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ABSTRACT: We study the problem of sampling contingency tables (nonnegative integer matrices
with specified row and column sums) uniformly at random. We give an algorithm which runs in
polynomial time provided that the row sums ri and the column sums cj satisfy ri � �(n3/ 2m log m),
and cj � �(m3/ 2n log n). This algorithm is based on a reduction to continuous sampling from a
convex set. The same approach was taken by Dyer, Kannan, and Mount in previous work. However,
the algorithm we present is simpler and has weaker requirements on the row and column sums.
© 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 135–146, 2002

1. INTRODUCTION

1.1. The Problem

Given positive integer vectors r � (ri)i�1
m and c � (cj)j�1

n with ¥i�1
m ri � ¥j�1

n cj and
m, n � 2, let I(r, c) denote the set of nonnegative integer m � n matrices with row sums
r1, . . . , rm and column sums c1, . . . , cn. In this paper, we consider the problem of
generating an element of I(r, c) uniformly at random.

1.2. Motivation

We will now give a brief sketch of how this problem arises in Statistics. The interested
reader should consult [1] for a comprehensive account.
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Suppose that we perform an experiment in which N independent samples are taken and
classified according to two characteristics A and B, which take the values 1, . . . , m, and
1, . . . , n, respectively. For example, A might classify each subject’s blood type and B
might measure cholesterol level. We then assemble the results in an m � n matrix X such
that Xij is equal to the number of samples having A � i and B � j. Such a matrix is called
a contingency table. We will be interested in measuring the amount of dependence
between the two variables in a contingency table. A traditional way to quantify this
dependence is via the chi-squared statistic:

�2�X� � �
i�1

m �
j�1

n �Xij �
ricj

N � 2

ricj

N

.

This is the sum of (Observed � Expected)2/Expected, where “Expected” refers to the

quantity ricj
N , which is the number of observations we would expect to see in cell ij if A and

B were independent with Pr( A�i)�ri
N and Pr(B�j)�cj

N . The p-value is defined as the
probability that N samples from a distribution with independent row and column variables
(i.e., independent A and B) would give a chi-squared statistic which is at least as large as
the observed value. Thus, when the p-value is small, there is evidence that the variables
are dependent.

Consider the following simple examples with m � n � 2. Let

X1 � � 10 20
40 30 � , X2 � � 20 40

80 60 � .

We have �2(X1) � 4.76, which gives a p-value of about .03, and �2(X2) � 9.52, for a
p-value of about .002. Thus, comparing p-values we would conclude that there is more
dependence in the second data set than in the first. However, both data sets appear to have
come from a similar underlying distribution, namely, something like

� .1 .2
.4 .3 � .

The second p-value is smaller only because the sample size is larger. This illustrates a
problem with the traditional approach of using the p-value alone to measure dependence.
While the p-value is useful for determining the existence of dependence, it should not be
used to measure the amount of dependence. Thus it is unwise to compare a p-value or
chi-squared statistic from one experiment with that of another. This and other consider-
ations led Diaconis and Efron [1] to propose the following statistic:

T�X� �
��X� � I�r, c� : �2�X�� � �2�X�	�

�I�r, c�� ,

where r and c are the row and column sums, respectively, of X. T(X) is the fraction of
all contingency tables in I(r, c) which have a smaller chi-squared statistic than the
observed value. T(X) is not highly sensitive to sample size, and is thus a better measure
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of dependence. In the examples above, we have T(X1) � 9
31 
 19

61 � T(X2). Of course,
when the contingency tables are large we cannot always calculate T(X) exactly. This
explains why we want an algorithm to sample uniformly from I(r, c); given such an
algorithm, we can estimate T(X) in the following way:

1. Take a large number of independent samples from I(r, c).
2. Compute the fraction of samples X� for which �2(X�) � �2(X).

