|EP)= Y  e(Vi,Vj) = k(t-1). (4)

1<i<j<t

Here E(P) is the set of edges joining different parts of the partition and e(V;,V;) is the number of
edges joining V; and Vj.

Let us apply Theorem 6 with £ = 2. If G does not contain two edge disjoint spanning trees, then it
contains a partition P = (V1, Va,..., V,) with e(P) < 2¢—3. A starts by deleting an edge e € E(P).
B will fortify an edge f = (u,v). If u,v join different sets in the partition P then we can merge
them and consider P’ which has one less part and satisfies e(P’) < e(P) — 2 (edegs e, f have gone
from the count). Otherwise B chooses an edge entirely inside a part of P and the number of parts
does not change, but e(P) goes down by one. Eventually, we come to a point where one part is
joined to the rest of the graph by a single edge (20 —3 = 1 when ¢ = 2) and A wins by deleting this
edge. O

Sketch of proof of Theorem 6

If P=(Vi,Va,...,Vp) is a partition and T is a spanning tree then 7" contains at least ¢ — 1 edges
of E(P) and the only if part is straightforward.

Suppose now that (4) holds for all partitions. Let F be the set of edge disjoint forests containing
the maximum number of edges. If F = (Fy, Fs,...,Fy) € F and e € E \ E[F] then every F; + e
contains a cycle. If ¢’ belongs to this cycle then I € F where F} = F; for j # i and F] = F; +¢' —e.
We say that F’ is obtained from F' by a replacement.

Consider now a fixed FO = (F?, FY, ..., F?) € F and let F° be the set of k-tples in F that can be
obtained from F° by a sequence of replacements. Then let

EC= | (B\E(F).
FeFo

Claim 1. For every €® € E\ E([F°] there exists a set U C V that contains the endpoints of ¢° and
induces a connected tree in F? for 1 <i < k.



Assume the claim for the moment. Suppose that not every F? is a spanning tree. Then G contains
at least k(|V] — 1) edges (from (4) applied to the parttion of V into singletons) and so there exists
e’ € E\ E[F°]. Shrink the vertices of the set U in the claim to a single vertex vy to obtain a
graph G’. Apply induction to G’ to get a set of k disjoint spanning trees T7,T5,..., T} of G'. Now
expand vy back to U. Each T} expands to a spanning tree of G. In this way we get k edge-disjoint
spanning trees of G.

Proof of Claim 1

Let G° = (V, E°) and let Cy be the component of G° that contains €. Let U = V(C?). First verify
that if F' = (Fy, Fy, ..., Fy) € F° and F’ is obtained from F by a replacement and x,y are the ends
of a path in F/ NU then x,y are joined by a path zF;y C U . (Exercise).

We now show that F? N U is connected. Let (z,y) be an edge of CY. Since C° is connected, we
only have to show that F contains a path from z to y, all of whose vertices belong to U. But
this follows by using the exercise and backwards induction starting from some F' € F° for which Fj
contains the edge (z,y). O



