Improved Bounds for Sampling Colorings
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Abstract

We consider the problem of sampling uniformly from the
set of proper k-colorings of a graph with maximum degree
A. Our main result is the design of a simple Markov chain
that converges in O(nk logn) time to the desired distribu-
tion when k > LA

1 Introduction

A proper k-coloring of a graph G = (V, E) is a labeling
o of the vertices with colors from the set C = {1,...,k}
where neighboring vertices have different colors. We ad-
dress the problem of sampling uniformly from the set of
proper k-colorings. This problem is interesting as a natural
combinatorial problemiand also has applications in Statisti-
cal Physics. It corresponds to sampling configurations of the
zero temperature k-state anti-ferromagnetic Potts model [7].

A natural approach-to this sampling problem is to con-
sider a Markov chain which has a state for each proper k-
coloring. We define the transitions of the chain so that its
stationary distribution is uniform over all states. In order to
sample from the desired distribution, we run the following
procedure: start at an arbitrary coloring, simulate the ran-
dom walk defined by the chain until it is sufficiently close
to the stationary distribution, and output the final coloring
of the walk. The required length of this random walk is tra-
ditionally referred to as the mixing time. The Markov chain
is called rapidly mixing if the mixing time is bounded by a
polynomial in n = |V| and thus gives an efficient sampling
algorithm.

The (heat-bath) Glauber dynamics is perhaps the sim-
plest possible Markov chain with the desired stationary dis-
tribution. From a coloring o, its transitions & — ¢’ are de-
fined as:

e Choose a vertex v uniformly at random.

o Let o/(z) = o(z)forall z # v.
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e Let S denote the set of colors that do not appear in the
neighborhood of v. Choose ¢’ (v) uniformly at random
from the set S.

Mark Jerrum [6] proved that the Glauber dynamics is rapidly
mixing when the number of colors is at least twice the max-
imum degree A of the input graph.

This 2A barrier also arose in related work in the Sta-
tistical Physics community. Their focus was showing that
there is no phase transition in the zero-temperature anti-
ferromagnetic Potts model. (There appears to be some con-
nection between rapid mixing and absence of a phase tran-
sition, see section 5 for more on this topic.) We first need
to introduce some notation before we can explain the notion
of a phase transition. Consider the d-dimensional square
lattice Z¢ where edges connect vertices that differ by ex-
actly 1 in at least one component. Also, Q1 denotes the fi-
nite d-dimensional cube of Z¢ with side length 2L + 1 cen-
tered at the origin, i.e., the induced subgraph of Z¢ on ver-
texset V = {—L,..., L}? and its boundary Q) refers to
those vertices with at least one coordinate equal to L. Let
7 denote a coloring of Z¢. Consider the probability mea-
sure g = pr 1, which is uniform over the set of proper
k-colorings of @, conditional on the boundary having col-
oring 7. We are interested in whether the influence of the
boundary on the origin dies out as L — oo. In particular,
we say there is no phase transition if for all T and colors c,

1
— —as L — oo.

4t (origin has color ¢) v

Roman Kotecky (cited in [5, pages 148-149,457]) showed
that there is no phase transition when the number of colors
is greater than twice the degree of the lattice (i.e., k > 2A =
4d).

In both settings, this 2A barrier was broken in specific in-
stances by computer-assisted proofs which analyzed a huge
number of cases. Jesus Salas and Alan Sokal broke the bar-
rier for several two-dimensional lattices [8]. They proved
that there is no phase transition for seven-colorings of the
square lattice, four-colorings of the hexagonal lattice, and
six-colorings of the Kagome lattice. Their proof for the
square lattice, for instance, requires the computer analysis
of 78 cases.



Russ Bubley, Catherine Greenhill, and Martin Dyer [3]
proved rapid mixing of the Glauber dynamics with five col-
ors when A is at most three and seven colors on triangle-free
four-regular graphs. Their proofrelies on the computer solu-
tion of several hundred linear programs for the A < 3 case,
and over 40,000 programs for triangle-free 4-regular graphs.

