
Approximate Counting by Dynamic Programming

Martin Dyer
∗

School of Computing
University of Leeds
Leeds LS2 9JT, UK.

dyer@comp.leeds.ac.uk

ABSTRACT
We give efficient algorithms to sample uniformly, and count
approximately, the solutions to a zero-one knapsack prob-
lem. The algorithm is based on using dynamic programming
to provide a deterministic relative approximation. Then
“dart throwing” techniques are used to give arbitrary ap-
proximation ratios. We also indicate how further improve-
ments can be obtained using randomized rounding. We
extend the approach to several related problems: the m-
constraint zero-one knapsack, the general integer knapsack
(including its m-constraint version) and contingency tables
with constantly many rows.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms;
G.3 [Mathematics of Computing]: Probability.

General Terms
Algorithms, Theory.

1. INTRODUCTION
In this paper we describe efficient algorithms to sample

uniformly, and count approximately, solutions to the zero-
one knapsack problem and some related problems. For def-
initions and background on polynomial time sampling and
approximate counting see, for example, the monograph of
Jerrum [13].

Specifically we address both the single and multiple con-
straint versions of zero-one knapsack, the general integer
knapsack with arbitrary upper bounds (both single and mul-
tiple constraint), and contingency tables with a constant
number of rows. In each case the algorithms are based on
a dynamic programming computation which provides a de-
terministic approximation ratio of polynomial size. Then

∗Supported by the EPSRC grant “Sharper Analysis of Ran-
domized Algorithms: A Computational Approach” and by
the EC IST Thematic Network RAND-APX.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

simple “dart throwing” techniques can be used to boost this
to arbitrarily good approximation ratios.

Previous approaches to the problems we discuss here have
been based almost exclusively on the Markov chain Monte
Carlo (MCMC) approach. One exception is the algorithm of
Cryan and Dyer [2] for contingency tables with constantly
many rows. This combines dynamic programming with vol-
ume approximation, but the approximate volume computa-
tion does itself involve MCMC methods.

The zero-one knapsack problem has been approached by
MCMC. The best result known, due to Morris and Sin-
clair [16, 17], gives sampling in time O(n9/2+ε), for any
ε > 0, for a problem with n variables. In section 2.1 we
give an O(n3) time sampling algorithm and a fully polyno-
mial randomized approximation scheme (fpras), with rela-
tive error ε, running in time O(n3 + ε−2n2), i.e. essentially
the same time bound. In section 2.2 we show how this can
be improved further to O(n5/2

�
log(nε−1) + ε−2n2) using

randomized rounding. Similar improvements seem possible
in the other problems we consider, but we will not explore
them here.

The (multiple constraint) multidimensional knapsack has
also been considered previously [8, 15, 17]. Here the best re-
sult known, again due to Morris and Sinclair [15, 17], gives

sampling with time bound n2O(m)

. We improve this sub-
stantially in section 2.3 to give sampling, and an fpras, with
a time bound of O(n2m+1).

The general integer knapsack problem has perhaps been
less studied from the viewpoint of approximate counting.
The analysis of [8] was extended to this case, but the time

bound for the Markov chain given there is 2O∗(
√

n) when
there are n variables. It is likely that the methods of [17]
apply to this problem, but it seems that this has not yet
been done. In section 2.4 we show that the single constraint
problem has an O(n5) sampling algorithm and an fpras with
similar running time. Again, these results generalise easily
to give running time O(n2m+3) for m constraints.

Sampling and counting contingency tables have been stud-
ied intensively. See [1, 2, 3, 4, 6, 7, 9, 10, 11, 14, 15, 18], for
example. The practical relevance of this problem was dis-
cussed by Diaconis and Efron [5]. It is still not known how
to sample general contingency tables uniformly in polyno-
mial time, but algorithms are known for some special cases.
In particular, the case where the number of rows is consid-
ered to be a constant has been examined recently. See, for
example, [2, 3, 9, 11]. The previous best result known for
this problem was the algorithm of [2], which gives sampling

in time nO(m2) when there are m rows and n columns. In

section 3 we describe a substantial improvement, resulting
in O(n4m+1) sampling time, and give an fpras with similar
time bound.

2. COUNTING KNAPSACK SOLUTIONS
We consider sampling and approximate counting for sev-

eral variants of the knapsack problem.
The following standard notation is used throughout the

paper. The set of integers is denoted by � , the non-negative
integers by � , and the positive integers by � +. The reals are
denoted by � . For any i, j ∈ � with i ≤ j, we will denote
by [i, j] the set of integers {i, . . . , j}, and we will denote by
[j] the set [1, j] for any j ∈ � +.

