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Abstract

The Swendsen-Wang process provides one possible dynamics for the Q-

state Potts model in statistical physics. Computer simulations of this

process are widely used to estimate the expectations of various observ-

ables (random variables) of a Potts system in the equilibrium (or Gibbs)

distribution. The legitimacy of such simulations depends on the rate of

convergence of the process to equilibrium, often known as the mixing rate.

Empirical observations suggest that the Swendsen-Wang process mixes rap-

idly in many instances of practical interest. In spite of this, we show that

there are occasions on which the Swendsen-Wang process requires expo-

nential time (in the size of the system) to approach equilibrium.
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1 Introduction

The Potts model is a natural generalisation of the Ising model to an arbitrary

number Q � 2 of states or \spins." Con�gurations in the Potts model can be

viewed as Q-colourings (not in general proper) of the vertices of an undirected

n-vertex graph. One is interested in sampling con�gurations from a certain distri-

bution, known as the Gibbs distribution, with the aim of obtaining estimates for

certain random variables on con�gurations. For the ferromagnetic Potts model

| the focus of this article | the Gibbs distribution assigns greater probability

to con�gurations in which a larger number of pairs of adjacent spins are alike. A

precise de�nition of the Potts model is provided in Section 2.

In the absence of e�ective direct methods, the usual approach to sampling

con�gurations is via the \Markov chain Monte Carlo" method [11]. The idea is

to provide the model with a dynamics by de�ning an ergodic random walk on

con�gurations whose stationary distribution is the required Gibbs distribution.

Provided the walk is rapidly mixing, i.e., converges rapidly to equilibrium, con-

�gurations may be e�ciently sampled by simulating the walk for a su�cient, but

not excessive, number of steps.

A number of di�erent dynamics are possible. The simplest is to move between

con�gurations by changing one spin at a time, with transition probabilities de-

termined by the \Metropolis rule" [17]. It is fairly easy to demonstrate situations

in which this random walk takes exponential time (in n, the size of the graph) to

approach equilibrium, even in the ferromagnetic case.
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A more complicated dy-

namics, which allows many spins to change in one step, was proposed by Swendsen

and Wang [22] and is now widely used in computer simulations.

The Swendsen-Wang process (as we shall call it) appears to converge rapidly

to equilibrium in many instances of practical interest. This empirical observation

might encourage us to attempt to prove that the mixing time of the process

grows not too quickly as a function of n, speci�cally that it is bounded by a

�xed polynomial in n, independent of the other parameters of the system. Such

a result would establish the existence of an e�cient approximation algorithm

| more precisely, a \fully polynomial randomised approximation scheme" or

fpras [13, 11] | for computing the partition function of a Q-state ferromagnetic

Potts system. Such an algorithm is only known to exist in the case Q = 2 [9].

Our main result (see Proposition 7 for a precise statement) demonstrates that

this is a vain hope. For a certain particularly simple family of Potts systems based

on the complete graph K

n

on n vertices (the so-called \Curie-Weiss model") the

Swendsen-Wang process is still far from equilibrium after exponentially many

steps. This counterexample is valid for all Q � 3 and for a suitably chosen

\coupling constant." It is an open question whether rapid mixing obtains when

1

The antiferromagnetic model, in which adjacent spins tend to be unlike, includes graph

colouring as a limit, so rapid convergence cannot be expected for any reasonable dynamics.
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Q = 2 (the Ising model), or if the negative result can be extended to more

physically realistic instances of the Potts model, for example, 2- or 3-dimensional

lattices.

2 The Potts model

The Potts model was introduced by R. B. Potts [19] in 1952, has been a fo-

cus of much attention in the physics and mathematics communities ever since.

Rather than present a detailed historical account of the model here, we refer the

interested reader to Baxter [2, Chap. 12].

The problem is easily stated. Consider a collection of sites f1; 2; : : : ; ng, de-

noted by [n], each pair i; j of which has an associated interaction energy, which,

for simplicity, we assume takes on one of just two values, either 0 or J . In

most cases of physical interest, the set E of unordered pairs of sites with non-

zero interaction energy forms a regular lattice graph ([n]; E). A con�guration

� = (�

1

; : : : ; �

n

) is an assignment of spins to sites, where �

i

denotes the spin at

site i. The number of spins is denoted by Q, where Q � 2; individual spins may

simply be denoted by the numbers in [Q]. The energy of a con�guration � is

given by the Hamiltonian

H(�) =

X

(i;j)2E

J(1� �(�

i

; �

j

))

where � is the Kronecker-� function which is 1 if its arguments are equal, and 0

otherwise.

