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ABSTRACT: We give polynomial time algorithms for random sampling from a set of
contingency tables, which is the set of m=n matrices with given row and column sums,
provided the row and column sums are sufficiently large with respect to m, n. We use this to
approximately count the number of such matrices. These problems are of interest in
Statistics and Combinatorics. Q 1997 John Wiley & Sons, Inc. Random Struct. Alg., 10, 487]506
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1. INTRODUCTION

Ž .Give positive integers u , u , . . . , u and ¨ ,¨ , . . . , ¨ , let I u, ¨ be the set of1 2 m 1 2 n
m=n arrays with nonnegative integer entries and row sums u , u , . . . , u , respec-1 2 m

Ž .tively, and column sums ¨ , ¨ , . . . , ¨ , respectively. Elements of I u, ¨ are called1 2 n
contingency tables with these row and column sums.
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We consider two related problems on contingency tables. Given u , u , . . . , u1 2 m
and ¨ , ¨ , . . . , ¨ ,1 2 n

< Ž . <1. Determine I u, ¨ .
Ž . < Ž . <2. Generate randomly an element of I u, ¨ , each with probability 1r I u, ¨ .

The counting problem is of combinatorial interest in many contexts. See, for
w xexample, the survey by Diaconis and Gangolli 6 . We show that even in the case

where m or n is 2, this problem is aP hard.
The random sampling problem is of interest in Statistics. In particular, it comes

w xup centrally in an important new method formulated by Diaconis and Efron 5 for
Ž w xtesting independence in two-way tables. See also Mehta and Patel 22 for a more

.classical test of independence. We show that this problem can be solved approxi-
mately in polynominal time provided the row and column sums are sufficiently

Ž 2 . Ž 2 .large, in particular, provided u gV m n and ¨ gV m n . This then implies,i j
under the same conditions, a polynomial time algorithm to solve the counting

Ž .problem 1 approximately.
The algorithm we give relies on the random walk approach, and is closely

related to those for volume computation and sampling from log-concave distribu-
w xtions 11, 2, 9, 21, 14, 19 .

2. PRELIMINARIES AND NOTATION

The number of rows will always be denoted by m and the number of columns by n.
Ž .Ž .We will let N denote ny1 my1 . For convenience, we number the coordinates

nm Ž .of any vector in R by a pair of integers i, j or just ij, where i runs from 1
Žthrough m and j from 1 through n. Suppose u is an m vector of reals the row

. Ž .sums and ¨ is an n vector of reals the column sums . We define

V u , ¨ s xgRnm : x su for is1, 2, . . . , m;Ž . Ý i j i½
j

x s¨ for js1, 2, . . . , n .Ý i j j 5
i

Ž .V u, ¨ can be thought of as the set of real m=n matrices with row and column
sums specified by u and ¨ respectively. Let

P u , ¨ sV u , ¨ l x : x G0 for is1, 2, . . . , m js1, 2, . . . , n .� 4Ž . Ž . i j

Ž .We call such a polytope a ‘‘contingency polytope.’’ Then, I u, ¨ is the set of
Ž .vectors in P u, ¨ with all integer coordinates. Note that the above sets are all

trivially empty if Ý u /Ý ¨ . So we will assume throughout that Ý u sÝ ¨ .i i j j i i j j
Ž .We will need another quantity denoted by a u, ¨ defined for u, ¨ satisfying

u )2n ; i and ¨ )2m ; j:i j

Ž .Ž .ny1 my1u q2n ¨ q2mi j
a u , ¨ s max , .Ž . ž /u y2n ¨ y2mi , j i j
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Ž .We will abbreviate a u, ¨ to a when u, ¨ are clear from the context. An easy
Ž 2 . Ž 2 . Ž .calculation shows that if u is V n m ; i and ¨ is V nm ; j, then a is O 1 .i j

Ž .On input u, ¨ we assume that u )2n ; i and ¨ )2m ; j , our algorithm runsi j
Ž . Ž .for time bounded by a u, ¨ times a polynomial in n, m, max log u , log ¨ , andi j i j

Ž .1re , where e will be an error parameter specifying the desired degree of
Žaccuracy. See Section 5, first paragraph, for a description of the inputroutput

.specifications of the algorithm.

3. HARDNESS OF COUNTING

We will show that exactly counting contingency tables is hard, even in a very
restricted case. We will use the familiar notion aP-completeness introduced by

w xValiant 27 .

Theorem 1. The problem of determining the exact number of contingency tables with
prescribed row and column sums is aP-complete, e¨en in the 2=n case.

Proof. It is easy to see that this problem is in aP. We simply guess mn integers
w x Ž .x in the range 0, J where J is the sum of the row sums and check whether theyi j

satisfy the constraints. The number of accepting computations is the number of
tables.

For proving hardness, we proceed as follows: Given positive integers a , a , . . . ,1 2
w x Ž .a , b, it is shown in 10 that it is aP-hard to compute the ny1 -dimensionalny1

volume of the polytope
ny1

a y Fb , 0Fy F1 js1, 2, . . . , ny1 .Ž .Ý j j j
js1

Ž .It follows that it is aP-hard to compute the ny1 -dimensional volume of the
polytope

n

a y sb , 0Fy F1 js1, 2, . . . , n ,Ž .Ý j j j
js1

Ž .where a sb. Hence, by substituting x sa y , x sa 1yy , it follows that it isn 1 j j j 2 j j j