2.1 The zero-one knapsack
Let Bn = {0, 1}n, and let S denote the set

S = � x ∈ Bn :

n�
j=1

ajxj ≤ b � ,

where 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ b are integers.1

Let k be such that aj ≤ b/n for j ≤ k and either k = n
or ak+1 > b/n. Let C = {0, 1}k × {0}n−k . If x ∈ C then� n

j=1 ajxj ≤ � k
j=1 aj ≤ kb/n ≤ b, so x ∈ S. Thus C ⊆ S.

Let αj = bn2aj/bc and δj = n2aj/b − αj , so 0 ≤ δj < 1.
Let S′ be the solution set of

n�
j=1

αjxj ≤ n2, with x ∈ Bn.

Now |S′| can be determined in O(n3) time, using dynamic
programming. Write F (r, s) = |{x ∈ Br :

� r
j=1 αjxj ≤ s}|.

In O(n3) time, the dynamic programming tabulates F (r, s)
(1 ≤ r ≤ n, 0 ≤ s ≤ n2), using the recursion

F (1, s) = � 1 if s < α1

2 otherwise

F (r, s) = F (r − 1, s) + F (r − 1, s − αr) (r ≥ 2).

Then we have |S′| = F (n, n2).
If x ∈ S,

� n
j=1 αjxj ≤ (n2/b)

� n
j=1 ajxj ≤ (n2/b)b = n2,

so x ∈ S′. Thus S ⊆ S′ and |S| ≤ |S′|. If S′ 6= S, suppose
x ∈ S′ \ S. Then clearly there exists an integer p = p(x)
such that xp = 1 and p /∈ [k]. Otherwise x ∈ C ⊆ S ⊆ S′,
a contradiction. If there is more than one such integer, take
p(x) to be the smallest. Note that we have αp ≥ n.

Define a map f : S′ → Bn, as follows. If x ∈ S then
f(x) = x. Otherwise x ∈ S′ \ S, and p(x) is well defined.
Define f(x) = y, where yj = xj for j 6= p(x), and yp = 0.

1A single (rational) linear inequality in zero-one variables
can always be put in this form.

For any x ∈ S′ \ S, with y = f(x), we have

n�
j=1

ajyj =
b

n2

n�
j=1

(αj + δj)yj

=
b

n2 	 n�
j=1

αjyj +

n�
j=1

δjyj

=

b

n2 	 n�
j=1

αjxj − αp +

n�
j=1

δjyj

≤ b

n2
(n2 − n + n)

= b,

so f(x) ∈ S. Hence f(S′) = S. But, for y ∈ S, we have
|f−1(y)| ≤ (n + 1), since any element of f−1(y) may change
a single coordinate of y or none. Thus

|S′| = |f−1(S)| ≤ (n + 1)|S|.
Hence 1 ≤ |S′|/|S| ≤ (n + 1) so |S′|/

√
n + 1 approximates

|S| deterministically within a factor
√

n + 1 and can be com-
puted in O(n3) time. Since 0-1 knapsack is self-reducible,
existence of an fpras for the problem now follows indirectly
from a general result of Sinclair and Jerrum [19]. However,
we will now describe a simpler and more efficient “dart-
throwing” method to construct an fpras directly.

The F (r, s) table can be used to determine a uniform point
in S′ in O(n) time, by tracing back probabilistically from
F (n, n2), as follows. With probability F (n−1, n2)/F (n, n2)
set xn = 0, else set xn = 1 with the remaining probability
F (n−1, n2−αn)/F (n, n2). If xn = 0, recursively determine
xn−1, xn−2, . . . , x2, x1 by tracing back from F (n−1, n2) and,
if xn = 1, trace back similarly from F (n − 1, n2 − αn). The
resulting point of S′ has probability at least 1/(n+1) of lying
in S. If so, it is uniformly distributed in S, and we accept
it. Otherwise we repeat the whole process independently.
After n + 1 repetitions we have a sample with probability
at least 1 − e−1. Hence a sample of ν uniform points in S
can be determined in O(n3 +n2ν) time2 with probability at

least 1 − e−Ω(n).
To have an fpras for |S|, we need only estimate the prob-

ability ρ = |S|/|S′| ≥ 1/(n + 1), since |S′| = F (n, n2).
With ν points in S′, the sampling error is O(1/

√
νn). We

require this to be smaller than ερ = Ω(ε/n). Hence we
need ν = O(ε−2n). The complexity of the fpras is then
O(n3 + ε−2n2).