The central problem is to compute the partition function

Z =

X

�

exp(��H(�))

where � > 0 is what is called the inverse temperature (to be precise, � = 1=kT ,

where T is the temperature and k is Boltzmann's constant) and the sum is over

all possible con�gurations �. Many of the physical properties of the system

can be computed from the knowledge of Z. Essentially, Z is the normalising

factor in the calculation of probabilities: according to the fundamental theory of

statistical mechanics, the probability that the system in equilibrium is found in

state � (the steady state probability) is �(�) = Z

�1

exp(��H(�)). Moreover,

certain logarithmic derivatives of Z correspond to quantities such as mean energy

and mean magnetic moment. Singularities in these derivatives (in the limit, as

n ! 1) generally correspond to phase transitions, when a small change in a

parameter has an observable e�ect on the macroscopic properties of the system.

If a small change in temperature causes a phase transition, then that temperature

is called the critical temperature.
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Consider the e�ect of the parameter J in the Hamiltonian. The high probab-

ility con�gurations are those for which H(�) is low. Let d(�) denote the number

of edges in E that connect sites with di�erent spins in the con�guration �. It is

easy to see that H(�) = Jd(�), and that

Z =

X

�

exp(��Jd(�))

We let K = �J ; K is usually known as the coupling constant in the statistical

physics community. By the de�nition of H(�), if J (or K, since � > 0) is

positive, then con�gurations in which neighbouring spins (spins associated with

a pair of sites with non-zero interaction energy) are the same are preferred: this

is the ferromagnetic (attractive) case. On the other hand, if J is negative, the

neighbouring spins will tend to be di�erent, and this is the antiferromagnetic

(repulsive) case.

The search for e�cient computational solutions to these problems has proved

extremely hard and has generated a vast body of literature. (The reader is re-

ferred to Chapter 12 of Baxter [2], where some special cases have been considered.)

A huge amount of computational e�ort has also been poured into numerical solu-

tions, especially for regular lattices.

Although this problem arises in statistical physics, it has a very interesting

connection with theoretical computer science. It is another example of a signi-

�cant combinatorial enumeration problem which is #P-complete, and is hence

apparently intractable in exact form. This is an intriguing class of problems,

and includes the problems of computing the volume of a convex body and the

permanent of a 0-1 matrix. The Potts model also turns out to be one of the many

specialisations of the famous Tutte polynomial in graph theory. The reader is

referred to Welsh [23, p. 62] for more on this interesting connection.

A lot of research e�ort has been devoted to �nding e�cient approximation

algorithms for #P-complete problems, where by e�cient we mean that the al-

gorithm is guaranteed to run in time polynomial in the number of sites n. Ran-

domness has played a major role in this area, and e�cient randomised approx-

imation algorithms have been given for computing the volume of a convex body

and estimating the permanent of a dense 0-1 matrix, as well as for many other

problems. Each of these algorithms is a fully polynomial randomised approx-

imation scheme (fpras), i.e., one that produces solutions which, with very high

probability, fall within arbitrarily small error bounds speci�ed by the user, the

price of greater accuracy being a modest increase in runtime.

Most of these algorithms use Markov chain simulation. This approach has

been used extensively over the years in the �eld of physics, and in the last ten

years or so, it has been used by researchers in computer science to provide fully

polynomial randomised approximation schemes for many problems. For further

information on this approach and its applications, refer to the surveys by Kan-

nan [12] and Jerrum and Sinclair [11].
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2.1 Single spin 
ip process

It is, in fact, very easy to use the Markov chain approach to approximate the

partition function of a Potts system. The state space � is simply the set of

all possible con�gurations. Let �(�) denote the steady state probability of the

con�guration � as described earlier. Transition probabilities from the current

state � are modelled by the following procedure:

(1) choose a site i 2 [n] and a spin s 2 [Q], uniformly at random;

(2) assign spin s to site i to get a new con�guration �

0

, and let the probability

of accepting the move, p

acc

= minf1; �(�

0

)=�(�)g;

(3) with probability p

acc

let the next state be �

0

, and with probability 1� p

acc

let the next state be � itself.