1.3. Results

Our method of sampling will rely on the fact that I(r, c), when viewed as a subset of Rmn,
is the intersection of a continuous convex set and the integer lattice. Specifically, we have
I(r, c) � Zmn � K, where K is the set of nonnegative real matrices with the given row
and column sums. A number of (random walk-based) polynomial-time algorithms have
been developed in recent years for sampling (almost) uniformly from a convex set (see [2],
[10], [7], and [9]). We will solve our discrete sampling problem by reducing it to a
continuous one. Given a convex set K� which contains I(r, c), we can generate a random
sample from I(r, c) using the following algorithm:

1. Generate a random point Y in K�, and “round” it to an integer point Z.
2. If Z � I(r, c), repeat.

The two main ingredients in this sampling technique are the convex set K� and the
rounding method. The choice of K� is a delicate matter. We require that the distribution
of the final sample be almost uniform. Thus, as X varies over I(r, c), we require that
vol(X) is nearly constant, where vol(X) denotes the volume of points in K� which round
to X. Thus we must make K� sufficiently large. (We could not, for example, naively set
K� equal to K, since under any reasonable rounding procedure this would result in a
distribution with too little mass on matrices with a large number of zero entries.)

However, there is a tradeoff between the uniformity of the distribution and the running
time of the algorithm. As K� becomes larger, it becomes more likely that each sample Z
will fall outside of I(r, c). Thus, if we make K� too large, then the expected number of
trials taken before Z � I(r, c) will be too high.

What we want therefore is a convex set K� which is a good continuous approximation
to the discrete set I(r, c). Now, since the convex set K is a polytope, it can be defined in
terms of bounding hyperplanes. We can therefore define K� in terms of another set of
hyperplanes which are parallel to the original ones, only spread farther apart to ensure that
vol(X) 
 1 for all X � I(r, c).

The approach we have just described has formed the basis for previous work on
sampling contingency tables. Dyer, Kannan, and Mount [4] describe an algorithm similar
to the one above and show that it samples (almost) uniformly from I(r, c) in polynomial
time, provided that the row and column sums satisfy ri � �(n2m) for all 1 � i � m, and
cj � �(m2n) for all 1 � j � n. These were essentially the best known bounds for general
m and n (although when m � 2, there is a polynomial-time algorithm for any values of
r and c; see [3]). In this paper, we will show that the requirements can be loosened to ri �
�(n3/ 2m log m) and cj � �(m3/ 2n log n). We accomplish this using the following
method for rounding. For Y � K�, we round Y to the integer matrix Z which has �Zij � Yij�
� 1/ 2 for all i � m, j � n, and has the appropriate row and column sums. (Since the
samples from K� are continuous there is a unique such Z with probability 1.) This
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rounding method is quite simple, and it allows us to prove easy bounds on vol(X) for X �
I(r, c). In turn, this allows us to determine the best choice for the convex set K�, and leads
to the improved requirements on the row and column sums.

The contingency tables problem is a special case of the problem of sampling from the
set of integer points in a polytope. This is a class of problems that was studied by Kannan
and Vempala in [8], where they give conditions on the polytope which guarantee a
polynomial-time algorithm. (When they apply their results to the contingency tables
problem, they improve on the row and column sum requirements given in [4], but only by
logarithmic factors.) We believe that the techniques in this paper may extend to other
problems of this general type.

2. THE ALGORITHM

We will now describe the algorithm for sampling from I(r, c) in detail. Two things are
needed to specify the algorithm. First, we need to define the convex set K� from which we
perform continuous sampling. Second, we need to describe the rounding method which
maps elements of K� to integer lattice points. Since the choice of K� will depend on the
rounding method, we will discuss the rounding method first.

We will assume, without loss of generality, that m � n and that rm is the largest row
sum. Note that any m � n matrix X whose row and column sums are fixed can be
completely specified by (Xij)i�m, j�n. It will be helpful to think of matrices in I(r, c) as
elements of R(m�1)(n�1) which are indexed by {(i, j) : i � m, j � n}. Thus, we define
I(r, c) as the set of (m � 1) � (n � 1) nonnegative integer matrices satisfying the
constraints:

�
j�1

n�1

Xij � ri for all i � m, �
i�1

m�1

Xij � cj for all j � n;

�
i�1

m�1 �
j�1

n�1

Xij � �
i�1

m�1

ri � cn.

For X � I(r, c), we will still refer to the quantities Xin and Xmj, but it will be with the
understanding that they are defined in terms of the other entries, via

Xin � ri � �
j�1

n�1

Xij for all i � m, Xmj � cj � �
i�1

m�1

Xij for all j � n.

Using this convention, the rounding method (which we described in Section 1) simply
consists of rounding each of the (m � 1)(n � 1) coordinates to the nearest integer.
Furthermore, the convex set K� from which we perform continuous sampling will be a
full-dimensional subset of R(m�1)(n�1).