2.2 Randomized rounding
We will show how to reduce the running time of the fpras

for the zero-one knapsack problem by (almost) a
√

n factor,
using randomized rounding. Let ε be as defined in section 1
and used in section 2.1, K =

�
2n ln(n/ε), α̂j = b2nKaj/bc

and δj = 2nKaj/b−α̂j . Now let Wj be independent random
variables such that

Pr(Wj = 1) = 1 − Pr(Wj = 0) = δj (j ∈ [n]),

and let αj = α̂j + Wj . Hence 2nKaj/b = αj + δj − Wj ,
and E[αj] = 2nKaj/b. Let S be defined as above and
let S′ = {x ∈ Bn :

� n
j=1 αjxj ≤ (2n + 1)K}. Then, for

any given values of the random variables Wj , |S′| can be

2Here and elsewhere we count arithmetic operations, rather
than operations on bits.

determined by dynamic programming as before. The im-
provement in the running time will come from performing
this dynamic programming calculation with a smaller right
hand side. Note that the αj (j ∈ [n]) are random variables,
and hence S′ is a random set, but S is fixed. For any fixed
x ∈ Bn, let χx be the indicator random variable of the event
{x ∈ S′}, and χ̄x = 1 − χx. Let ∆x =

� n
j=1(Wj − δj)xj .

Lemma 1. For fixed x ∈ Bn and γ ∈ � , γ > 0, we have

Pr(∆x > γK) ≤ (ε/n)(2γ)2 , Pr(∆x < −γK) ≤ (ε/n)(2γ)2 .

Proof. Since Wjxj ∈ {0, 1} and E[Wjxj] = δjxj , by an
inequality of Hoeffding [12], we have

Pr(∆x > γK) ≤ e−2γ2K2/n = (ε/n)(2γ)2 .

The other inequality is proved identically.

We will first show that

Lemma 2. Pr(|S′ ∩ S| < (1 − ε3/n3)|S|) ≤ ε/n.

Proof. Given x ∈ S, we first bound E[χ̄x] = Pr(x /∈ S′).

n�
j=1

αjxj =

n�
j=1

(2nKaj/b − δj + Wj)xj

≤ 2nK + ∆x

≤ (2n + 1)K,

provided ∆x ≤ K. So, for x ∈ S,

E[χ̄x] = Pr(x /∈ S′) ≤ Pr(∆x > K) ≤ (ε/n)4,

by Lemma 1. Thus

E[|S \ S′|] =
�
x∈S

E[χ̄x] ≤ ε4|S|/n4.

Hence, using the Markov inequality,

Pr(|S′ ∩ S| < (1 − ε3/n3)|S|) = Pr(|S \ S′| > ε3|S|/n3)

≤ ε4|S|/n4

ε3|S|/n3

=
ε

n
.

Define f : Bn → Bn as follows. If x ∈ S, set f(x) = x. If
x /∈ S, let k = arg maxj ajxj , so akxk > b/n. Now define
y = f(x) by setting yk = 0 as before. For each x ∈ Bn,
define

dx = min{d : fd(x) ∈ S},
and let

Sd = {x ∈ Bn : dx = d} (0 ≤ d ≤ n).

Observe that dx is the shortest edge-distance from x to S
in the hypercube Bn. Note also that the sets Sd are defined
without any reference to random variables. Clearly S0 = S,
and S1 = f−1(S) \ S. Using an argument similar to that
used to bound |f−1(S)| in section 2.1, it follows that

|Sd| ≤ � n
d � |S| (d ≥ 0).

Also, x ∈ Sd implies

n�
j=1

ajxj > (1 + (d − 1)/n)b (d > 0).

Lemma 3. Pr(|S′| > (n + 2)|S|) ≤ ε/n.

Proof. Note that x ∈ S′ if and only if

(2n + 1)K ≥
n�

j=1

αjxj

=

n�
j=1

(2nKaj/b + Wj − δj)xj

=
2nK

b

n�
j=1

ajxj + ∆x.

Since x ∈ Sd implies
� n

j=1 ajxj > (1+(d−1)/n)b, it follows

that x ∈ S′ ∩ Sd implies

∆x ≤ −(2d − 3)K (d > 1).

So, if x ∈ Sd (d > 1),

Pr(x ∈ S′) ≤ Pr(∆x ≤ −(2d − 3)K).