The procedure described above is an example of what is known in the stat-

istical physics community as the \Glauber dynamics" or the \single spin 
ip

dynamics" of the Potts model. The acceptance condition used here is called the

Metropolis rule, which is familiar in the computer simulation of models in statist-

ical physics [17]. Unfortunately, the Markov chain described above has not been

proved to be rapidly mixing. In fact, when Q = 2, i.e., when we have an Ising

system, it can be shown that the chain is not rapidly mixing in the ferromagnetic

case, when K is su�ciently large. It is well known that ferromagnetic Ising sys-

tems typically exhibit a phase transition at a certain value of the parameter �;

for values of � above this critical value, the system settles into a state in which

there is a preponderance of one or the other of the two spins.

A signi�cant theoretical advance came in 1990 when Jerrum and Sinclair [9]

described the �rst provably e�cient approximation algorithm for the partition

function of an arbitrary ferromagnetic Ising system. They used a completely

di�erent Markov chain, one in which the state space consists of all the subgraphs

of the interaction graph G. They proved that this Markov chain is rapidly mixing

at all temperatures, and this fact can be used to estimate the partition function

of the system. Unfortunately, their approach doesn't seem to generalise to Q > 2.

The antiferromagnetic case seems to be even harder: in fact, for the Ising

model, Jerrum and Sinclair [9] (following Barahona [1]) proved that the existence

of even an fpras is highly unlikely. Similar results for the Potts model have been

proved by Welsh [23, p. 138]. However, it is worth mentioning that if Q � 2�,

where � is the maximum degree of a vertex in the interaction graph G, then the

Markov chain described above can be shown to be rapidly mixing and yields an

fpras. This was shown for the zero temperature case (� !1) by Jerrum [10], and

then extended to arbitrary temperature (at least for Q > 2�), by Sokal [21]. The

latter result follows directly from the standard proof of the Dobrushin uniqueness

theorem [4, 5], combined with Salas and Sokal's veri�cation [20] of the hypotheses

of that theorem for the case of the antiferromagnetic Potts model with Q > 2�.
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2.2 The random cluster model

Before introducing the Swendsen-Wang approach for approximating the partition

function for the Q-state Potts model, it would be instructive to look at a related

model, called the Random Cluster model, which was introduced by Fortuin and

Kasteleyn [8] in 1972. We have the interaction graph G = ([n]; E) just as before,

however, there are no spins on the sites. The behaviour of the system depends

on the formation of bonds between pairs of interacting sites, and the clusters

(connected components in graph terminology) formed by these bonds. There are

two parameters associated with the model, a probability p of the formation of

a bond between two interacting sites, and a weighting factor Q. (When this Q

is a positive integer it corresponds to the Q in the Potts model; however, in the

random cluster model, Q may be an arbitrary non-negative real number.) The

partition function for this model is given by

Z =

X

A�E

p

jAj

(1� p)

jEj�jAj

Q

C(A)

where A denotes the set of interactions that form a bond, and C(A) is the number

of clusters (connected components) in the bond graph A. The sum is over all

possible subgraphs of G.

It turns out that the Q-state Potts model is equivalent to the random cluster

model with p = 1 � exp(�K), where K is the coupling constant as described

earlier, and the parameter Q is common to both models. The equivalence is

close, even at the microstate level: to obtain a Potts con�guration from a random

cluster con�guration, simply assign a spin from [Q] independently and u.a.r. to

each cluster. Note that the random cluster model e�ectively generalises the Potts

model to an arbitrary (possibly nonintegral) positive number of spins.

2.3 The Swendsen-Wang approach

This approach is based on the \bond graph and cluster" view of the Potts model

described in the previous section. Unlike the single spin 
ip dynamics, this ap-

proach is not local in that a single transition can a�ect a large number of sites.

Each transition can be described as a two-step process, and the connection with

the random cluster model is very clear. Let the current Potts con�guration be

denoted by �. The next con�guration �

0

is obtained as follows:

(1) Let A � E be the subset of edges that form a bond, i.e., ones with the same

spin on both incident sites. Each of the edges in A is retained independently

with a probability p = 1� exp(�K); this gives a subset A

0

of A.

(2) Using A

0

as the set of edges, connected components (clusters) are formed.