In this paper, we give a simple direct proof that breaks the
2A barrier for arbitrary graphs. We consider a Markov chain
which we call the flip dynamics, formally defined in sec-
tion 3. The transitions of our chain consist of ‘flipping’ two-
colored clusters. In particular, from a coloring o, choose a
vertex v and color ¢ uniformly at random. Then consider the
maximal cluster of vertices which contain v and are colored
with ¢ or o(v). With an appropriate probability, ‘flip’ this
cluster by interchanging colors ¢ and o(v) on it. Our main
result is the following.

Theorem 1 The flip dynamics is rapidly mixing (with mix-
ing time O(nk logn)) provided k > LA,

This is the first proof to break the 2A barrier that is not
computer assisted and also the first for arbitrary graphs of
any given maximum degree A > 6. Moreover, rapid mixing
of the flip dynamics also implies rapid mixing of the Glauber
dynamics.

Theorem 2 The Glauber dynamics is rapidly mixing (with
mixing time O(n*klognlogk)) provided k > 16—1A.

The proof of theorem 2 is left for the full version of the
paper. When k = LA our proof implies rapid mixing for
constant A, see the remark at the end of section 4. In sec-
tion 5 we discuss some known connections between rapid
mixing of the Glauber dynamics and the absence of a phase
transition. In particular, these connections together with our
result on the mixing time of the chain M C give the follow-
ing theorem.

Theorem 3 For Z° there is no phase transition in the k-
state zero temperature anti-ferromagnetic Potts model when
k> Ld

This beats the previously known bound of ¥ > 4d for
general d. Moreover, the result can easily be extended to
other lattices that are commonly of interest, such as the
hexagonal and Kagome lattice (see [8] for illustrations of
these lattices).

2 Background

Consider a discrete-time Markov chain with transition
probability matrix P defined on a finite state space 2. A
classical theorem of stochastic processes states that if P has
the following properties:
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e aperiodicity: ged{t : P*(i,i) > 0} = 1 foralli € Q;
and

o irreducibility: forall i,j € Q, there existsat = t;;
such that there is a positive probability of going from
state 7 to state j after ¢ steps, i.e. P'(,j) > 0,

then the chain has a unique limiting distribution, referred to
as the stationary distribution w, i.e.

lim P(3,j) = n(j) foralli,j € Q.
t—o00

In fact, if P is symmetric (P(Z, j) = P(j,1) forall ¢, j)
then 7 is uniform over all states.

Our goal is to bound the time until the chain is sufficiently
close to the stationary distribution. The standard measure of
distance from stationarity is total variation distance. From
an initial state ¢, the total variation distance from  is

. 1 . .
di(t) = dpv (P(i,-), ™) = 3 Z [PY(4,7) ~ m(5)]-
JEQ
We are interested in the following quantity,
7(¢) = maxmin{t : d;(t') < e forallt’ > t}.
1
It is sufficient to consider the mixing time, defined as:
T =1(1/2€).

The constant 1/2e is arbitrary and only affects later con-
stants that appear. A bound on the mixing time implies a
bound on 7(¢€) [11:

7(€) < (14 loge™!)r.

We use coupling to bound the mixing time. Coupling
constructs a stochastic process (o¢,&:) on £ x € such that:

o separately o;,&; are copies of the original Markov
chain, and

L] ifO't =£t,lhen Ot41 :Et-i-l-

The goal is to define a coupling to minimize the expected
time till oy = &,

Ti; = min{t : 0y = &loo = 4,60 = j}.

The following fact illustrates the usefulness of coupling
for bounding the mixing time [1]. For oo = 7,&p = j,

drv(o1,&) < Prlo: # &) = Pr[T;; > t].

Bubley and Dyer’s path coupling {2] is an important tool
for helping to design couplings in complex examples. Using
path coupling, we only need to define and analyze a coupling



for a subset of 2 x €2. For simplicity, we explain the tech-
nique for the case when Q C {1, ..., k}V, such as the set of
proper k-colorings.

We need to introduce several definitions before stating

" the theorem. We consider a pair of states o, 7 € 2 neigh-
bors if they only differ at a single vertex. This is denoted
by ¢ ~ 7. Note that these o, 7 are states of the Markov
chain but the definition of neighbors has nothing to do with
the transitions of the chain. In fact, we could even have that
o ~ 1 but ¢ and 7 are not accessible from one another by
one transition of the chain.

