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A polynomial-time randomised algorithm for uniformly generating forests in a dense graph
is presented. Using this, a fully polynomial randomised approximation scheme (fpras) for
counting the number of forests in a dense graph is created.

1. Introduction and definitions

The number of forests (acyclic subgraphs) of a graph is an example of a Tutte invariant.
That is, it can easily be calculated from the Tutte polynomial of the graph.

The Tutte polynomial of a graph G = (V, E), was introduced as a generalisation of the
chromatic polynomial in [14]. It is defined as

T(G;x,y) = £ ( x - iyW~r(A\y - l)W-rW, (l)
AzE

where the sum is over all subsets of the edge set of G, and the rank of a set of edges,
r(A) is defined by

r(A) = \V\-k(A), (2)

where k(A) is the number of connected components of the graph with vertex set V and
edge set A (including isolated vertices).

It can immediately be seen from the above that the number of forests of a graph is equal
to the value of the Tutte polynomial at the point (2,1). The Tutte polynomial contains
many other invariants of fundamental importance in fields as diverse as statistical physics,
knot theory and graph colourings.

For example, the partition function of the q-state Potts model of statistical physics can
be calculated from an evaluation of the Tutte polynomial along the hyperbola

Hq = {(x,y): (x - l)(y - 1) = q],
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274 J. D. Annan

where q > 2 is any positive integer. The hyperbola Hi gives the partition function of the
Ising model.

For planar G, the Jones polynomial of the alternating link associated with G is given
by evaluation of the Tutte polynomial along the hyperbola xy = 1, and the chromatic
polynomial is given by evaluation along the y-axis. A host of other interpretations, and
further explanation of these interpretations, can be found in [16].

Vertigan and Welsh proved in [15] that calculating any partial evaluation of the Tutte
polynomial is #P-hard even for planar bipartite graphs, with a few exceptions (for
instance, counting the number of spanning trees is in P). The point (2,1) is not one of
these exceptions, so we cannot expect to find a polynomial-time algorithm to calculate
the number of forests.

However, if the associated existence problem is easy, there is no a priori reason why
we should not be able to evaluate approximately a #P-hard function using randomised
algorithms, and much attention has focussed in this direction over recent years.

The following definition [11] is the standard model of an efficient approximation
algorithm.

Definition 1. A fully polynomial randomised approximation scheme (fpras) for a function
/ is an algorithm stf that, on input (x, e), with probability greater than 3/4, produces an
output J/(X, e) satisfying

- iand that runs in time polynomial in |x| and e

Jerrum, Valiant and Vazirani [10] show that, for a large class of problems (ones that are
self-reducible [12]), approximate counting of solutions and almost uniform generation of
solutions are polynomially equivalent. A uniform generator is a randomised algorithm that,
given an instance of a problem in NP, generates uniformly at random one of the 'witnesses'
for that instance, and produces some output at least half the time. Almost uniform
generation is a slightly weaker condition, only requiring that the output distribution is
'close to' uniform (in a well-defined sense).

Using this idea, Jerrum and Sinclair [8] present a fpras for computing the permanent of
dense matrices, whereas exact evaluation for these matrices was shown to be #P-hard by
Broder [2]. Jerrum and Sinclair again [9] present a fpras for the ferromagnetic Ising parti-
tion function of a graph, while showing that no fpras exists for the antiferromagnetic Ising
partition function unless NP = RP. The ferromagnetic case corresponds to the branch of
the hyperbola H2 in which x and y are both greater than 1, and the antiferromagnetic
case to the part of the other branch of that hyperbola in which 0 < y < 1.

Perhaps less well known are the results of Edwards [5] concerning 3-colourings of dense
graphs. We say a simple graph G is a-dense (or has density a) if every vertex in G has degree
at least a |K(G)|. Edwards shows that if a > 1/2, the existence problem for a-dense graphs
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A Randomised Approximation Algorithm for Counting Forests in Dense Graphs 275

is in P, and also that, in this case, the number of 3-colourings can be counted exactly in
polynomial time. For a < 1/2, the existence problem remains NP-complete, so we cannot
hope even to approximate the number of 3-colourings. The number of /c-colourings of a
graph can easily be calculated from the Tutte polynomial evaluated at the point (1 — /c,0)
and the results for k = 3 generalise to any integer k > 3, with the threshold between
easiness of counting and hardness of approximation being (k — 2)/(/c — 1) in general.

