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Abstract. The volume of the convex hull of any m points of an n-dimensional ball 
with volume V is at most V. m/2 n. This implies that no polynomial time algorithm 
can compute the volume of a convex set (given by an oracle) with less than 
exponential relative error. A lower bound on the complexity of computing width 
can also be deduced. 

1. An Extremal Problem in n-Dimensional Geometry 

In this section we deal with the following question: 

Let S be a ball in the n-dimensional Euclidean space with volume 1. Choose 
any m points P~, P2, . . . ,  P,,, e S. Denote by Cm the convex hull of {P~; 1 -< i < m}. 
What is the maximum v(n, m) of the volume C,, maximized over all possible set 
of points? 

Here we prove an upper bound on v(n, m). This seems to be far from being 
tight (see Section 4); however, exponential lower bounds can be derived from it 
for some algorithmic problems. The latter will be discussed in Sections 2 and 3. 

Theorem 1. v(n,m)<-m/2 n. 

Proof Let O be the center of  S. Denote by Sj (1 -< i-< m) the ball with diameter 
OPi. Naturally all vol(Si) <- 1/2". 

Claim. Cm c_U{Si; l<-i<-m}. 

(This clearly implies the Theorem.) 
Suppose that this claim is false, i.e., there is a point Q of  Cm which is not 

contained in any Sj. This is equivalent to the property that ~.OQP~ < Ir/2 for all 
l<_i<_m. 
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Consider the hyperplane H orthogonal to OQ and going through Q. ~_OQP~ < 
~'/2 implies that for all 1 <- i <- m, Pi is in the same open halfspace determined 
by H as O. Hence Q, which is on H, cannot be in the convex hull, a contradiction. 

[] 

2. The Complexity of Computing the Volume of an 
n-Dimensional Convex Body 

Gr&schel  et al. ([GLS], see also [L]) described a well-guaranteed separation oracle 
encoding a bounded convex subset K of  the n-dimensional space. This oracle 
works as follows: 

(i) For any point P it tells either that P c  K or gives a hyperplane which 
separates P from K. 

(ii) It gives in advance a ball S containing K and another ball S' contained 
in K. 

(Note that our oracle gives the centre of  S', while that of  [GLS] gives only its 
radius; but these two versions are polynomial time equivalent.) 

They have shown that this oracle is polynomial time equivalent to a number  
of  others, e.g., using this, one can minimize any linear function over K in 
polynomial time. They have also proved that the volume of  K can be estimated 
up to a factor of  size n 3"/2. 

Here we show that this factor cannot be reduced to less than an exponential 
o n e .  

Theorem 2. Suppose that an algorithm has access to a well-guaranteed separation 
oracle encoding K. I f  for some c= c ( n ) <  1 the algorithm can give an estimate Vo 
for vo l (K)  up to a factor c, i.e., 

c- Vo < - vo l (K)  <- v0, 

then its running time is at least c. 2 " - ( n +  1). 

Proof. Suppose the oracle answers "yes"  iff P c  S and shows a hyperplane 
separating P from S otherwise. Suppose, moreover,  that it gives the vertices of  
a regular simplex inscribed in S to be in K. (Without being asked for these 
points.) Note  that this yields an inscribed ball S '  of  K. 

I f  the algorithm asks fewer than c- 2" - (n + 1) other points then it will "know'" 
only m < c- 2" points P ~ , . . . ,  Pm to be i n / C  Their convex hull Cm wilt have 

vol(C~) < vol(S) • m/2" < vol(S) • c 

by Theorem 1. So the algorithm cannot conclude that K m w h i c h  may still be as 
large as S itself or as small as C m uhas  volume either at least c.  vol(S) or less 
than vol(S).  []  
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Corollary 1. I f  an algorithm has access to a well-guaranteed separation oracle and 
can compute the volume of  K up to a factor ( 2 - e )  n then its running time is 
exponential. 

Proof. From Theorem 2 we have for c = ( 2 - e )  -n that the running time is at 
least [ 2 / ( 2 -  e)]" - (n + 1). [] 

3. The Complexity of Computing Width 

The width of a convex body can be computed up to a factor n 3/2 in polynomial 
time ([GLS]). It can be derived from Theorem 1 that this factor cannot be better 
than 2. 

Theorem 3. Suppose that an algorithm has access to a well.guaranteed separation 
oracle encoding K. I f  for  some ½ < d ( n ) < 1 the algorithm can give an estimate Wo 
of  the width o f  K such that 

d- wo--- width(K) -< Wo, 

then its running time is at least ½ ( 2 d ) ~ - ( n +  1). 

Proof. Suppose the oracle generously informs us that K is symmetric with 
respect to the centre O of  S and it works as described in the proof  of  Theorem 
2 otherwise. I f  the algorithm asks fewer than ½(2d)" - (n + 1) points then it will 
know only m < (2d) ~ points of K (the vertices of the regular simplex, the points 
it asked, and their image with respect to O). Denote the convex hull of  all these 
points by Cm. 

It is well known that a centrally symmetric convex body with width w contains 
a ball of  diameter w. Apply this for Cm and denote diam(B) /d iam(S)  by A. 

By Theorem 1 we have 

vol( S)" a"  = voI(B) -< vol( Cm ) < vol(S)" d" 

which means that A < d, i.e., the algorithm cannot give an estimate with relative 
error at most 1/d. [] 

4. Open Problems 

It seems likely that for polynomially bounded m = m (n), v(n, m) is superexponen- 
tially small, though this question is still open: 

Problem. Is it true that for all k ~ N 

[v(n, nk)]~/"-~ O? 
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An affirmative answer to this would yield better lower bounds for the factors in 
the corollary. (e n (resp. e) for all e < 1 (resp. 2) in Corollary 1.) ] 

Let us note that the problem of  computing the volume of a convex polyhedron 
given either by a system of  inequalities or by the set of  its vertices in polynomial 
time still remains unsolved. 
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i I. BLr/any and Z. FOredi have answered this problem affirmatively. 