For each cluster, a spin is chosen uniformly at random from [Q], and all

sites within the cluster are assigned that spin.
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That the Markov chain with transitions de�ned by this experiment is ergodic is

immediate; that it has the correct distribution is not too di�cult to show. (See,

for example, Edwards and Sokal [6].)

This Markov chain seems to work very well in practice, however, it has not

been proved to be rapidly mixing for any class of graphs. The non-local nature

of the transitions seems to allow the chain to move more freely within the state

space, thus avoiding the possible constrictions that might result at low temperat-

ures. Our result deals with the case where the interaction graph is the complete

graph K

n

, and we prove that the chain is not rapidly mixing in this case for

Q � 3.

3 A �rst-order phase transition

The slow mixing rate of the Swendsen-Wang process is connected with what is

known as a \�rst-order phase transition," which we now investigate in the context

of the Potts model on the complete graph (Curie-Weiss model). We exhibit two

distinct kinds of con�gurations that account for all but an exponentially small

fraction of the partition function Z. In fact, by tuning the coupling constant,

we arrange that the two kinds of con�gurations make a roughly equal contribu-

tion to Z. Such a system is said to be in a mixed phase and the two kinds of

con�gurations are called coexisting phases [7]. This value of the coupling con-

stant is usually referred to as its critical value (denoted here by K

cr

). The phase

transition re
ects a crucial instability in the model in the following sense. When

K > K

cr

, the system prefers the so called ordered phase (one of the spins domin-

ates). As K is decreased (i.e., temperature is increased), the system goes into a

mixed phase at K = K

cr

and then makes an abrupt transition to the disordered

phase (each of the Q spins appears roughly the same number of times) when

K < K

cr

.

We consider the case where K = K

cr

and in Section 4 we show that the

Swendsen-Wang process only very infrequently makes a transition between the

coexisting phases, which results in a slow mixing rate.

Consider an arbitrary con�guration � 2 � of theQ-state Potts system. Recall

that the equilibrium probability of � is given by

�(�) = Z

�1

exp(�Kd(�));

where d(�) is the number of pairs of sites in E with di�erent spins. We choose

K = c=n, where 1 < c < Q is a constant depending on Q. (See (4) for an

explicit expression for c.) For the complete graph K

n

, since all interactions are

present, the only relevant observable quantities are the number of di�erent spins

and the sizes of these spin classes. Let n = (n

1

; : : : ; n

Q

) be the vector whose ith

component is the size of the ith spin class of �; we say that n is the type of �.
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Note that

d(�) =

1

2

 

n

2

�

Q

X

i=1

n

2

i

!

: (1)

Since �(�) is a function only of type, we may write �(n) to denote the value of

�(�) for any con�guration � of type n.

In equilibrium, the probability of being in a con�guration of type n is N(n)�

�(n), where

N(n) =

 

n

n

1

; n

2

; : : : ; n

Q

!

denotes the number of con�gurations of type n. Using Stirling's approximation,

N(n) = n

�(Q�1)=2

exp

( 

�

Q

X

i=1

a

i

ln a

i

!

n+�(a)

)

(2)

where a = (a

1

; : : : ; a

n

) = n=n, and �(a) is an error term; in general, j�(a)j =

O(logn), but the tighter estimate j�(a)j = O(1) holds if it is known that a �

("; : : : ; ") for some constant " > 0. (The implicit constants depend of Q and "

only.)

From (1), recalling K = c=n, we have

�(n) = Z

�1

exp

(

�

c

2

 

1�

Q

X

i=1

a

2

i

!

n

)

:

Therefore,

Pr(� has type n) = Z

�1

n

�(Q�1)=2

expff(a)n+�(a)g; (3)

where

f(a) =

Q

X

i=1

g(a

i

)�

c

2

and g(x) =

1

2

cx

2

� x lnx.

In order to identify the con�gurations that have the largest weights, we need

to maximise f , which in turn means that we need to maximise

P

Q

i=1

g(a

i

), in

the region de�ned by a

i

� 0 for all i, and

P

Q

i=1

a

i

= 1. This is clearly a closed

region (viewed as a set in (Q � 1)-dimensional Euclidean space), and we use R

to denote it. We now proceed to look at the behaviour of g in the interval [0; 1].

The following are easy observations:

� if we de�ne g(0) = 0, then g is continuous in [0; 1].