These results suggest a possible frontier between the points in the Tutte plane at which
approximation is possible, and those at which it is not. In [16], Welsh makes the following
conjecture.

Conjecture 1. There exists a fpras for computing the Tutte polynomial at each (rational)
point (x,y) of the positive quadrant x > 1, y > 1.

The number of forests is a point on the boundary of this region, which also includes
the ferromagnetic case of the general q-stnte Potts model.

In this paper, we present an algorithm for approximately counting the number of forests
in a dense graph, and, furthermore, generalise this to show the existence of a fpras for
the Tutte polynomial of dense graphs at any rational point on the line x > 1, y = 1. A
routine but lengthy reduction shows that the number of forests of a dense graph cannot
be exactly counted in polynomial time, unless NP = RP [1].

2. Random generation of forests

We use ^a to denote the set of all simple a-dense graphs, and n = \V(G)\ to denote the
number of vertices of G. Given a graph G £ ^ on vertices u\, ..., un, we form a new
graph G+ by adding a new vertex v to the vertex set of G, and adding an edge connecting
each vertex of G to v. We call this the join of G and v.

It is well known that there are fast (polynomial-time) algorithms for generating spanning
trees of any graph uniformly at random. We are interested in the degree of the vertex v
in T£, the random spanning tree of G+. The following lemma and corollary will be used.

Lemma 1. The probability that the edge vui is contained in a randomly chosen spanning
tree of G+ is at most 2/{an + 2) for 1 < i < n.

Corollary 1. The probability that the degree of v in T£ is greater than 4/a is less than
1/2.

Proof of Lemma 1. We use the theory of electrical networks to bound the probability
that a particular edge ««,- is in T£. We form an electrical network from G+ by replacing
every edge by a resistor of resistance 1 Q. The following two propositions are needed.
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276 J. D. Annan

Proposition 1. If the resistance of any resistor of a network is increased, the effective resis-
tance between any two points cannot decrease. Similarly, if any resistance is decreased, the
effective resistance cannot increase.

Proposition 2. The probability that the edge viij is contained in the random spanning tree
of a graph is equal to the effective resistance between v and u, in the associated electrical
network.

A proof of the first Proposition is given in [4] as the monotonicity law, but it dates
back a long time before this (as Rayleigh's Principle), and the second Proposition, proved
in [3], is due in principle to Kirchhoff.

Now we bound the resistance of G+ between u, and v. The vertex u,- has at least an
neighbours in G, each of which is connected to v. By Proposition 1, if we remove every
resistor except for the ones connecting u, to its neighbours, and the resistors connecting v
to the neighbours of u,- in G, we can only increase the resistance between v and u,-. But we
are left with at least ccn disjoint paths of length 2 and a path of length 1 (the edge vu{),
giving a total resistance of 2/{an + 2) ft, which, by Proposition 2, completes the proof of
Lemma 1. •

Proof of Corollary 1. The expected degree of vertex v in T£ is equal to the sum, over all
edges e incident with v, of the probability that that edge is in the random tree T£. By
Lemma 1, we have shown that each of these probabilities is less than 2/an. As there are
only n edges incident with v, the expected degree of v is less than 2/a.

Letting d denote the degree of v in T£, we can write:

2/a > E(d) >E(d\d> 4/a) • P(d > 4/a) > 4/a • P(d > A/a),

which gives the required result. •

3. An algorithm for the uniform generation of forests

We now present an algorithm for the uniform generation of forests.
A spanning tree T of G+ induces, in the obvious way, a forest F of G, given by F = T\v.

This mapping is clearly surjective, but not in general injective. The following lemma tells
us how many spanning trees there are in G+ that induce a particular forest F of G.

For any forest F with connected components F\, . . . , Fc, we say that the size of F, is
\V(Fi)\.

Lemma 2. The number of spanning trees of G+ that induce a given forest of G is equal to
the product of the sizes of the connected components of the forest.

Proof. Consider an arbitrary component of the forest, of size s say. Exactly one of its
vertices must be directly connected to v in any tree that induces the forest. As there is
one edge from each vertex in G to v, there are exactly s ways in which this can occur,
independently of how the other components are connected to v. •
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(1)
(2)
(3)
(4)
(5)
(6)

G+ := join of G and v
for c := 1 to n4/a do begin

T := SpT(G+)
F := T\v
if R(T,F) then output F
end

Figure I The uniform forest generator, FGENj,

We now define a binary relation.