Thus, if x ∈ Sd (d > 1), we have

E[χx] = Pr(x ∈ S′) ≤ (ε/n)(4d−6)2 ,

using Lemma 1 again. Hence, for d > 1,

E[|S′ ∩ Sd|] =
�

x∈Sd

E[χx]

≤ (ε/n)(4d−6)2 � n
d � |S|

≤ (ε2/n)d|S|/d!.

Let S′
2 = S′ ∩
 n

d=2 Sd. Therefore,

E[|S′
2|] ≤ |S|

n�
d=2

(ε2/n)d

d!
≤ (ε2/n)2|S|.

Now, again using the Markov inequality,

Pr(|S′
2| > ε3|S|/n) ≤ (ε2/n)2|S|

ε3|S|/n
= ε/n.

Thus, with probability at least (1 − ε/n),

|S′| ≤ |S0| + |S1| + |S′
2|

≤ |S| + n|S| + ε3|S|/n

< (n + 2)|S|.

Thus we have |S′| < (n+2)|S| and |S′ ∩S| ≥ (1− ε3/n3)|S|
with probability at least (1 − 2ε/n). Hence, with the same
probability, for all n > 2,

ρ =
|S ∩ S′|
|S′| ≥ (1 − ε3/n3)|S|

(n + 2)|S| ≥ 1

2n
.

Now, by sampling from S′, we can determine ρ̂ satisfying
ρ
√

1 − ε ≤ ρ̂ ≤ ρ/
√

1 − ε in O(n2/ε2) time. (We need
O(n/ε2) samples, each requiring O(n) time.)

Now let Ψ = ρ̂|S′|/
√

1 − ε be our estimate of |S|. We have

Ψ ≤ ρ|S′|
1 − ε

=
|S′ ∩ S|
1 − ε

≤ |S|
1 − ε

,

and Ψ ≥ ρ|S′| = |S′ ∩ S| > (1 − ε)|S|.
If Pr � ρ

√
1 − ε ≤ ρ̂ ≤ ρ/

√
1 − ε � = 1 − η, the total failure

probability is at most (η+2ε/n), the latter term arising from
the errors associated with Lemmas 2 and 3. So we have an
fpras, with overall running time O(n5/2

�
log(n/ε)+n2/ε2).

2.3 The multidimensional knapsack
The multidimensional (zero-one) knapsack problem,

S =
m�

i=1

Si, where Si = {x ∈ Bn :
n�

j=1

aijxj ≤ bi}, (1)

with aij ≥ 0 (i ∈ [m], j ∈ [n])3, can be solved by the same
technique if the number of constraints m is a constant. Let
S′ = � m

i=1 S′
i, where S′

i = {x ∈ Bn :
� n

j=1 αijxj ≤ n2} with

αij = bn2aij/bic. We can show S ⊆ S′ exactly as before.
Let Ki = {j : aij ≤ bi/n}. For x ∈ S′ \ S, let I(x) =

{i : x ∈ S′
i \ Si}. As before, for every i ∈ I(x), there exists

pi(x) /∈ Ki such that xpi
= 1. Construct f(x) = y by

ypi(x) = 0 for i ∈ I(x) and yj = xj otherwise. Then it can
be shown as before that f(x) ∈ S. The inverse mapping
changes some set of coordinates P with 0 ≤ |P | ≤ m, so

|f−1(y)| ≤ 1 + n + � n

2 � + · · ·+ � n

m � ≤ nm (m, n ≥ 2),

and therefore we have |S′| ≤ nm|S|. The dynamic program-
ming computation to determine |S′| takes O(n2m+1) time.
Using the same ideas as in section 2.1, we can obtain a uni-
form sample of size ν from S in time O(n2m+1+nm+1ν), and
an fpras for approximate counting which takes O(n2m+1 +
ε−2nm+1) time.

2.4 The general integer knapsack
Let Ur = { 0 ≤ xj ≤ uj , j ∈ [r]}, where the uj are given

integers. We want to estimate |S|, where

S = {x :
n�

j=1

ajxj ≤ b, x ∈ Un},

with a1, . . . , an, b > 0 given integers. Note that we can as-
sume uj ≤ bb/ajc. Let

hj(xj) = b2n2ajxj/bc (0 ≤ xj ≤ uj , j ∈ [n]),

and S′ = {x :
n�

j=1

hj(xj) ≤ 2n2, x ∈ Un}.