� g

0

(x) = cx� lnx� 1 is de�ned in (0; 1], and tends to 1 as x! 0

+

.

� g

0

(x) has a unique minimum in (0; 1] at x = c

�1

, such that g

0

(c

�1

) = ln c.
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� g

00

(x) > 0 in (c

�1

; 1] and g

00

(x) < 0 in (0; c

�1

).

Proposition 1 Let a = (a

1

; � � � ; a

Q

) be a local maximum point of f . Then a

satis�es the following properties:

(i) a lies in the interior of R.

(ii) Either a

i

= Q

�1

for all i, or there are � and � such that 0 < � < c

�1

<

� < 1, and a

i

2 f�; �g, for all i.

(iii) If a is such that the a

i

are not all equal, then there is a unique component a

j

such that a

j

= �; the other components a

i

with i 6= j satisfy a

i

= �.

Furthermore, g

0

(�) = g

0

(�).

Proof

(i) Suppose, on the contrary, that a is such that a

i

= 0 and a

j

> 0. Since

g

0

(x) ! 1 as x ! a

+

i

and g

0

(a

j

) is �nite, we can increase f by setting

a

i

= " and a

j

= a

j

� ", where " > 0 is su�ciently small.

(ii) At any local maximum, it must be the case that g

0

(a

i

) = g

0

(a

j

), for all i

and j. For suppose g

0

(a

i

) 6= g

0

(a

j

), for some i 6= j. Then a small perturba-

tion of " to a

i

and a

j

(either a

i

 a

i

+ " and a

j

 a

j

� " or the other way

round, depending on the values of g

0

(a

i

) and g

0

(a

j

)) would cause f(a) to

increase. Since g

0

(x) is unimodal in (0; 1], a

i

2 f�; �g for all i where � and

� are on either side of the minimum of g

0

.

(iii) Suppose on the contrary, that a

j

= a

k

= �, where j 6= k. Since g

00

(�) > 0,

setting a

j

 a

j

� " and a

k

 a

k

+ " would cause f(a) to increase.

If we now set

2

c =

2(Q� 1) ln(Q� 1)

Q� 2

(4)

it is routine to verify that the following three choices for a satisfy properties

(i){(iii) in the statement of Proposition 1:

(S1) a

i

= Q

�1

for all i = 1; : : : ; Q;

(S2) a

i

= (Q(Q� 1))

�1

for all i = 1; : : : ; Q� 1, and a

Q

= (Q� 1)=Q;

(S3) a

i

= (2(Q� 1))

�1

for all i = 1; : : : ; Q� 1, and a

Q

= 1=2.

2

Beyond a certain value c

0

> 1 of c, the function f can be shown to have two local maximum

points and a local minimum point. Our chosen value of c is the unique value at which the two

local maxima become equal to yield a global maximum. Much of the analysis has been done in

[15], albeit in a somewhat di�erent context.
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We shall shortly see that they are the only solutions satisfying properties (i){

(iii). Note that the ordering of subscripts on the spin classes is not signi�cant, as

explained earlier.

Claim 2 The �rst two solutions (S1){(S2) above are the only local maximum

points of f in R, and they both correspond to the global maximum of f . (The

�nal solution (S3) is a local minimum.)

Proof It is clear from Proposition 1 that any maximum point of f should have

the form a

i

= � for all i = 1; : : : ; Q� 1, and a

Q

= � = 1� (Q� 1)�, for some �

in (0; Q

�1

] satisfying

h(�) = g

0

(�)� g

0

(1� (Q� 1)�) = 0:

Now h(�) = cQ�� c+ ln(1� (Q� 1)�)� ln�, and

h

0

(�) = cQ�

Q� 1

1� (Q� 1)�

�

1

�

= cQ�

1

�(1� (Q� 1)�)

Setting h

0

(�) = 0, we get the quadratic equation �(1� (Q� 1)�) = 1=cQ, which

implies that h(�) has at most two turning points (and hence, at most three zeros)

in the interval (0; Q

�1

]. Since � = (Q(Q� 1))

�1

, � = (2(Q� 1))

�1

and � = Q

�1

all satisfy h(�) = 0, they are in fact the only solutions to that equation. We

conclude that (S1){(S3) are the only choices for a consistent with the conditions

of Proposition 1, and hence they must cover all the local maximum points of

f(a).