Ž . Ž . ŽaP-hard to compute the ny1 -dimensional volume of the polytope P u, ¨ with
.2 rows and n columns where

ny1

us b , a , ¨ s a , . . . , a , b .Ž .Ý j 1 ny1ž /js1

Ž . Ž .Now the number N u, ¨ of integer points in P u, ¨ is clearly the number of
contingency tables with the required row and column sums. But, for integral u, ¨ ,
Ž . ŽP u, ¨ is a polytope with integer vertices. It is the polytope of a 2=n transporta-

w x . Ž .tion problem 23 . Consider the family of polytopes p tu, ẗ for ts1, 2, . . . . It is
w x Ž .well known 25, Chap. 12 that the number of integer points in P tu, ẗ will be a

Ž .polynomial in t, the Ehrhart polynomial, of degree ny1 , the dimension of
Ž . ny1 Ž .P u, ¨ . Moreover, the coefficient of t will be the ny1 -dimensional volume

Ž .of P u, ¨ . It is also straightforward to show that the coefficients of this polynomial
Ž .are of size polynomial in the length of the description of P u, ¨ .
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Suppose therefore that we could count the number of 2=n contingency tables
Ž .for arbitrary u, ¨ . Then we could compute N u, ¨ for arbitrary integral u, ¨ . Hence

Ž .we could compute N tu, ẗ for ts1, 2, . . . , n and thus determine the coefficients of
the Ehrhart polynominal. But this would allow us to compute the volume of
Ž .P u, ¨ , which we have seen is a aP-hard quantity. B

w x ŽRemark. If both n, m are fixed, we can apply a recent result of Barvinok’s 3 that
the number of lattice points in a fixed dimensional polytope can be counted exactly

. < Ž . < w xin polynomial time to compute I u, ¨ . Diaconis and Efron 5 give an explicit
< Ž . < Žformula for I u, ¨ in case ns2. Their formula has exponentially many terms as

.expected from our hardness result . Mann has a similar formula for ns3.
w xSturmfels 26 demonstrates a structural theorem which allows for an effective

counting scheme that runs in polynomial time for n, m fixed. Sturmfels has used
the technique to count 4=4 contingency tables in the literature. We will, in later
papers, discuss our work on counting 4=4 and 5=4 contingency tables.

4. SAMPLING CONTINGENCY TABLES: REDUCTION TO

CONTINUOUS SAMPLING

This section reduces the problem of sampling from the discrete set of contingency
tables to the problem of sampling with near-uniform density from a contingency
polytope.

To this end, we first take a natural basis for the lattice of all integer points in
Ž .V u, ¨ and associate with each lattice point a parallelepiped with respect to this

( Ž .basis. Then we produce a convex set P which has two properties: a each
Ž . ( Ž .parallelepiped associated with a point in I u, ¨ is fully contained in P and b the

volume of P( divided by the total volume of the parallelepipeds associated with
Ž . Ž .points in I u, ¨ is at most a r, c . Now the algorithm is simple: Pick a random

( Ž .point y from P with near uniform density this can be done in polynomial time ,
find the lattice point x in whose parallelepiped y lies, and accept x if it is in
Ž . w Ž .xI u, ¨ acceptance occurs with probability at least 1ra u, ¨ ; otherwise, reject and

rerun. The volume of each parallelepiped is the same, so the probability distribu-
Ž .tion of the x in I u, ¨ is near uniform. This general approach has been used also

for the simpler context of sampling from the 0]1 solutions to a knapsack problem
w x12 .

w (While P is a convex set and by the general methods, we can sample from it in
polynomial time with near uniform density, it will turn out that P( is also
isomorphic to a contingency polytope. In the next section, we show how to exploit

xthis to get a better polynomial time algorithm than the general one.
We will have to build up some geometric facts before producing the P(.
Let U be the lattice:

xgRnm : x s0 for is1, 2, . . . m; x s0 for js1, 2, . . . n; x gZ .Ý Ýi j i j i j½ 5
j i

Ž . nmFor 1F iFmy1 and 1F jFny1, let b ij be the vector in R given by
Ž . Ž . Ž . Ž . Ž .b ij s1, b ij sy1, b ij sy1, b ij s1, and b ij s0 for kli j iq1, j i, jq1 iq1, jq1 k l

other than the 4 above.
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Ž . Ž .Any vector x in V 0, 0 can be expressed as a linear combination of the b ij ’s as
Ž .follows the reader may check this by direct calculation :

my1 ny1 k l

xs x b kl . 1Ž . Ž .Ý Ý Ý Ý i jž /ks1 ls1 is1 js1

Ž .It is also easy to check that the b ij are all linearly independent. This implies that
Ž . Ž .Ž .the subspace V 0, 0 has dimension ny1 my1 and so does the affine set

Ž . Ž .V u, ¨ , which is just a translate of V 0, 0 . Also, we see that if x is an integer
Ž .vector, then the above linear combination has integer coefficients; so, the b ij

form a basis of the lattice U.
Ž .It is easy to see that if u, ¨ are positive vectors, then the dimension of P u, ¨ is

also N. To see this, it suffices to come up with an xgRnm with row and column
sums given by u, ¨ and with each entry x strictly positive because then we can addi j

Ž . Ž .any small real multiples of the b ij to x and still remain in P u, ¨ . Such an x is
easy to obtain: For example, we can choose x , x , , . . . , x to satisfy 0-x -11 12 1n 1 j

Ž .min u , ¨ and summing to u . Then we subtract this amount from the column1 j 1

sums and repeat the process on the second row, etc.
Ž Ž .. Ž . Ž .We will denote by Vol P u, ¨ the N-dimensional volume of P u, ¨ .

Ž .Obviously, if either u or ¨ has a noninteger coordinate, then I u, ¨ is empty.