Now let C = {x : ajxj ≤ b/n, j ∈ [n]}. It follows easily
that C ⊆ S ⊆ S′. Thus, if x ∈ S′ \ S, there exists p = p(x)
such that apxp > b/n. Note that hp(xp) ≥ 2n. Define
f : S′ → Un, by f(x) = x if x ∈ S and f(x) = y otherwise,
where yj = xj for j 6= p(x) and yp = bxp/2c. Now, if

3The problem is unlikely to have an fpras without some such
assumption, even if bi > 0 for all i ∈ [m]. See the appendix.

y = f(x),

n�
j=1

ajyj =
b

2n2

n�
j=1

2n2ajyj/b

=
b

2n2 	 �
j 6=p

2n2ajxj/b + 2n2apbxp/2c/b

≤ b

2n2 	 �
j 6=p

(hj(xj) + 1) + n2apxp/b

≤ b

2n2 	 �
j 6=p

hj(xj) + n − 1 + 1
2
(hp(xp) + 1)

≤ b

2n2 	 �
j 6=p

hj(xj) + n − 1 + hp(xp) − n + 1
2

≤ b

2n2 	 2n2 − 1
2
 < b.

Thus f(S′) = S. But |f−1(y)| ≤ 2n + 1, since y ∈ f−1(y)
and, for any 1 ≤ p ≤ n, there are at most two possible values
of xp.

We calculate F (r, s) = |{x ∈ Ur :
� r

j=1 hj(xj) ≤ s}| by

dynamic programming, with |S′| = F (n, 2n2). Let

κj =
b

2n2aj
, τj = buj/κjc ≤ 2n2.

Let ∆j(t) = |{xj : hj(xj) = t}|. Then

∆j(t) = d(t + 1)κje − dtκje (0 ≤ t < τj),

∆j(τj) = uj + 1 − dτjκje.
Now the recurrence is

F (r, s) =

τr�
t=0

∆r(t)F (r − 1, s − t),

F (1, s) = 1 + min � bsκ1c, u1 � .
The table F (r, s) (1 ≤ r ≤ n, 0 ≤ s ≤ 2n2) can be de-
termined in O(n5) time. The probabilistic traceback takes
O(n3) time, so we can generate a sample of size ν from S in
O(n5 +n4ν) time. Again we need O(ε−2n) samples from S′

for an fpras, giving O(n5 + ε−2n4) time. The generalisation
to the m-constraint version is similar to the zero-one case,
and leads to O(n2m+3 + νnm+3) time for a sample of size ν,
and O(n2m+3 + ε−2nm+3) time for an fpras.

3. CONTINGENCY TABLES
We denote the i, jth element of a matrix x ∈ � m×n by

xij , and its jth column by xj (i ∈ [m], j ∈ [n]).
A contingency table with row sums r = (r1, ...rm) and

column sums c = (c1, ...cn) is any x ∈ � m×n such that� n
j=1 xij = ri (i ∈ [m]) and

� m
i=1 xij = cj (j ∈ [n]). Note

that, if N =
� m

i=1 ri then also N =
� n

j=1 cj . For given
row and column sums, we wish to estimate the number of
distinct tables. We consider the case where m is considered
to be a constant. We may assume m ≤ n, otherwise we
can transpose the table. We will assume, without loss of
generality, that cn = maxn

j=1 cj . We also assume cn ≥ m5.
Otherwise, it is not difficult to see that we may count exactly
by dynamic programming in O(nm+1) time.

For x ∈ � m×n , let x∗ ∈ � m×(n−1) denote x with its nth
column deleted. Let

Xj = � xj ∈ � m :

m�
i=1

xij = cj � (j ∈ [n − 1]),

and

X = � x∗ : xj ∈ Xj , j ∈ [n − 1] � .

Letting r = (r1, . . . , rm), the set S of contingency tables
with totals ri, cj can be written

S = � x∗ ∈ X :
n−1�
j=1

xj ≤ r � .

Let hj : Xj → � m be defined by

[hj(xj)]i = b2n2xij/ric (i ∈ [m]),

and let

S′ = � x∗ ∈ X :
n−1�
j=1

hj(xj) ≤ 2n2
1 � ,

where 1 is the m-vector of 1’s. Clearly S ⊆ S′.
For t ∈ T = [0, 2n2]

m
, we can calculate

F (k, t) = |{(x1, . . . , xk) ∈ � k
j=1 Xj :

� k
j=1 hj(xj) ≤ t}|

by dynamic programming. Then |S′| = F (n − 1, 2n21).