We now proceed to show that solutions (S1) and (S2) correspond to the global

maximum of f , and that (S3) does not. (In fact it is a local minimum point.)

Since, by Proposition 1, we are only interested in solutions of the form a

i

= � for

all i = 1; : : : ; Q� 1, and a

Q

= � = 1� (Q� 1)�. we may view f as a function of

the single variable �. Accordingly, de�ne

^

f(�) = f(�; : : : ; �; �). For the value of

c chosen above (4), we have, by direct calculation,

^

f(Q

�1

) =

^

f((Q(Q� 1))

�1

) = lnQ�

(Q� 1)

2

ln(Q� 1)

Q(Q� 2)

(5)

and

^

f((2(Q� 1))

�1

) = ln 2�

Q ln(Q� 1)

4(Q� 2)

: (6)

Denote by d(Q) the di�erence between (5) and (6):

d(Q) =

^

f(Q

�1

)�

^

f((2(Q� 1))

�1

) = lnQ� ln 2�

(3Q� 2) ln(Q� 1)

4Q

:

Then d(Q) > 0 for all Q � 3. To verify this, observe that for Q � 16,

d(Q) > lnQ� ln 2�

3Q lnQ

4Q

= lnQ� ln 2�

3

4

lnQ � 0:
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The cases 3 � Q � 15 can be checked separately. Thus (S1) and (S2) are global

maximum points of f and are the only such.

Note that d(Q) = f(Q

�1

) � f((2(Q � 1))

�1

) is very small for smaller values

of Q (e.g., of the order of 10

�3

for Q = 3); however, since f appears in the

exponent and is multiplied by n, the actual di�erence in weights of these two

types of con�gurations is quite large even for fairly small values of n.

Denote by B

=

(") the set of all points in R that are within (Euclidean) dis-

tance " of the balanced maximum point (Q

�1

; : : : ; Q

�1

), and by B

6=

(") the points

that are within distance " of any one of the other maximum points. (B

=

(") is

a (Q� 1)-dimensional ball and B

6=

(") a union of Q such balls.) Let �

=

(") � �

(respectively �

6=

(")) be the set of con�gurations whose type n lies in nB

=

(") (re-

spectively nB

6=

(")). The following result summarises what we have discovered.

Proposition 3 For any " > 0:

(i) Pr(� 2 �

=

(")) = 
(n

�(Q�1)

);

(ii) Pr(� 2 �

6=

(")) = 
(n

�(Q�1)

); and

(iii) Pr(� =2 �

=

(") [ �

6=

(")) = e

�
(n)

.

The implicit constants depend only on Q and ".

Proof Let a 2 R be chosen so that every component of a has value either

i=n or (i + 1)=n for some integer i, and let n

0

= na; observe that all con-

�gurations � of type n

0

are in �

=

("), provided n is su�ciently large. Then

jf(a) � f(Q

�1

; : : : ; Q

�1

)j = O(n

�1

), and hence, by (3), n

0

comes within a con-

stant factor of maximising Pr(� is of type n) over all types n. (Note that we are

operating within the j�(a)j = O(1) regime.) Since the total number of distinct

types is O(n

(Q�1)

) we have part (i). Part (ii) is proved in a similar manner.

Finally note that the supremum of f(a) over the region a 2 Rn(�

=

(")[�

6=

("))

is strictly less than the supremum over the whole of R. Part (iii) follows by

combining this observation with (3).

4 Dynamics

It is clear from Proposition 3 that the single spin 
ip process described in Sec-

tion 2.1 will converge only very slowly to equilibrium, since it is di�cult to escape

from either of the neighbourhoods �

=

(") or �

6=

(") using small steps. However,

the Swendsen-Wang process is able to change large blocks of spins in one step,

which at �rst sight seems to give it a signi�cant advantage. Our main result

(Proposition 7 below) suggests that this advantage may on occasion be illusory.