Recall that for integer matrices X and a convex set K�, vol(X) is defined as the volume
of points in K� which round to X. Thus, vol(X) is equal to the volume of the intersection
of K� and the (m � 1)(n � 1)-dimensional unit hypercube centered at X. This leads to
the following appealing characterization of vol(X). Let � be a random (m � 1) � (n � 1)
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matrix, whose entries are mutually independent and have the uniform distribution over
[�1/2, 1/2]. Then for all integer matrices X we have vol(X) � Pr(X � � � K�). Thus,
vol(X) is equal to the probability that, if we perturb X by adding a small random variable
to each entry, then the result is in K�.

Now, in order for the output of our algorithm to have an almost uniform distribution,
K� must be large enough so that vol(X) is nearly 1 for all X � I(r, c). In light of the
above, this means that if we take any X in I(r, c) and add �, then the result must be in
K� with high probability. We are now ready to define K�. Let 0 � � � 1/2 be an error
parameter, and let

C1 �
1

2
log�2

��, C2 �
log�4/��

2 log m
�

1

2
, C3 �

log�4/��

2 log n
�

1

2
.

Let K� be the set of real, (m � 1) � (n � 1) matrices Y satisfying

Yij � �1/2,

Ymn � ��C1mn,

Yin � ��C2n log m, Ymj � ��C3m log n, (1)

for all i � m and j � n. The reasons behind our choices for the above parameters should
become clear after we prove the following lemma.

Lemma 1. For any X � I(r, c), we have 1 � vol(X) � 1 � �.

Proof. Let X � I(r, c) and let X� � X � �. We want to show that Pr(X� � K�) is at
most �. Now, X�ij � �1/ 2 for all i � m and j � n, since ��ij� � 1/ 2. We also have X�in �
Xin � ¥j�i

n�1 �ij � �¥j�i
n�1 �ij for all i � m. Recall Hoeffding’s bounds [5]: Let {Yj}j�1

k

be independent, mean-zero random variables in [�s, s]. Then for all A 
 0 we have

Pr(¥j�1
k Yj
A)�exp(�A2

2s2k). Applying Hoeffding’s bounds to the �ij gives

Pr�X�in � ��C2n log m� � e�2C2log m � m�2C2, for all i � m.

Hence the probability that some X�in is too small is at most m1�2C2 � �/4. Applying
Hoeffding’s bounds again, this time to the column sums, gives

Pr�X�mj � ��C3m log n� � e�2C3log n � n�2C3, for all j � n.

Hence the probability that some X�mj is too small is also at most �/4. Finally, note that
X�mn � Xmn � ¥i�1

m�1 ¥j�1
n�1 �ij. Hence, Hoeffding’s bounds imply that Pr(X�mn �

��C1mn) � e�2C1 � �/ 2. Putting this all together, we conclude that Pr(X� � K�) �
�/4 � �/4 � �/ 2 � �, so vol(X) � 1 � �. �

We will call the algorithm that repeatedly samples from K� and rounds each sample to
an integer point Algorithm A. Let Z be the random integer matrix produced by a single
trial of Algorithm A. The preceding lemma implies that the conditional distribution of Z,
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given that it is in I(r, c), is almost uniform. Thus, the final output of Algorithm A will
indeed be an almost uniform sample from I(r, c).

3. MAIN THEOREM

In order to bound the running time of the algorithm, we must bound the expected number
of trials taken before the random sample Z is in I(r, c). We now state the main result of
this paper.

Theorem 2. Suppose that the row and column sums satisfy ri � �(n3/2m log m) and cj �
�(m3/2 n log n) for all i and j. Then the expected number of trials before algorithm A
generates a sample point Z � I(r, c) is O(1/�).

Proof. Let D � (0, 1] and suppose that the row and column sums satisfy ri � Dn3/ 2m
log m and cj � Dm3/ 2n log n for all i and j. We will show that the expected number of
trials is exp(O(1/D2)) � 1/�.

Algorithm A repeatedly generates random integer matrices Z until one of them is in
I(r, c). Thus, the number of trials is a geometric random variable with parameter Pr(Z �
I(r, c)). Let I�(r, c) denote the set of integer matrices X having vol(X) 
 0, i.e., the points
which have some Y � K� rounding to them. Then the expected number of trials
1/Pr(Z�I(r,c)) is equal to

vol�K��

vol�I�r, c��
�

vol�I��r, c��

vol�I�r, c��
.