Let ξi(ti) = � riti

2n2 � and, for any j ∈ [n − 1], define

∆j(t) = |{xj ∈ Xj : hj(xj) = t}|
= |{xj ∈ Xj : ξi(ti) ≤ xij < ξi(ti + 1), i ∈ [m]}|.

Then, if s ∈ T , the recurrence is

F (k, s) =
�
t∈T

∆k(t)F (k − 1, s − t) (k > 1),

F (1, s) = ∆1(s).

Thus the table F (k, s) (k ∈ [n − 1], s ∈ T) can be deter-
mined in O(n4m+1D) time, where D is the time needed to
determine ∆j(t). We consider this next.

Lemma 4. ∆j(t) can be determined in O(m2m) arith-
metic operations.

Proof. Note that each ∆j(t) is of the form

M = |{ζ ∈ � m :
� m

i=1 ζi = ξ, 0 ≤ ζi ≤ ui (i ∈ [m])}|. (2)

For σ ∈ {0, 1}m, let

e(σ) =
m�

i=1

σi, z(σ) = ξ −
m�

i=1

σi(ui + 1),

and

Z(σ) = � ζ :
� m

i=1 ζi = z(σ), ζi ≥ 0 (i ∈ [m]) � .

Note that

|Z(σ)| = � z(σ) + m − 1

m − 1 � .

Now, using the principle of inclusion-exclusion, we have

M =
�

σ∈{0,1}m

(−1)e(σ)|Z(σ)|

=
�

σ∈{0,1}m

(−1)e(σ) � z(σ) + m − 1

m − 1 � .

Each term in the sum can be calculated in O(m) arithmetic
operations, and there are 2m terms.

Thus all F (k, s) can be calculated in O(n4m+1) time. Hence
we can determine |S′|. The probabilistic traceback takes
O(n2m+1) time, given that we can select uniformly from
sets of the form (2) in constant time (for fixed m). We will
consider this point later.

We now construct the mapping f from S′ to S. This is
not as straightforward as the construction of the mappings
in section 2. If x∗ ∈ S, then we set f(x∗) = x∗. Otherwise
let I(x∗) = {i :

� n−1
j=1 x∗

ij > ri}. For i ∈ I(x∗), let p(i) be

such that x∗
ip = maxn−1

j=1 x∗
ij > ri/n. Now, for any x∗ ∈ S′,

n−1�
j=1

x∗
ij ≤ ri

2n2

n−1�
j=1

([hj(xj)]i + 1)

<
ri

2n2
� 2n2 + n �

= 	 1 +
1

2n

 ri.

Now let J = {j : j = p(i) for some i ∈ I(x∗)} and ` = |J |+1.
Note that ` ≤ m, since xj ∈ Xj , j ∈ [n − 1], implies that
[m] \ I(x∗) 6= ∅. Let ŷij = 0 (i ∈ [m], j ∈ J), ŷij = x∗

ij

otherwise. Then ρi = ri −
� n−1

j=1 ŷij ≥ 0.

If i ∈ I(x∗), ρi ≥ x∗
ip − 1

2n
ri ≥ 1

2n
ri. Thus, if i ∈ I(x∗),

j ∈ J , x∗
ij ≤ x∗

ip ≤ ρi + 1
2n

ri ≤ 2ρi. If i /∈ I(x∗), j ∈ J , then
clearly x∗

ij ≤ ρi. Also, x∗
j ∈ Xj implies x∗

ij ≤ cj . Thus we
have x∗

ij ≤ 2 min(ρi, cj) for any i ∈ [m], j ∈ J .
We use the columns in J ∪ {n} to “complete” ŷ to a con-

tingency table y. We can do this by setting these columns
to any m × ` contingency table with row sums ρi, i ∈ [m],
and column sums cj , j ∈ J ∪ {n}. The method we use is
similar to that in [3]. Let N ′ =

� m
i=1 ρi =

�
j∈J∪{n} cj , and

let us assume without loss that the rows are re-numbered if
necessary so that ρm = maxm

i=1 ρi. Note that ρm ≥ N ′/m
and cn ≥ N ′/`.

Let aij = bmin(ρi, cj)/m3c, Qij = bx∗
ij/(aij + 1)c ≤ 2m3,

Rij = x∗
ij mod (aij + 1), so that x∗

ij = (aij + 1)Qij + Rij ,
for i ∈ [m − 1], j ∈ J . Now, for all i ∈ [m − 1], j ∈ J , let

Q′
ij = � ρicj

N ′(aij + 1) � , zij = (aij + 1)Q′
ij + Rij .