Lemma 1. If p, q are m ¨ectors of positï e reals and s, t are n ¨ectors of positï e reals
Ž .with qGp and tGs component wise , then

Vol P q , t GVol P p , s .Ž . Ž .Ž . Ž .

Ž .Proof. By induction on the number of coordinates of q t that are strictly
Ž .greater than the corresponding coordinates of p s . After changing row and

column numbers if necessary, assume without loss of generality that q yp is the1 1
Ž . Ž .least among all POSITIVE components of q t y p s . After permuting

Ž .columns if necessary, we may also assume that we have t ys )0. Let P sP p, s .1 1 1
Let P be defined by2

P s xgRnm : x Gy q yp ; x G0 for ij / 11 lV p , s .Ž . Ž . Ž . Ž .� 42 11 1 1 i j

Let pX be an m-vector defined by pX sq ; pX sp for is2, 3, . . . m. Let sX be1 1 i i
X X Ž X X.defined by s ss qq yp ; s ss for js2, 3, . . . n. Denote by P the set P p , s .1 1 1 1 j j 3

Then P and P have the same volume as seen by the isomorphism x ªx q2 3 11 11
Ž .q yp . Clearly, P contains P . Also the row sums and column sums in P are1 1 2 1 3

Ž .no greater than the corresponding row and column sums in q t . Applying
Ž .the inductive assumption to P and P q, t , we have the lemma. B3

Ž .Let u, ¨ be fixed and consider V u, ¨ . Let

U u , ¨ sV u , ¨ lZ nm .Ž . Ž .
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Ž .We may partition V u, ¨ into fundamental parallelepipeds, one corresponding to
Ž .each point U u, ¨ . Namely,

V u , ¨ s xq l b ij : 0Fl -1Ž . Ž .D Ý i j i j½
Ž . i , jxgU u , ¨

for is1, 2, . . . , m; js1, 2, . . . , n .5
� Ž . 4We call xqÝ l b ij : 0Fl -1 for is1, 2, . . . , m; 1, 2, . . . , n , ‘‘the paral-i, j i j i j

Ž .lelepiped’’ associated with x and denote it by F x .

Ž . Ž .Claim. For any xgI u, ¨ , and for any y belonging to F x we ha¨e x y2-y -i j i j
x q2.i j

Ž .Proof. This follows from the fact that at most four of the b ij ’s have a nonzero
entry in each position, two of them have a q1, the other two a y1.

Lemma 2. For nonnegatï e ¨ectors ugRm and ¨ gRn and any lgRnm, let

P u , ¨ , l sV u , ¨ l xgRnm : x G l .Ž . Ž . � 4i j i j

Then,

Ž . Ž . Ž . Ž .i for any x in I u, ¨ , we ha¨e F x :P u, ¨ ,y2 , where 2 is the nm-̈ ector of all
2’s.

Ž . Ž . Ž . w Ž . (ii P u, ¨ , q2 :D F x . P u, ¨ ,y2 will play the role of P in the briefx g IŽu, ¨ .
xdescription of the algorithm gï en earlier.

Ž . Ž . Ž .Proof. i Since x is in I u, ¨ , we have x G0 and so, for any ygF x , we havei j
Ž . Ž . Ž .y Gy2, proving i . For ii , observe that for any ygV u, ¨ , there is a uniquei j

Ž . Ž .xgU u, ¨ such that ygF x . If y G2, then we must have x G0, so thei j i j
Ž .corresponding x belongs to I u, ¨ as claimed.

Lemma 3. For ugRm and ¨ gRn with u )2n for all i and ¨ )2m for all j, wei j
ha¨e

Vol D F x 1Ž .Ž .x g IŽu , ¨ . G .
Vol P u , ¨ ,y2 a u , ¨Ž .Ž .Ž .

Ž . Ž Ž .. Ž Ž ..Proof. By ii of the lemma above, Vol D F x is at least Vol P u, ¨ , q2 .x g IŽu, ¨ .
Ž . Ž .But P u, ¨ , q2 is isomorphic to P uy2n1, ¨ y2m1 where 1’s are vectors of all

1’s of suitable dimensions as seen from the substitution xX sx y2. Similarly, wei j i j
Ž . Ž . 1r Nhave that P u, ¨ , y2 is isomorphic to P uq2n1, ¨ q2m1 . Let rsa . Con-

Ž . � Ž .4sider the set rP uy2n1, ¨ y2m1 s r x : xgP uy2n1, ¨ y2m1 . This is pre-
Ž Ž . Ž .. Žcisely the set P r uy2n1 , r ¨ y2m1 . By the definition of r, we have r u yi

. Ž .2n Gu q2n ; i and r ¨ y2m G¨ y2m ; j. So by Lemma 1, the volume ofi j j
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Ž . Ž . ŽrP uy2n1, ¨ y2m1 is at least the volume of P uq2n1, ¨ q2m1 . But rP uy
. Ž .2n1, ¨ y2m1 is a dilation of the N-dimensional object P uy2n1, ¨ y2m1 by a

factor of r and thus has volume precisely equal to r N sa times the volume of
Ž .P uy2n1, ¨ y2m1 , completing the proof. B

Ž . Ž .Since P u, ¨ ,y2 is isomorphic to P uq2n1, ¨ q2m1 , the essential problem
we have is one of sampling from a contingency polytope with uniform density.