Definition 2. For a spanning tree T of G+ and forest F of G, we say T is related to F
(denoted R(T,F)) if the following two conditions hold:

1 T\v = F
2 In T, v is connected to the vertex of lexicographically lowest index in each component

off.

It is easy to see that, for any forest F of G, there is exactly one spanning tree T of G+

such that R(T,F).
The algorithm for the uniform generation of forests in G is given in Figure 1. We

assume that the subroutine SpT(/f) returns a uniformly generated random spanning tree
of any graph H. This can certainly be achieved in polynomial time using a randomised
Turing machine.

If the algorithm produces more than one forest, we simply take the first one that is
output, and discard the others.

Theorem 1. The following statements are true.

1 FGENa generates each forest of G equiprobably.
2 For any G G ̂ a , FGENa outputs a forest with probability greater than 1/2.
3 It runs in polynomial time.

Proof. Clearly, the algorithm runs in polynomial time. To prove the first statement,
consider a single repetition of the do loop. For every forest F of G, there is exactly one
spanning tree T of G+ such that R{T,F). Each tree in G+ is picked with equal probability,
so each forest in G is output equiprobably.

For the second statement, from Corollary 1 we know that with probability greater
than 1/2, the degree of v in the randomly chosen tree T is no greater than 4/a. In this
case, there are at most {an/4)4/a spanning trees in G+ that induce the forest T\v. In
one repetition of the loop, the probability that T is related to F, and so F is output
in line (5), is therefore at least 1/2 • l/(an/4)4/ot > n'4/a. Hence the probability that the
algorithm fails to produce a forest in every iteration of the loop is bounded above by
(1 - l/n4/af" < e~l < 1/2. •
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278 J. D. Annan

4. Approximating the number of forests

We now combine the above with the idea of self-reducibility, and a modified version of the
algorithm of Jerrum, Valiant and Vazirani [10] to construct a polynomial-time algorithm
to approximate the number of forests of G € ^a. We write f(G) for the number of forests
of any graph G.

First, we need a preliminary lemma.

Lemma 3. The number of forests of the complete graph Kn can be calculated in polynomial
time.

Proof. We create a recurrence relation for the Tutte polynomial of the complete graph
evaluated at the point (2,1). For any integers r,m > 1 we construct the graph Hrm, which
consists of a clique on m vertices {u\y,...,um) and another vertex v, which is connected to
each of the u, by r edges in parallel. By considering all possible subsets of the rm edges
adjoining v that a forest of Hrm can contain, and writing Fr?m for the number of forests
of Hrym, it is not hard to show that

m— 1 , v

Fr^ = J2 ("^)ripi'm-i + Fl."-1 + 1> m-2
1=1 ^ ' '

and

i7,i = r + 1.

Note that F ^ , = f(Kn).
It is clear that to evaluate Fi,n_i, we only need to evaluate the Frjm for which r+m < n—l.

So we must use the recurrence relation O(n2) times in all, each time summing O(n) terms.
This is certainly a polynomial-time calculation, the exact time taken depending on the
model of computation used. •

We can express the number of forests of a graph G as follows:

f(KM) f(Kn\eue2) f(G)
f(G) = f(,Kn) •

f{Kn) f(Kn\ei)
where the edges e\, ..., e\ that are successively deleted to create the sequence of graphs

are exactly the edges in Kn\G (in any order).
For any dense graph G € ^ t and edge e $ G, we approximate the fraction f(G)/f(GUe)

by the simple method of generating forests in G U e uniformly at random, and counting
the proportion of these that are in fact contained in G. So we approximate independently
each term in the above product, and if each approximation is accurate enough, their
product will approximate the number of forests in G within ratio l+e. The algorithm for
approximating the number of forests of a dense graph is given in Figure 2.

Theorem 2. The algorithm APPROXa(G,e) is afprasfor the number of forests of any graph
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

(11)
(12)
(13)
(14)

H :=Kn

U:=f(H)
t := IZQn6/^

while H =f G do begin

Let e be any edge in H but not in G
make It calls to FGENa(H)
if at least t of the trials yield an output then

let S = {yu...,y,} be the first t outputs of FGENa(tf)
else halt

0:=\{yeS:ety}\/t
H := H\e

n := n x p
endwhile
output n

Figure 2 The fpras for forests, APPROXa(G,e)

Proof. We have to show that two things happen simultaneously with probability at least
3/4:

1 The algorithm produces an output.
2 This output approximates the number of forests of G within the required ratio 1 + e.