We must show that the zij can be augmented to give a
contingency table. This will be so if, and only if,�

j∈J

zij ≤ ρi (i ∈ [m − 1]), (3)�
i∈[m−1]

zij ≤ cj (j ∈ J), (4)�
i∈[m−1]

�
j∈J

zij ≥ N ′ − ρm − cn. (5)

This formulation is well known. See, for example, [10].
Now, for (3), we have�

j∈J

zij ≤
�
j∈J

	 ρicj

N ′ + aij

≤

�
j∈J

	 ρicj

N ′ +
ρi

m3

< ρi � 1 − 1

`
+

1

m2 �
< ρi.

Similarly, for (4),

m−1�
i=1

zij ≤
m−1�
i=1

	 ρicj

N ′ + aij

≤

m−1�
i=1

	 ρicj

N ′ +
cj

m3

< cj � 1 − 1

m
+

1

m2 �
< cj .

Finally, for (5),

m−1�
i=1

�
j∈J

zij >

m−1�
i=1

�
j∈J

	 ρicj

N ′ − (aij + 1)

≥

m−1�
i=1

�
j∈J

	 ρicj

N ′ − cj

m3
− 1

≥ (N ′ − ρm)(N ′ − cn)

N ′ − N ′ − cn

m2
− m2

≥ N ′ − ρm − cn +
N ′

m2
− N ′

m2
+

N ′

m3
− m2

≥ N ′ − ρm − cn,

provided N ′ ≥ m5. But this is implied by our assumption
that cn ≥ m5.

We can now define the mapping f . Let f(x∗) = y∗, where
y∗

j = x∗
j , j /∈ J , and y∗

j = zj , j ∈ J . For the inverse
mapping, the set J contains at most (m − 1) of the (n − 1)
columns, and there are at most nm−1 ways of selecting it.
Given the set J , the ρi (i ∈ [m]) can be calculated, and we
can determine the largest ρi, which we assume to be ρm.
Now the aij can be determined, and hence the Rij from

Rij = y∗
ij mod (aij + 1) (i ∈ [m − 1], j ∈ J).

Finally we must select the Qij . Since

Qij ∈ [0, 2m3] (i ∈ [m − 1], j ∈ J).

there are at most (2m3+1)(m−1)2 ways of selecting them all.
For fixed m this is constant. Thus |f−1(y∗)| = O(nm−1).

We can generate as before by tracing back. However, at
each stage we now need to generate a random point in a set
M of the form (2). Let us defer this issue temporarily, and
suppose we can do this in constant time for fixed m. It then
follows, using the same ideas as before, that a sample of ν
tables can be computed in time O(n4m+1 +ν n3m), and that
there is an fpras with running time O(n4m+1 + ε−2n3m).

Let us now return to the question of generation in the
traceback. Fortunately, we can use the method above to

bootstrap itself. Note that (essentially) a set of the form (2)
is the set of solutions to a 2×m contingency table, with row
sums ξ,

� m
i=1 ui − ξ and column sums u1, u2, . . . , um. Thus

the method above can be used to generate a point in O(m9)
time, provided that we can trace back when there are only
two rows. Thus we need to generate a uniform point in

ζ1 + ζ2 = ξ, 0 ≤ ζ1 ≤ u1, 0 ≤ ζ2 ≤ u2.

But this is straightforward. We choose

ζ1 ∈ [max(0, ξ − u2), min(u1, ξ)]

uniformly at random, and then set ζ2 = ξ − ζ1.
Finally, observe that this method for generation could be

used to count approximately in the dynamic programming
phase. Then we use Lemma 2 only for tables with two rows.
With this approach, the implied constant in the time bound
for the dynamic programming part of the algorithm depends
only polynomially on m. We omit the details, since the
appearance of m in the exponent of n makes this an issue of
secondary importance.

4. REFERENCES

[1] F. Chung, R. Graham and S. Yau. On sampling with
Markov chains. Random Structures and Algorithms, 9,
1996, pp. 55–77.

[2] M. Cryan and M. Dyer. A polynomial-time algorithm
to approximately count contingency tables when the
number of rows is constant. In Proceedings of the 34th
Annual Symposium on Theory of Computing, 2002,
pp. 240–249.

[3] M. Cryan, M. Dyer, L. Goldberg, M. Jerrum and
R. Martin. Rapidly mixing Markov chains for sampling
contingency tables with a constant number of rows. In
Proceedings of the 43rd IEEE Symposium on
Foundations of Computer Science, 2002, pp. 711–720.