Ž . Ž Ž ..Proposition 1. For e¨ery xgU u, ¨ , we ha¨e vol F x s1.N

my 1 ny1 Ž .Proof. Note that if zsÝ Ý l b ij , then we have z sl yl ylis1 js1 i j i j i j iy1, j i, jy1

Ž .ql where, if one of the subscripts is 0, we take the l to be zero, too . Thusiy1, jy1

for each i, 1F iFmy1, and each j, 1F jFny1, the ‘‘height’’ of the paral-
Ž . wŽ . Ž .lelepiped F x in the direction of z perpendicular to the ‘‘previous’’ a, b - i, ji j

Ž .xif aF i and bF j and a- i or b- j coordinates is 1, proving our proposition. B

5. THE ALGORITHM

We now describe the algorithm which given row sums u , u , . . . , u and column1 1 m
sums ¨ , ¨ , . . . , ¨ , and an error parameter e)0, draws a multiset W of samples1 2 n

Ž . Žfrom I u, ¨ the set of integer contingency tables with the given row and column
. Ž .sums with the following property: If g : I u, ¨ ªR is any function, then the true

Ž .mean g of g and the sample mean g defined below satisfy˜
2 2< <E gyg Fe g ,˜Ž .ž / 0

where

g w g wŽ . Ž .Ý ÝŽ .wgI u , ¨ wgWgs gs g s max g w yg x .Ž . Ž .˜ 0< < < <I u , ¨ W Ž .Ž . w , xgI u , ¨

Ž .As stated in the last section, we will first draw samples from P uq2n1, ¨ q2m1 .
We let rsuq2n1 and cs¨ q2m1.

We assume that u )2n ; i and ¨ )2m ; j throughout this section.i j
The function g often takes on values 0 or 1. This is so in the motivating

w xapplication described by Diaconis and Efron 5 , where one wants to estimate the
Ž . 2proportion of contingency tables that have the so-called x measure of deviation

from the independent greater than the observed table. So, in this case, g will be 1
for a table if its x 2 measure is greater than that of the observed, otherwise, it will
be zero. The evaluation of g for a particular table is in general simple as it is in
this case.

At the end of the section, we describe how to use the sampling algorithm to
< Ž . <estimate I u, ¨ .

For reasons that will become clear later, we rearrange the rows and columns so
that

r , r , . . . , r F r , c , c , . . . , c Fc . 2Ž .1 2 my1 m 1 2 ny1 n
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Ž .We assume the above holds from now on. An m=n table x in P r, c is obviously
specified completely by its entries in all but the last row and column. From this, it

Ž . Ž . N wis easy to see that P r, c is isomorphic to the polytope Q r, c in R recall the
Ž .Ž .xnotation Ns my1 ny1 , which is defined as the set of x satisfying the

following inequalities:

ny1 my1 my1 ny1 my1

x F r ; i , x Fc ; j, x G r yc , x G0.Ý Ý Ý Ý Ýi j i i j j i j i n i j
js1 is1 is1 js1 is1

In the above, as well as in the rest of the section, i will run through 1, 2, . . . , my1
and j will run through 1, 2, . . . , ny1 unless otherwise specified.

Ž .The algorithm will actually pick points in Q r, c with near uniform density. To
Ž .do so, the algorithm first scales each coordinate so that Q r, c becomes ‘‘well-

rounded.’’ Let

r ci j
r sMin , for is1, 2, . . . , my1 and js1, 2, . . . , ny1.i j ž /ny1 my1

3Ž .

The scaling is given by

N
y s x for is1, 2, . . . , my1 and js1, 2, . . . , ny1. 4Ž .i j i jri j

Ž . Ž .This transformation transforms the polytope Q r, c to a polytope QQsQQ r, c
‘‘in y space.’’

Ž .Note that QQ r, c is the set of y that satisfy the following constraints:

1 1
r y F r ; i , r y Fc ; j,Ý Ýi j i j i i j i j jN Nj i

5Ž .1
r y G r yc , y G0.Ý Ýi j i j i n i jN i , j i

Ž .Instead of working in QQ r, c , the algorithm will work with a larger convex set. To
XŽ . Ž .describe the set, first consider the convex set P r, c obtained from P r, c by

XŽ .discarding the constraint x G0. The corresponding set Q r, c in N space ism n
given by upper bounds on the row and column sums and nonnegativity constraints.

XŽ . XŽ .The scaling above transforms Q r, c to the following set QQ r, c :

1 1
XQQ r , c s y : r y F r ; i , r y Fc ; j, y G0 . 6Ž . Ž .Ý Ýi j i j i i j i j j i j½ 5N Nj i

For clarity we show some of these bodies in relation to each other in Figure 1. We
XŽ .will impose the following log-concave function F : P r, c ªR :q

ny1 my1
M x m nF x sMin 1, e , where Ms2 q , 7Ž . Ž . Ž .ž /r cm n
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Fig. 1. Geometries of a 2 by 3 example.

Ž .which is 1 on P r, c and falls off exponentially outside. The corresponding
function on QQX is given by

G y sMin 1, e M ŽŽ1r N .Ý i , j r i j y i jyÝ i r iqc n. . 8Ž . Ž . Ž .

� Ž .4We call a cube of the form y : 0.4 s Fy -0.4 s q1 in y space, where s arei j i j i j i j
Ž .all integers a ‘‘lattice cube’’ it is a cube of side 0.4 ; its center p where

Ž .p s0.4s q0.2 will be called a lattice cube center lcc . Let L be the set of latticei j i j
XŽ .cubes that intersect QQ r, c . We will interchangeable use L to denote the set of

Ž X .lcc’s of such cubes. Note that the lcc itself may not be in QQ . If y is an lcc, we
Ž .denote by C y the lattice cube of which it is the center. Note that, for a particular

Žlcc y, it is easy to check whether it is in L}we just round down all coordinates to
. Xan integer multiple of 0.4 and check if the point so obtained is in QQ . In our

algorithm, each step will only modify one coordinate of y; in this case, by keep-
Ž .ing running row and column sums, we can check in O 1 time whether the new y

is in L.
A simple calculation shows:

Ž . y0.8 Ž . Ž .Proposition 2. For any lcc y and any zgC y , we ha¨e e G y FG z F
0.8 Ž .e G y .