Suppose that X � I�(r, c). Then, by (1), X must satisfy Xij � 0 for all i � m and j �
n. Thus, X is also in I(r, c) if and only if it satisfies Xin � 0 for all 1 � i � m and Xmj �
0 for all 1 � j � n. Thus X, when thought of as an m � n matrix, is in I(r, c) when
it has no negative entry anywhere in its last row or column. We must show that such points
form a nonnegligible fraction of I�(r, c).

A sketch of our argument is as follows. First, consider the random variable Z1n. Since
the row and colum sums are large, the probabilities Pr(Z1n � k) will remain roughly
constant over a long interval in k. Thus, since the number of possible negative values for
Z1n is limited to about n, the probability that Z1n will take a nonnegative value is quite
large. Of course, a similar argument will hold for the other Zin and Zmj, so Z will stand
a good chance of being in I(r, c).

Instead of working directly with the vol function, we will find it easier to work with an
upper bound on vol which is based on Hoeffding’s bounds. As in the proof of Lemma 1,
we will use the fact that vol(X) � Pr(X� � K�), where X� � X � � and � is a random
matrix with uniform [�1/ 2, 1/ 2] entries. For real numbers x, let x� and x� denote the
positive and negative parts of x, respectively:

x� � max�0, x�, x� � max�0, �x�.

Note that the random variables {X�in}i�1
m�1 are independent, and so are {X�mj}j�1

n�1. Thus
Hoeffding’s bounds give the following three upper bounds on vol(X):
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vol�X� � 	
i�1

m�1

Pr�X�in � �C�2� � exp��2 ¥i�m ��Xin � C�2�
��2

n �,

vol�X� � 	
j�1

n�1

Pr�X�mj � �C�3� � exp��2 ¥j�n ��Xmj � C�3�
��2

m �,

vol�X� � Pr�X�mn � �C�1� � exp��2 ��Xmn � C�1�
��2

mn �,

where C�2 � �C2n log m, C�3 � �C3m log n, and C�1 � �C1mn. Putting these bounds
together (taking the geometric mean of the three bounds), we get vol(X) � w(X), where

w�X� � exp
�
2

3 �¥i�m ��Xin � C�2�
��2

n
�

¥j�n ��Xmj � C�3�
��2

m
�

��Xmn � C�1�
��2

mn ��. (2)

We will call w a weight function. Note that for all integer points X we have 0 � vol(X) �
w(X) � 1, and Lemma 1 implies that vol(X) 
 1/ 2 for X � I(r, c) (recall that � � 1/2).
Hence w(I(r, c)) � 2 � vol(I(r, c)). It follows that the expected number of trials
vol�I��r,c��

vol�I�r,c�� � 2 � w(I�(r,c))
w(I(r,c)). Thus, our task reduces to giving an upper bound on the quantity w(I�(r,c))

w(I(r,c)).
Recall that I�(r, c) � I(r, c) consists of the points in I�(r, c) which have a negative

entry somewhere in their last row or column. Let W0 denote the set of matrices X in I�(r,
c) which have Xmn � 0. For all i in {1, . . . , m � 1}, define Wi � {X � Wi�1 : Xin �
0}. Finally, for all j in {m, m � n � 2}, define Wj � {X � Wj�1 : Xm, j�m�1 � 0}.
Then I�(r, c) � W0 � W1

. . . � Wm�n�2 � I(r, c). Our strategy will be to write w(I�(r,c))
w(I(r,c))

as the product

�w�I��r, c��

w�W0�
� 	 �w�W0�

w�W1�
� 	 �w�Wm�n�3�

w�Wm�n�2�
� (3)

and then show that each factor is not too large.
For a matrix X, let X� denote the matrix whose entries are the negative parts of the

entries of X. To bound each factor in (3), we will use the following lemma.

Lemma 3. Let I be a set of integer m � n matrices which is closed upward in the sense
that if X� � Y� and Y � I, then X � I. Fix integers k � m and l � n, positive real numbers
C, and 
 � 1, and suppose that � : I 3 R� is a weight function with the property that
if X� � Y� and Ykl � Xkl � 1; then �(Y)

�(X) � exp��2�Xkl � C��


2 �. Let � be a positive real number

and suppose that for every X � I we have ¥j Xkj � 2
�n and ¥i Xil � 2
�m. Define I� �
{X � I : Xkl � 0}. Then

��I�

��I��
� exp�3�C � 
 max�3, 1 � 2/���


� �.