[4] J. De Loera and B. Sturmfels. Algebraic unimodular
counting. Preprint, University of California at Davis,
2001.

[5] P. Diaconis and B. Efron. Testing for independence in
a two-way table: new interpretations of the chi-square
statistic (with discussion). Annals of Statistics, 13,
1995, pp. 845–913.

[6] P. Diaconis and A. Gangolli, Rectangular arrays with
fixed margins. In Discrete Probability and Algorithms
(D. Aldous, P. Varaiya, J. Spencer and J. Steele,
Eds.), IMA Volumes on Mathematics and its
Applications, 72, Springer, New York, 1995,
pp. 15–41.

[7] P. Diaconis and L. Saloff-Coste. Random walk on
contingency tables with fixed row and column sums.
Technical Report, Department of Mathematics,
Harvard University, 1995.

[8] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L.
Perkovic and U. Vazirani. A mildly exponential
algorithm for estimating the number of knapsack
solutions. Combinatorics, Probability and Computing,
2, 1993, pp. 271–284.

[9] M. Dyer and C. Greenhill. Polynomial-time counting
and sampling of two-rowed contingency tables.
Theoretical Computer Science, 246, 2000, pp. 265–278.

[10] M. Dyer, R. Kannan and J. Mount. Sampling
contingency tables. Random Structures and
Algorithms, 10, 1997, pp. 487–506.

[11] D. Hernek. Random generation of 2 × n contingency
tables. Random Structures and Algorithms, 13, 1998,
pp. 71–79.

[12] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58, 1963, pp .13–30.

[13] M. Jerrum, Counting, sampling and integrating:
algorithms and complexity, Birkhäuser, Basel, 2003.

[14] B. Morris, Improved bounds for sampling contingency
tables. In 3rd International Workshop on
Randomization and Approximation Techniques in
Computer Science, Lecture Notes in Computer Science
1671, 1999, pp. 121–129.

[15] B. Morris, Random walks in convex sets. PhD thesis,
Department of Statistics, University of California,
Berkeley, 2000.

[16] B. Morris and A. Sinclair, Random walks on
truncated cubes and sampling 0-1 knapsack solutions.
In Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science, 1999, pp. 230–240.

[17] B. Morris and A. Sinclair, Random walks on
truncated cubes and sampling 0-1 knapsack solutions,
July 2002, submitted. (An extended and improved
version of [16].)

[18] J. Mount, Application of convex sampling to
optimization and contingency table generation. PhD
thesis, Technical report CMU-CS-95-152, Computer
Science Department, Carnegie Mellon University,
1995.

[19] A. Sinclair and M. Jerrum, Approximate counting,
uniform generation, and rapidly mixing Markov
chains. Information and Computation, 82, 1989,
pp. 93–133.

APPENDIX
We consider the multidimensional knapsack problem (1) of
section 2.3 when the coefficients can be arbitrary integers.

Lemma 5. If the aij ∈ � can be arbitrary then, unless
RP=NP, there is no fpras for counting solutions to (1) for
any m ≥ 2, even if bi ≥ K (i ∈ [m]) for any K ∈ � +.

Proof. Let K > 0 be an arbitrary integer. First note
that we can reduce general m to the case m = 2 by adding
(m−2) inequalities of the form

� n
j=1 aijxj ≤ � n

j=1 aij +K

(i ∈ [3, m]) for arbitrary aij ∈ � . Clearly these inequalities
are all redundant.

For m = 2, suppose to the contrary that an fpras ex-
ists. Let

� n
j=1 ajxj = b, where aj ∈ � + (j ∈ [n]), be an

arbitrary instance of the NP-Complete zero-one knapsack
decision problem.

Consider the instance
n�

j=1

(K + 1)ajxj − (K + 1)bxn+1 ≤ K,

−
n�

j=1

(K + 1)ajxj + (K + 1)bxn+1 ≤ K,

of the 2-constraint zero-one knapsack approximate counting
problem. This is obviously equivalent to��� n�

j=1

ajxj − bxn+1

��� ≤ K

K + 1
.

If xn+1 = 0, then clearly xj = 0 (j ∈ [n]) is the unique
solution. If xn+1 = 1, then any solution is a solution of� n

j=1 ajxj = b. Thus, if we can distinguish between one
solution and two or more solutions, we can decide whether
the knapsack instance has a solution. But using the fpras
with any ε < 1

2
(say) we can clearly decide this in BPP,

which would then imply RP=NP. See [13, p. 94].