Proposition 3.

p#y1 Fe5N 7N 2 Ne4 .

Proof. The number of states of L is at most 7N 2 N. It is easy to check that the
ratio of the maximum value of G to the minimum value of G over lccs is at most
e5Nq4 completing the proof. B
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Now we are ready to present the algorithm. There are two steps of the algorithm
of which the first is the more important. Some details of execution of the algorithm
are given after the algorithm. In the second step, we may reject in one of three
places. If we do so, then, this trial does not produce a final sample.1

The Algorithm

The first paragraph of this section describes the inputroutput behavior of the
algorithm. See the remark following Theorem 2 for the choice of T , T .0 1

I. Let T , T G1. Their values are to determined by the accuracy needed.0 1

Run the random walk Y Ž1., Y Ž2., . . . Y ŽT0qT 1. with L as state space described below
for T qT steps starting at any state of L.0 1

II. For isT q1 to isT qT do the following:0 0 1
Ž i. Ž Ž i..a. Pick Z with uniform density from C Y . Reject with probability

Ž Ž i.. .8 Ž Ž i.. w x1yG Z re G Y . Reject means and end the execution for this i.
Ž i. Ž .b. Reject if Z is not in QQ r, c .

Ž i. Ž . Ž i. Ž i. Ž .c. Let p be the point in P r, c corresponding to Z . If p is in a F w
Ž . Ž i.for some wgI u, ¨ , then add w sw to the multiset W of samples to be

output; otherwise reject.

Random Walk for Step I

Step I is a random walk on L. Two lccs in L will be called ‘‘adjacent’’ if they differ
in one coordinate by 0.4 and are equal on all the other coordinates. The transition
probabilities for the random walk for step I are given by

1 G yXŽ .
X XPr yªy s Min 1, for y , y adjacent lcc’s in L,Ž . ž /2 N G yŽ .

Pr yªyX s0 for y , yX not adjacent,Ž .
Pr yªy s1y Pr yªyX .Ž . Ž .Ý

X � 4y gL_ y

This is an irreducible time-reversible Metropolis Markov chain and from the
identity

G y Pr yªyX sG yX Pr yX ªy ,Ž . Ž . Ž . Ž .

Ž .it follows that the steady state probabilities p exist and are proportional to G ? .
An execution of the random walk produces Y Ž i., is1, 2, . . . , where Y Ž iq1. is

chosen from Y Ž i. according to the transition probabilities.

1 The number of trials needed to overcome these rejections is, or course, included in the claimed
running time.
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w xIn the next section, we will use the results of Frieze, Kanna, and Polson 14 to
show that the second largest absolute value of an eigenvalue of the Markov chain
Ž . Ž .we denote this quantity by u satisfies see Theorem 3

y1 41yu FN nqmy2 35qo 1 ,Ž . Ž . Ž .Ž .
Ž .where the o 1 term goes to zero as nqm, Nª`. As pointed out there, for

Ž .y1 4Ž .NG10 and nqmG11, we have 1yu F36N nqmy2 . The quantity 1yu
is called the ‘‘spectral gap.’’

w xThe following theorem is proved using a result of Aldous 1 . It involves a
quantity A which is the limiting probability of acceptance in the above algorithm.1

Ž .A sequence of lemmas 4]7 is then used to bound A from below. This lower1
bound may be just plugged into Theorem 2. See remark below for a more practical
way to estimate A .1

Theorem 2. The multiset of samples W produced by the algorithm satisfies: if
Ž . Ž . Ž .g : I u, ¨ ªR is any function with g Fmax g w yg x , and mean0 w , x g IŽu, ¨ .

Ý g wŽ .w g IŽu , ¨ .
gs ,

< <I u , ¨Ž .
we ha¨e

21
E g w ygŽ .Ýž /< <ž /W wgW

1 11.5y1806a u , ¨ log uŽ .Ž .
T 5N 2 N 4 20F 1qu e 7N e g .Ž . 0T A ylog u1 1

Further,

A Gey4 .4ra u , ¨ .Ž .1

Remark. To use Theorem 2, we must choose T ,T to be large enough. This can0 1
be done in a fairly standard manner: Suppose we want

21
E g w y g Fe .Ž . .Ýž /< <ž /W wgW

Ž .Later we will show cf. Theorem 3 we can choose

4
4T s 5Nq2 log 7N log N q 35qo 1 N nqmy2 ,Ž . Ž . Ž .Ž .0 ž /N

840qo 1 g 2 N 4 nqmy2Ž . Ž .Ž . 0
T s .1 A e1

We may estimate A from the run of the algorithm, which potentially fares much1
better than the lower bound we have given.
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Ž Ž . . Ž . w xProof of Theorem 2. Let SsÝ g w yg . Let f : L=I u, ¨ ª 0, 1 bew g W

Ž . Ž i.such that f y, w is the probability that given Y sy in step I of the algorithm, we
pick w Ž i.sw. Letting t denote the linear transformation such that for each

Ž . Ž . ŽxgP r, c , t x sz gives us the corresponding point in QQ the exact description
.of t is not needed here , we have

G zŽ .Nf y , w s 2.5 dz.Ž . Ž . H .8Ž Ž .. Ž . e G yzgt F w lC y Ž .
Ž i.Ž . Ž .Ž Ž . . w Ž .Let h y sÝ f y, w g w yg . This is the expected value of g w ygw g IŽu, ¨ .