Before we present a formal proof, it would be useful get an intuitive feel as

to why we expect Proposition 7 to be true. Let � denote the current Potts

10



con�guration. Note that the Swendsen-Wang process only considers edges that

form a bond, so that the con�guration may be viewed as a collection of smaller

complete graphs, one for each spin in [Q]. Let n

1

; n

2

; : : : ; n

Q

denote the sizes

of these graphs. Let G

�;p

denote the standard random graph model, in which an

undirected �-vertex graph is formed by adding, independently for each unordered

pair of vertices u; v, an edge connecting u and v with probability p. Step (1) of the

process essentially creates Q random graphs, G

n

i

;p

, one of each size n

i

, 1 � i � Q,

where the probability of retaining an edge is p = 1 � exp(�K). Recall that

K = c=n, where 1 < c < Q, so that for large n, p � c=n. For a carefully chosen

value of c, we expect two possibilities:

� Just prior to Step (1), if all the spin classes in � have roughly the same size

� (� n=Q), then, for any such class, the probability p of retaining an edge

can be written as d=�, where d � c=Q, so that d < 1. A well-known result

in the theory of random graphs [3] tells us that with very high probability,

the spin class will break up into very small components (of size O(log �))

so that at the end of Step (2), after assigning random spin values to these

very small components, with high probability, we again end up with all spin

classes having roughly equal size.

� Just prior to Step (1), if there is one very large spin class in � and all the

other spin classes are very small, then the value of d (as above) would be

> 1 for the large class whereas it would be� 1 for the other classes. We can

now appeal to results about \the giant component" in random graphs [3]

to say that with high probability, at the end of Step (1) there would be

one large component and all the other components would be very small.

This means that at the end of Step (2), we expect, with high probability, a

con�guration similar to the one before Step (1). The choice of c determines

how close the new con�guration would be to the previous one.

Proposition 7 shows that for a carefully chosen value of c (depending on Q),

a Q-state Potts system tends to settle in one of the two kinds of con�gurations

mentioned above, and the probability of making a transition from one kind to

the other is very small. Our proof utilises some standard bounds on the tails

of distributions of sums of independent r.v's that we state here for convenient

reference.

Lemma 4 [Cherno�.] Let the random variable Z have distribution Bin(�; p),

where Bin(�; p) is the binomial distribution with parameters � and p. Then for

any real 
 > 0,

Pr(Z > 
�p) <

 

e


�1







!

�p

:

Proof See [18, Theorem 4.1].
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Lemma 5 [Hoe�ding.] Let Z

1

; : : : ; Z

k

be independent r.v's with a

i

� Z

i

� b

i

,

for suitable constants a

i

; b

i

, and all 1 � i � k. Also let

b

Z =

P

k

i=1

Z

i

. Then for

any � > 0,

Pr

�

j

b

Z � Exp

b

Zj � �n

�

� exp

�

�2�

2

n

2

�

k

X

i=1

(b

i

� a

i

)

2

�

Proof See [16, Theorem 5.7].

Let G

�;p

denote the standard random graph model as before. Suppose that

p < d=�, with d < 1 a constant, and G is selected according to the model G

�;p

. It

is a classical result that, with probability tending to 1 as � !1, the connected

components of G all have size O(log �). We require a (fairly crude) large deviation

version of this result.

Lemma 6 Let G be selected according to the model G

�;p

, where p < d=� and

0 < d < 1 is a constant. Then the probability that G contains a component of

size exceeding

p

� is exp(�
(

p

� )).

Proof Following Karp [14], we consider a simple stochastic procedure for grow-

ing a connected component of G from speci�ed vertex s. Let D

0

= fsg and

P

0

= ;. At step t, D

t

will be the set of \discovered" vertices (those that have

been shown to be connected to s), and P

t

� D

t

the set of \processed" vertices.

If D

t

= P

t

we are done: D

t

is the connected component of G containing s. Oth-

erwise, we select v 2 D

t

n P

t

and let D

t+1

= D

t

[ G(v) and P

t+1

= P

t

[ fvg,

where G(v) denotes the set of neighbours of v in G. Note that the termination

condition is equivalent to jD

t

j = t.