Clearly the algorithm runs in polynomial time: the main loop is repeated n2 times at
most.

We know that FGEN fails to produce a forest with probability at most 1/2. Consider
the 3t calls to FGEN in one loop of the algorithm, and let the random variable F
be the number of times that no output is given by FGEN. Clearly E(F) < 3t/2 and
Var(F) < 3t/4, and hence, using Chebyshev's inequality, we have P(F > 2t) < 3/t. Since
t is certainly bounded below by 180M2, the probability that some output is produced is
greater than (1 — l/60n2)"2, which is easily shown to be greater than 59/60.

Now we claim that on every iteration of the loop, with high probability, /? will
approximate f(H\e)/f(H) within ratio 1 + e/2n2. Consider the random variable X =
|{y G 5 : e $ y}\ /t. Let n = E(X). Since X is the average of t independent (0, l)-valued
random variables, Var(X) < l/t. Using Chebyshev's inequality again, we see that

P (\X - n\ < e/6n2) > 1 - 36n*/e2t > 1 - l/5n2.

Now \i is never less than 1/2: to see this, consider the set of all forests of G\Je. These
forests can be partitioned into two sets: the forests that include e, and the ones that do
not. The forests that do not include e are precisely the forests of G. It is obvious that the
number of forests including e does not exceed the number without e: the natural map
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280 J. D. Annan

from forests that contain e to those that do not (given by deleting e from the edge-set of
the forest) is clearly 1-1. This allows us to bound the relative error of /?, as we now have

Since e/n2 < 1, it is easy to see that (1 + e/2n2)'1 < (1 — e/3n2). So, with probability at
least 1 — l/5n2, /? approximates fi within ratio 1 + e/2n2.

The probability of ft being such an accurate approximation in every iteration is at least
(1 — l/5n2)"2, which is greater than 4/5. If /? is this accurate in each iteration, then the
final output II approximates f(G) within ratio (1 +e/2n2)" , which is no worse than 1 + e.
So the probability of the algorithm producing an output and the output being sufficiently
accurate is at least (59/60) • (4/5) > 3/4, as required. •

5. Further results

We now use the ideas of Jaeger et al. [7] to generalise our results a little. In this section,
we show how the Tutte polynomial can be approximated at any rational point on the line
x > 1, y = 1.

In order to do this, we must first explain how multiple edges can be handled.
Our original algorithm will not work, since a graph with multiple edges is not contained

within Kn. However, it will be contained within the fc-thickening of Kn (the graph obtained
by replacing each edge of the complete graph with k edges in parallel), where k is the
greatest multiplicity of any edge of the graph. We can simply modify our algorithm to
begin with the fc-thickening of Kn (which we denote by K%), and again remove edges one
at a time until G is reached, each time approximating the ratio of the number of forests
in successive graphs so formed. The extra edges will clearly not hinder the running of the
algorithm.

We will also need to calculate the number of forests of the fc-thickened complete graph.
Equation 4.1 in [7] tells us how to do this: it simplifies to

T(Kk
n;2,1) = (2k - 1)T (lCn; 1 + i , l Y

and, using similar ideas to those used earlier, we can construct the following recurence
relation for the Tutte polynomial of the graph Hr^ (defined above) evaluated at the point

m—1

( m ) ro>2 (3)

Hence we can create a fpras for the number of forests of dense graphs with multiple
edges. The running time will depend polynomially on the greatest multiplicity of an edge.

We can now approximate the Tutte polynomial at other points along the line y = 1.
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(1) G<*-»+ := (x - l)-join of G and v
(2) for c := 1 to n2x/tx do begin
(3) T := SpT(G(x-1)+)
(4) F := T\v
(5) if R(T,F) then output F
(6) end

Figure 3 The forest generator, FGENJ. '

Theorem 3. For any rational constant x > 1, there exists a fpras for evaluating the Tutte
polynomial of dense graphs at the point (x, 1).

The running time of our algorithm may not be bounded by a polynomial function of
x and the other inputs, so x cannot be input as a variable.