Ž i. Ž i. xgiven Y sy, where we count a rejected Y as giving us the value 0.
Let

T qT0 1
X Ž i.S s h Y .Ž .Ý

isT q10

w Ž i. X xNote that the expectation of S given the Y is precisely S . Consider the
expectation of h with respect to p :

p y h yŽ . Ž .Ý
y

s p y f y , w g w ygŽ . Ž . Ž .Ž .Ý Ý
y w

G y G zŽ . Ž .
s g w yg dzŽ .Ž .Ý ÝH .8Ý G e G yŽ .Ž Ž .. Ž .zgt F w lC yLy w

1
s g w yg G z dzŽ . Ž .Ž .Ý H.8e Ý G Ž Ž ..zgt F wL w

vol t F wŽ .Ž .Ž .
s g w yg s0Ž .Ž .Ý .8e Ý GLw

Ž . Ž Ž ..because G z is 1 on all of QQ which contains t F w ; also the volume of
Ž Ž ..t F w is the same for all wgI.

If we had started the chain in the steady state, the expected value of SX would
Ž . Ž . Xbe T Ý p y h y s0. Thus as T tends to infinity, the limit of S rT is 0. Let1 y 1 1

Ž . Ž . Ž .A y be the probability of accepting y. Let A sÝ p y A y . We also need the1 y

Ž . Ž .Ž Ž ..2variance of h w.r.t. p denoted h sÝ p y h y .2 y

2 22 2h s p y h y Fg p y A y Fg A ,Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý2 0 0 1
y y

wIt follows from Aldous’s Proposition 4.2 using the fact that his t rT will be lesse 1
Ž . Ž .Ž y1 .xthan 1 here, which implies that his a t rT is at most 2 t rT 1qee 1 e 1

u T0 2 1qey1Ž .2X 2E S FT 1q g A ,Ž .Ž . 1 0 1ž /p# ylog uŽ .
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Ž . wwhere p# is the minimum of all p y , ygL. We note that Aldous lets T actually0
be a random variable to avoid the dependence on negative eigenvalues of the
chain. In our case, we will be able to get an upper bound on u , the second largest
absolute ¨alue of an eigenvalue, so this is not necessary. A simple modification of
Aldous’s argument which we do not give here implies the above inequality even

xthough our T is a deterministic quantity.0
It also follows by similar arguments that

u T0 2 1qey1Ž .2< <E W yT A FT 1q A . 9Ž .Ž .ž /1 1 1 1ž /p# ylog uŽ .

Consider now S. Recall that

E S ¬Y Ž i. , is1, 2, . . . , T qT sSX .Ž .0 1

Given Y Ž i., is1, 2, . . . , T qT , the process of producing each w Ž i. is independent.0 1
ŽŽ X.2 . ŽŽ X.2 Ž i. .For some Y, E SyS FE SyS ¬Y , is1, 2, . . . , T qT . So, we have0 1

Ž i. Ž i. Ž i.Var S ¬Y , is1, 2, . . . , T qT s Var g w yg ¬YŽ .Ž .Ž . Ý0 1
i

2Ž i. 2FE g w yg FT g .Ž .Ž .ž / 1 o

w Ž .2 2 2 xSo we have using the inequality AqB F11 A q1.1B
2 2 2X X X X2E S sE SyS qS F11E SyS q1.1E SŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž .

u T0 2 1qey1Ž .
2F1.1 1y300a u , ¨ log u T A 1y g , 10Ž . Ž .Ž . 1 1 0ž /p# ylog uŽ .

where we have used a lower bound on A which we derive now. First note that1

vol t F wŽ .Ž .Ž .
< <A s I u , ¨ .Ž .1 .8e Ý GL

We have Ý GFe.2H G, where T is the union of cubes in L.L T
4.4 Ž .In a sequence of lemmas below, we show that H GFe vol QQ . So, usingT

Lemma 3,

vol D t F w vol D F w ey4 .4Ž . Ž .Ž . Ž .Ž .IŽu , ¨ . IŽu , ¨ .y4.4 y4.4A Ge se G .1 vol QQ vol P r , c a u , ¨Ž . Ž . Ž .Ž .
Ž . Ž .We will now use Eqs. 9 and 10 to argue the conclusion of the theorem. To this

end, let
21

< <E g w yg W ss sg s ,Ž . Ž .Ýž /< <ž /W wgW

Ž < < . Ž . Ž .and let Pr W ss sn s . Then Eq. 9 gives us

u T0 2 1qey1Ž .2
n s syT A FT A 1q ,Ž . Ž .Ý 1 1 1 1 ž /p# ylog uŽ .s
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which implies

u T0 2 1qey1Ž .2 2n s g s syT A FT A 1q gŽ . Ž . Ž .Ý 1 1 1 1 0ž /p# ylog uŽ .s

Ž .Now Eq. 10 gives

u T0 2 1qey1Ž .
2 2n s g s s F1.1 1y300a log u T A 1q g .Ž . Ž . Ž .Ý 1 1 0ž /p# ylog uŽ .s

Ž 2 Ž .2 . 2 2Using the inequality 2 s q syT A GT A , we get1 1 1 1

1 u T0 1
2n s g s F 11.5y1806a log u 1q g ,Ž . Ž . Ž .Ý 0ž /T A p# ylog u1 1s

which gives us the theorem using Proposition 3. B

Ž .Lemma 4. For any real number t positï e, negatï e, or zero , let

X � 4K t sP r , c l x : x s t and ¨ t sVol K t .Ž . Ž . Ž . Ž .Ž .m n Ny1

Ž .For t F t FMin r , c , we ha¨e1 2 m n

ny2 my2¨ t r y t c y tŽ .1 m 1 n 1F .ž / ž /¨ t r y t c y tŽ .2 m 2 n 2

Proof. For a real nqmy4 vector lsl , l . . . , l , l , l , . . . , l1n 2 n my2, n m1 m2 m , ny2