We must show that this process terminates within

p

� steps with very high

probability. We do this by comparing the evolution of D

i

against another se-

quence of random variables (X

i

) de�ned by X

0

= 1 and X

t+1

= X

t

+Bin(�; d=�),

where Bin(�; p) is the binomial distribution with parameters � and p. If Y

and Z are random variables taking non-negative integer values, then Y is said

to stochastically dominate Z if Pr(Y � i) � Pr(Z � i) for all i � 0. It is an

elementary fact that stochastic domination is preserved by addition. Now it is

easily checked that X

t+1

�X

t

stochastically dominates jD

t+1

j � jD

t

j, and so X

t

stochastically dominates jD

t

j. But X

t

� 1 is clearly distributed as Bin(t�; d=�)

so we can estimate the probability that X

t

is large using a Cherno� bound. In

particular, letting 
 = (t � 1)=td in Lemma 4, the probability that X

t

exceeds t

is bounded as follows:

Pr(X

t

> t) = Pr(X

t

� 1 > t� 1)

= Pr(X

t

� 1 > 
td)

= Pr(X

t

� 1 > 
 Exp(X

t

� 1))

�

 

e


�1







!

td

:
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Setting t = b

p

�c, and noting that 
 ! d

�1

> 1 as � !1, we obtain

Pr(jD

t

j > t) � Pr(X

t

> t) = exp(�
(

p

� ));

where we have used the fact thatX

t

stochastically dominates jD

t

j. But jD

t

j > t is

the event that the component building procedure has not terminated at or before

time t, i.e., that the connected component of G containing s has size greater

than t = b

p

�c. Multiplying by � we obtain a bound on the probability that any

connected component in G has size exceeding

p

�; this small extra factor may be

absorbed by the 
-notation.

Proposition 7 Suppose Q � 3 is an integer, c = 2(Q � 1)(Q � 2)

�1

ln(Q� 1),

and consider a Potts system on K

n

with coupling constant K = c=n. Let " > 0

be su�ciently small, and let �

=

(") and �

6=

(") be as in Proposition 3. Starting

at any con�guration �(0) 2 �

=

("), the expected time T for the Swendsen-Wang

process to reach a con�guration �(T ) 2 �

6=

(") is exp(
(

p

n )).

Proof Suppose the con�guration �(t) at time t is an arbitrary member of �

=

(").

By de�nition of �

=

("), the size � of any spin-class of �(0) is bounded above by

� � (Q

�1

+ ")n. Focussing attention on a particular spin-class of size �, the

set A constructed in step (1) of the Swendsen-Wang process is the edge set of

a complete graph K

�

on � vertices, and the set A

0

is the edge set of a random

graph G selected according to the model G

�;p

, where

p = 1� e

�K

�

c

n

�

�

1

Q

+ "

�

c

�

Since cQ

�1

< 1 we have p � d=� where d < 1, provided " is su�ciently small.

By Lemma 6, with probability 1� exp(�
(

p

� )), all connected components of G

have size at most

p

�. Since (Q

�1

� ")n � � � n, the same statement holds

with n replacing �. Similar arguments apply to the other spin-classes, so, with

probability 1� exp(�
(

p

n )), all the connected components formed in step (1)

of the Swendsen-Wang process have size at most

p

n.

Let � be the number of such components, and s

1

; : : : ; s

�

be their respective

sizes. The expected size of a spin-class constructed in step (2) of the Swendsen-

Wang process is n=Q, and because there are many components (at least

p

n )

we expect the actual size of each spin-class to be close to the expectation. We

quantify this intuition by appealing to a Hoe�ding bound. Fix a spin 
, and

de�ne the random variables Y

1

; : : : ; Y

�

and

b

Y by

Y

i

=

�

s

i

; if the ith component receives spin 
 in step (2);

0; otherwise,

and

b

Y =

P

�

i=1

Y

i

. Then Exp

b

Y = n=Q and, by Lemma 5, for any � > 0

Pr

�

j

b

Y � Exp

b

Y j � �n

�

� exp

�

�2�

2

n

2

�

�

X

i=1

s

2

i

�

� exp(�2�

2

p

n );

13



since

�

X

i=1

s

2

i

�

�

X

i=1

s

i

p

n = n

3=2

:

Similar bounds apply, of course, to the other spins. Choosing � = "=

p

Q we see

that, with probability 1� exp(�
(

p

n )), the size of every spin-class in �(t+ 1)

lies in the range

�

(Q

�1

� "=

p

Q )n; (Q

�1

+ "=

p

Q )n

�

; but this condition implies

�(t+ 1) 2 �

=

("). The claimed result follows easily.

Note that Proposition 7 only proves that starting from any con�guration in

�

=

("), the Swendsen-Wang process requires exponential time to reach a con�g-

uration in �

6=

("). However, since the Swendsen-Wang process is reversible, it is

clear that the same statement also holds if we interchange the roles of �

=

(") and

�

6=

(") in the Proposition.
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