Proof. First we prove the theorem for positive integer values of x. It has already been
demonstrated for x = 1 and x = 2. For x > 2, we take our input graph G and form a
new graph by adding a new vertex v and connecting it to every vertex in G with a bundle
of x — 1 edges in parallel. We call the new graph thus obtained the (x — l)-join of G and
v, and denote it by G(x~1)+. Note that G(1)+ is just the same as G+.

We now describe an algorithm FGENJ"1, which outputs a randomly selected forest
of G according to a biased distribution. This will enable us to approximate the Tutte
polynomial of G evaluated at the point (x, 1) in a similar manner to our approximation
for the number of forests.

The new algorithm FGENX - 1 is given in Figure 3. We now consider the probability of
a particular forest F being output in a single iteration of the loop. If we write k(F) for
the number of connected components of a graph, counting isolated vertices as connected
components, then there are exactly (x— 1)*(F' spanning trees in G(x~''+ that are related to a
forest F (using the binary relation R that was previously defined), as, for each component
of F, there are x — 1 possible edges in G(x~1)+ connecting the vertex of smallest index in
this component to v. So the probability of a particular forest being generated in a single
iteration of the main loop is proportional to (x — 1)*^. It is straightforward to show,
in a similar manner to the method used for Corollary 1, that for at least half of the
spanning trees of G(x~1)+, the degree of the distinguished vertex v is less than 2x/a. So,
as for FGENa, with probability greater than 1/2, this algorithm produces some output.
The running time of this algorithm is where the exponential dependence on x arises:
this is necessary in order to ensure that some output is produced (with a high enough
probability).

We now look again at the equation for the Tutte polynomial of a graph that we gave
in the introduction (1):

T(G) =
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282 J. D. Annan

At the point (x, 1), the summand is non-zero only when \A\ = r(A), that is, when A is
the edge set of a forest of G. So we can rewrite this expression as

- l ) - ^ » , (4)
A

where the summation is now over the edge sets A of all forests of G. Substituting the
definition of rank (2) into this gives

T(G;x, 1) = (x - I)"1 J > - lfA\ (5)
A

So the Tutte polynomial of G evaluated at (x, 1) is just l/(x— 1) times the weighted sum
over all the forests of G, with the weight of a forest F equal to (x — l)k(F\ This is precisely
the weighting given to the forests using the random generation algorithm FGENJ"1.

Writing fx~l(G) in place of T(G;x, 1), we have

fX.l(r. fX-l(K , fx~\Kn\ex) f'~l(G)
f (G)=f (*„)• fx_1{K) ••fx-1{GUey (6)

where the edges e\, ..., e\ are precisely the edges contained in Kn\G.
The recurrence relation given above (3) can be used to calculate the Tutte polynomial

of the complete graph at the point (x, 1) in polynomial time.
We can again approximate each fraction in (6) by generating forests in the larger graph

according to the non-uniform distribution of FGENJ"1 described above, and seeing how
many of them are contained in the smaller graph. The algorithm for APPROXa will do
this if we change all the references to FGENa in it to refer to FGENJ"1 instead. The proof
that this new algorithm works is identical to the proof for the previous counting algorithm.

Hence we have a fpras for the Tutte polynomial of dense graphs at the point (x, 1) for
any positive integer x > 1.

We now consider rational x = 1 + a/b, where a and b are positive coprime integers.
It has just been shown that the Tutte polynomial of the fc-thickening of G can be

approximated at the point (1 + a, 1) and Equation 4.1 from [7] again tells us that

which completes the proof. •

6. Conclusions

More support for Welsh's conjecture (1) has recently been provided by Welsh himself [17].
First, he proved that there exists a fpras to evaluate the Tutte polynomial of dense graphs
at any point (x, y) in the area denned by

{(x,y): x > l , y>\, and ( x - l)(y - 1) < 1}.

Further work of Welsh with Alan Frieze and Noga Alon has since led to the elimination
of the constraint (x — l)(y — 1) < 1 in the above. This result, in conjunction with the
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results contained above, shows that Welsh's conjecture is indeed true when restricted to
dense graphs.

However, it does not appear to be possible to extend the methods used to include all
graphs.

There is no obvious reason why the Tutte polynomial should not be approximable in
the entire positive quadrant (x, y) : x, y > 0. This region includes the point (2,0) at which
point the Tutte polynomial counts the number of acyclic orientations of a graph. We
therefore pose the following question:

Does there exist a fpras for the number of acyclic orientations of a (dense) graph?
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