Ž . Ž < .we assume our l vector is indexed as above , define K t l as the set of tables x
satisfying

ny2

x sl for js1, 2, . . . , ny2, x s r y ty l ,Ým j m j m , ny1 m m j
js1

my2

x sl for is1, 2, . . . , my2, x sc y ty l .Ýin in my1,n n in
is1

Ž < . Ž .K t l is the set of tables in K t with their last row and column dictated by l. Let
ny2 Ž . my 2 Ž .us denote r y tyÝ l by l t and c y tyÝ l by l t .m js1 m j m , ny1 n is1 in n, my1

Ž .Define L t to be the set of nonnegative vectors l satisfying

ny2 my2

l q tF r , l q tFc ,Ý Ým j m in n
js1 is1

l Fc for js1, 2, . . . , ny2, l t Fc ,Ž .m j j m , ny1 ny1

l F r for is1, 2, . . . , my2, l F r .in i my1, n my1
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Ž < . Ž . Ž < .Then we have that K t l is nonempty iff l belongs to L t . In general, K t l is
Ž .Ž . Ž < .an my2 ny2 -dimensional set and by the volume of K t l , we mean its

Ž .Ž .my2 ny2 -dimensional volume. We have

<Vol K t l sVol P r t , l , c t , l ,Ž . Ž . Ž .Ž .Ž . Ž .

where

r t , l s r yl for is1, 2, . . . , my2,Ž . i i in

c t , l sc yl for js1, 2, . . . , ny2,Ž . j m j

r t , l s r yl t , c t , l sc yl t .Ž . Ž . Ž . Ž .my 1 ny1my1 my1, n ny1 m , ny1

Consider the linear transformation t given by

r y tm 2
t l s l for js1, 2, . . . , ny2,Ž .Ž . m j m jr y tm 1

c y tn 2
t l s l for is1, 2, . . . , my2.Ž .Ž . in inc y tn 1

Ž . Ž .It is easy to see that t is a 1]1 map of L t into L t .1 2

<Vol K t s Vol K t l dlŽ . Ž .Ž . Ž .H1 1
Ž .LlgL t1

y1 y1s Vol K t ¬t a det t daŽ .Ž .Ž .H 1
Ž .agL t2

ny2 my2r y t c y tm 1 n 1 y1 y1s Vol P r t , t a , c t , t a da .Ž . Ž .Ž .Ž .H 1 1ž / ž /r y t c y t am 2 n 2

Ž y1 . Ž . Ž y1 . Ž .It is easy to check that r t , t a F r t , a and c t , t a Fc t , a . This implies1 2 1 2
Ž Ž Ž . Ž ...that the integrand in the last integral is bounded above by Vol P r t , a , c t , a .2 2

Ž Ž ..This function of course integrates to Vol K t completing the proof. B2

Ž . Ž .Lemma 5. For any t -0, we ha¨e ¨ t defined in Lemma 4 satisfies1 1

ny2 my22e r y t c y tm 1 n 1¨ t F Vol QQ r , cŽ . Ž .Ž .1 Nž / ž /r r cm n m n

where

r cm m
r smin , .m n ž /ny1 my1
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w xProof. For t in the range 0, r , we have2 m n

ny2 my2r y t c y tm 2 n 2
Vol K t G Vol K tŽ . Ž .Ž . Ž .2 1ž / ž /r y t c y tm 1 n 1

ny2 my2r cm n y2G e vol K t .Ž .Ž .1ž / ž /r y t c y tm 1 n 1

Integrating this over this range of t , we get the lemma. B2

Lemma 6.

G y dyFe2 G y dyFe2 vol QQ .Ž . Ž . Ž .H H
XŽ . Ž .QQ r , c QQ r , c

Proof. From the last lemma, we have for any t -0,1

e2
yŽny2. t r r yŽmy2. t r c1 m 1 n¨ t Fe Vol QQ .Ž . Ž .1 rm n

Now the lemma follows by integration. B

Ž .Lemma 7. Let T be the union of C y o¨er all lcc’s y. Then we ha¨e

G y dyFe3.6 G y dy.Ž . Ž .H H
Ž .T QQ r , c

Proof. We have

1 .4
T: y : r y F r q r ; i ,Ý Ýi j i j i i j½ N Nj j

1 .4
r y Fc q r ; j, y G0 . 11Ž .Ý Ýi j i j j i j i j 5N Ni i

Ž . X XThis implies that T: 1q .4rN QQ . Note also that for any y in QQ , we have
ŽŽ . . Ž . 0.4 M minŽÝ i r i,Ý j c j.rŽN 2 . Ž . 1.6G 1q .4rN y FG y e FG y e . Thus we have the lemma

using the last lemma. B

Algorithm To Estimate the Number of Contingency Tables

Using the sampling algorithm, we will be able to estimate the number of contin-
Ž .gency tables in time polynomial in the data and a u, ¨ . We will only sketch the

method here.
Ž .We first estimate by sampling from P r, c the following ratio:

vol P r , cŽ .Ž .
.

vol D F wŽ .Ž .w g IŽu , ¨ .
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Next, we define a sequence of contingency polytopes P ,P , . . . , each obtained1 2
Ž . ? ŽŽ . Žfrom the previous one by increasing r and c js1 . . . n by min 1rm c , 1rm j n