Proof. W.l.o.g., suppose that k � m and l � n. For integers s, let Vs � {X � I : Xmn � s}.
Then we want to bound
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¥s ��Vs�

¥s�0 ��Vs�
. (4)

We will do this by giving an upper bound on ��Vs � 1�

��Vs�
for each s. What we want to show is

that �(Vs�1) � 
�(Vs), for a value of 
 which is as small as possible. We will do this
in a way that is reminiscent of the standard technique in combinatorics in which one shows
that two sets S1 and S2 satisfy �S1� � k�S2� by giving a k-to-1 function from S1 to S2. What
we will do here is give a random function (i.e., a function which is itself a random
variable) from Vs�1 to Vs with the property that for every X � Vs, the expected value of
the total weight of points mapping to X is at most 
 � �(X).

For positive integers a � m and b � n, let Tab� be the transformation, acting on a
matrix X, that increases Xab and Xmn by 1 and reduces Xan and Xmb by 1. Let M � 
�,
and for integers s with s � M, let fs be a random function from Vs�1 to Vs such that

fs�X� � Tab�X� with probability
Xan

� Xmb
�

�¥i�m Xin
���¥j�n Xmj

� �
,

for all a � m and b � n. Note that in the definition of fs the random a and b which occur
with nonzero probability will always satisfy Xan 
 0 and Xmb 
 0, so fs will not increase
the negative part of any entry. Hence if Y � Tab

�1(X) for some a and b (so that Ymn � s �
1), the assumptions of the lemma imply that

��Y�

��X�
� p�s�,

where we define p(s) � exp
�2�s � C��


2 �.

Thus for all s � M and X � Vs we have

E���fs
�1�X���

��X�
� �

a�1

m�1 �
b�1

n�1 �Xan
� � 1��Xmb

� � 1�

�¥i�m Xin
� � 1��¥j�n Xmj

� � 1�
	 p�s�

�
�¥a�m Xan

� � m��¥b�n Xmb
� � n�

�¥a�m Xan
� � 1��¥b�n Xmb

� � 1�
	 p�s�

� �1 �
1


��
2

p�s�

� exp� 2


��p�s�,

where the second inequality follows from the facts that [¥a�1
m�1 Xan

� ] � cn � Xmn � 
�m
and [¥b�1

n�1 Xmb
� ] � rm � Xmn � 
�n (recall that Xmn � M � 
�). It follows that for

all s � M we have

��Vs�1�

��Vs�
� exp� 2


��p�s�.
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Let �� � min(�, 1) and let A � 2/��. Then for s � �C � A
 we have

��Vs�1�

��Vs�
� exp� 2


�
�

2A


 � � exp� 2


�
�

4


��� � exp��
2


�.

Thus for all s we have

��Vs�1�

��Vs�
� � exp��

2


� if s � �C � A
;

exp� 2


�� otherwise.
(5)

Note that the quantity (4) we are trying to bound is an increasing function of the ratios
��Vs � 1�

��Vs�
. Thus we can assume that the inequalities in (5) are actually equalities, since this

will only increase (4). We obtain

¥s ��Vs�

¥s�0 ��Vs�
�

¥j�0 exp��2j/
� � ¥j�1
M�C�A
 f�j�

¥j�C�A

M�C�A
 f�j�

, (6)

where f( j) � exp(�2j

� ). In the sums, the index j represents the distance between s and

�C � A
. Since the first sum in the numerator is less than 
, the RHS of (6) is less than

¥j��

M�C�A
 f�j�

¥j�C�A

M�C�A
 f�j�

�
1 � f�M � � � 1�

1 � f�M � 1�
f����,

where � � C � ( A � 1)
. Note that

1 � f�M � � � 1�

1 � f�M � 1�
� 1 �

f�M � 1� � f�M � 1 � ��

1 � f�M � 1�

� 1 � 2�f�M � 1� � f�M � 1 � ���

� 1 � 2�f��M � 1���

� 1 � 2 	 � 2


�
	 f�M � 1�� 	 �

� 1 �
�


�

� exp� �


��
� f��

1

2
��,

where the first and fourth inequalities follow from f(M � 1) � e�2, and the second
inequality is Taylor’s theorem. Thus
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¥s ��Vs�

¥s�0 ��Vs�
� f��

1

2
��f���� � exp�3�C � 
 max�3, 1 � 2/���


� �. (7)

�

Now we will use Lemma 3 to bound the first factor in (3), namely w�I��r,c��

w�W0�
. Note that if

X� � Y� and Ymn � Xmn � 1, then

w�Y�

w�X�
� exp�

��Xmn � C�1�
��2 � ��Ymn � C�1�

��2

3

2
mn 
 � exp�

�2�Xmn � C�1�
�

3

2
mn 


Thus the conditions of Lemma 3 are satisfied (recall m � n), with


 � �3

2
mn, � �

D

�6
�m log m, C � C�1 � �C1mn,

I � I��r, c�, � � w.

Thus the lemma implies that

w�W0�

w�I��r, c��
� exp�3��C1mn � �3

2
mn 	 max�3, 1 �

2�6

D�m log m
��

1

2
Dm�n log m �.

Next we will bound the second ratio in (3), namely w�W0�

w�W1�
. Note that if X� � Y� and

Y1n � X1n � 1, then w(Y)
w(X) � exp
�2�X1n � C�2�

�

3

2
n

n�. Thus the conditions of Lemma 3 are

satisfied, with


 � �3

2
n, � �

D

�6
m log m, C � C�2 � �C2n log m,

I � W0, � � w0,

where w0 is the restriction of w to W0. Thus the lemma implies that

w�W0�

w�W1�
� exp�3��C2n log m � �3

2
n 	 max�3, 1 �

2�6

Dm log m��
1

2
Dm�n log m �.

A similar argument gives the same bound for w�Wi�

w�Wi � 1�
for i � 1, . . . , m � 2.

Next we will bound w�Wm � 1�

w�Wm� . Note that if X� � Y� and Ym1 � Xm1 � 1, then w(Y)
w(X) �
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exp
�2�Xm1 � C�3�
�

3

2
m � . Also, since rm is the largest row sum, we have rm �

1
m ¥i�1

m ri �

1
m ¥j�1

n cj � D�m n2log n. Thus, the conditions of Lemma 3 are satisfied, with


 � �3

2
m, � �

D

�6
n log n, C � C�3 � �C3m log n,

I � Wm�1, � � wm�1,

where wm�1 is the restriction of w to Wm�1. Thus the lemma implies that

w�Wm�1�

w�Wm�
� exp�3��C3m log n � �3

2
m 	 max�3, 1 �

2�6

Dn log n��
1

2
Dn�m log n �.

A similar argument gives the same bound for w�Wj�

w�Wj � 1�
for j � m, . . . , m � n � 3.

After plugging all of our bounds into (3), some easy calculations (using the facts that
m, n � 2, and C1, C2, C3 � log(4/�)) give

w�I��r, c��

w�I�r, c��
� exp� A

D2� 	 exp�B

D �log�1

�
��,

for some constants A and B. Let 
 � B
D�log�1/��

. Then

exp�B

D�log�1

�
�� �

1

�
	 exp�B2

D2 	

 � 1


2 �
�

1

�
	 exp� B2

4D2�,

where the inequality holds because 
 � 1


2 �
1
4 for all real numbers 
. Hence

w�I��r, c��

w�I�r, c��
�

1

�
	 exp�A �

B2

4

D2 � �
1

�
	 exp�O� 1

D2��.

�

Under the assumptions of the theorem, the (expected) running time of Algorithm A is of
the form

q�m, n� 	 O�1/��,

where q(m, n) is the (polynomial) running time of a single trial. Hence the algorithm runs
in time which is a polynomial function of m, n, and 1/�.
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Note that we do not have the logarithmic dependence on 1/� that can be achieved in
many sampling algorithms that use direct applications of Markov Chains. However, in
most applications of random sampling (e.g., [11, 6]), logarithmic dependence on 1/� is not
necessary.

If the continuous samples from the convex set K� were perfectly uniform, then by
Lemma 1 the parameter � would be an upper bound on the total variation distance between
the sample produced by Algorithm A and the uniform distribution over I(r, c). However,
in all general algorithms for sampling continuously from convex set, the samples are only
almost uniform. Algorithm A will therefore only guarantee that the distance from uniform
is at most � � � for some small �.
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