. .@ my 1n r until we have c GÝ r for js1 . . . n. Thenm j is1 i

my1 r qny1iI r , c sŽ . Ł ž /ny1is1

Ž . Nand the volume of P r, c is read off as the coefficient of b in the easily
< Ž . < Ž my 1Ž ny1 ŽŽ . ...calculated polynomial I b= r, b=c sŁ r r ny1 ! .is1 i

6. BOUND ON THE SPECTRAL GAP

w x w xWe refer the reader to Diaconis and Strook 7 or 14 for a discussion of the
eigenvalues of a reversible Markov chain. The second largest absolute value of
such a chain gives us a bound on the ‘‘time to converge’’ to the steady state as

w xdescribed in these references. Here, we use Theorem 2 of 14 to bound the second
largest absolute value of our chain. Note that, although their theorem does not
explicitly state so, the l in that theorem is the second largest absolute value of2
any eignevalue of the chain. This section is a technical evaluation of the various

w xquantities needed to plug into the expression for l in 14 ; we do not redefine2
these quantities here.

ŽWe first calculate the diameter the largest Euclidean distance between two
. Ž .points of T defined in lemma 7 . To do so, we let

r ri i
I s ij : r s , I s ij : r - .Ž . Ž .1 i j 2 i j½ 5 ½ 5ny1 ny1

Ž Ž . X.Then, for any ygT using the fact that yy .41 gQQ

.4
; i , y FN ny1 1qŽ .Ý i j ž /N� Ž . 4j : ij gIi

and

.4
; j, y FN my1 1q .Ž .Ý i j ž /N� Ž . 4i : ij gI2

So,

2 2 22 2 2 2y s y q y FN 1q .4rN ny1 my1 q my1 ny1 .Ž . Ž . Ž . Ž . Ž .Ý Ý Ýi j i j i j
ij I I1 2

Ž .So the diameter dsd T of T satisfies

.4
1.5' 'd T F 2 N nqmy2 1q .Ž . Ž . ž /N

Ž . N Ž . �For every unit length vector ugR , with u G0, let l u be the ray yslu : lGi j
4 Ž0 from the origin along u. Note that the ray intersects T in a line segment since

Ž . ? @ X . Ž .ygT iff 0.4 2.5 y gQQ where floor denotes componentwise floor . Let RsR u
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Ž . XŽ . Ž .be the length of the segment l u lQQ r, c and R sR u be the length of the1 1
Ž . � 4segment l u lT. Then there exists an i g 1, 2, . . . , my1 such thato

ri joRu s rÝ i j io oNj

� 4or a j g 1, 2, . . . , ny1 such that Ý Ru r rNsc . Assume without loss ofo i i j i j jo o o

Ž Ž . .generality the first option. Since R u sR u u belongs to T , the vector R uy0.41 1 1
belongs to QQX. So, we also have

r ri j i jo oR u F r q 0.4 .Ž .Ý Ý1 i j io oN Nj j

Using the fact that Ý r F r , we get thatj i j i

R FR 1q .4rN .Ž .1

Ž . w xThe above implies that R F2 R as required by 7 of 14 .1
Ž Ž . . XAlso, Ru sR u u belongs to QQ implies

r ri j i j
R u F r ; i , R u Fc ; j,Ý Ýi j i i j jN Nj i

w xwhich implies by 2

r R yR 0.4ri j 1 m
R yR u F r F .Ž . Ý Ý1 i j iN R ny1i , j i

Ž . Ž .Similarly R y R Ý u r rN is also at most 0.4 c rm y 1. Thus1 i , j i j i j n
M ŽR1yR .Ý i, j u i j r i j r N 1.6 Ž . w xe is at most e . This implies that we may take k of 8 of 14 to1

be 25r3.
w x ŽAlso, R yRF .4RrN. So k of 14 is given by since d , the step size, is 0.41 2

.here

50 R 50' 'k F q N s N qo 1 . 12Ž . Ž .Ž .2 ž /3 N 3

Also,

1
3k s N nqmy2 1qo 1 . 13Ž . Ž . Ž .Ž .0 .8

Ž . w xWe now want to bound 1qa of 14 . To this end, we need to prove upper and
lower bounds on

H G z dzŽ .z g CŽ y .
,NG y dŽ .

where y is an lcc. Since G is a convex function, it is clear that 1 is a lower bound
w xon this ratio. To get an upper bound, we use Hoeffding’s bounds 17 on the

w x Žprobability that the sum Ý r z yy deviates from its mean of 0 and afteri j i j i j i j
. 8r N 1.5

integration arrive at an upper bound of 1.05e .
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y1 w xPlugging all this into the formula for l in Theorem 2 of 14 , we get2

Theorem 3.
3N N 1.5 281.5y1 24r N1yu F 1.2 e nqmy2 1qŽ . Ž . ž /.4 .8 N 3

.8
3r2' ' 'q25 N nqmy2 1q q2 N nqmy2ž /3N

F 35qo 1 N 4 nqmy2 .Ž . Ž .Ž .
Ž Ž ..For NG10, nqmG11, a calculation shows that 35qo 1 may be replaced by 36.

w xKanan, Tetali, and Vempala 20 develop a polynomial time algorithm for the
0r1 case with nearly equal margin totals.

w xChung, Graham, and Yau 4 show that assuming a lower bound on row and
column sums which is bigger than we assume here, a simple lattice point walk
mixes in time polynomial in m, n and the actual row and column sums, providing a
unary polynominal time algorithm in these cases.
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