We call 5 = (no, ..., n%) asimple path if all 7; are dis-
tinctand g ~ 1y ~ - ~ ng. Define p(0,&) = {n: 0 =
no,€ = Nk, 7 is a simple path}.

The path coupling theorem is more general than stated
here, but this is sufficient for our purposes.

Theorem 4 (Bubley and Dyer [2]) Let ® be an integer-
valued metric defined on 2 x 2 which takes values in
{0,..., D} such that for all 0,6 € ) there existsan €
plo, &) with

¥(0,€) = Z@(nf,ni+1>A

Suppose there exists a 3 < 1 and a coupling of the
Markov chain such that for all ¢y ~ 1:

E[@(oe41, e41)] < BP(0e, 7r).
If B < 1, then the mixing time is bounded by

< log(2eD) .
S5

If 3 = 1 and there exists a positive « where a <
Pr[®(c,&) # ®(ot41,E41)) forall o, & € Q, then the
mixing time is

3 Markov Chain

The state space 2 of the Markov chain for the flip dy-
namics is the set of all proper k-colorings. We need some
notation before specifying the transitions of the chain. For a
coloring o, we will refer toapathv = @g,21,...,2;, = w
as an alternating path between vertices v and w using col-
ors ¢ and o(v) if, for all 4, (z;,z;41) € E and o(2;) €
{e,0(v)},0(z;) # o(xi41). Welet S, (v, ¢) denote the fol-
lowing cluster of vertices.

Sy (0, ) = {wl there exists an alternating path between }
v and w using colors ¢ and o (v)

Also, let S, (v, o(v)) = 0. For every vertex z in the cluster
So (v, ¢), notice that S, (x,¢) = So(v,c) if o(z) = o(v)
and otherwise S, (2, o(v)) = Se (v, ¢).

For a coloring ¢ € €, the transitions o — ¢’ are defined
as:

e Choose a vertex v and color ¢ uniformly at random
from the sets V', C respectively. '

o Leto = |S,(v,c)l.
With probability £=, ‘flip’ cluster S,(v,c) by inter-
changing colors ¢ and o(v) on the cluster.

The reason for dividing the flip probability by « is that,
as observed above, there are exactly a ways to pick the clus-
ter (one for each of its elements). Thus, a cluster is actually
flipped with weight p,. The parameters p, will be defined
later.

Observe that for every vertex v, the flip of cluster
Ss (v, 0(v)) does not change o. Thus, the Markov chain is
clearly aperiodic since P(o, o) > 0 forall o € Q.

As for irreducibility, it is sufficient to assume flips of
clusters of size one have positive weight, i.e., p; > 0 and
k > A+ 2. To go between an arbitrary pair of colorings
simply consider an ordering of the vertices and attempt to
recolor the vertices in that order. When recoloring a vertex,
if some neighbors have the desired color then first recolor
those neighbors to an arbitrary color which does not appear
in its neighborhood (this requires that £ > A + 2). We are
guaranteed that after we give a vertex its desired color, it will
not interfere with the recoloring of later vertices in the order-
ing.

To see that the chain is symmetric and thus the stationary
distribution 7 is uniform, let o’ denote the coloring after a
flip of cluster S, (v, ¢). Then it should be clear that a flip of
cluster S,/ (v, o(v)) recovers o.

To complete the description of the chain, we specify the

parameters po. They are py = 1,p; = 13 and fora > 2,
13 1 1 1
Po -_max(O,E— ?[1+§++ Q——Q])

[0

Specifically, p3 = §,p4 =
Ofora>T1.

The key properties (which will emerge in the analysis)
that determined the settings for these parameters are

X}

_ 1 — 1 —
TP5 = 317, P6 = '8_4’andpa -

o 2(i— 1)pi + paiy1 < £, and

o (7= 1)(pj —pj+1) + i(pi — piga) < 2. This is true
becauie (=D (pj —pj+1) < 3,i(pi = pit1) < p1—
D2 = %-

Other useful properties of these parameters that we utilize °
arethatip; <py =1,(i— )ps < 2pa =5, (i —¢)pi <
forc > 2.



4 Analysis

Recall the setting of the path coupling theorem. To use
. the theorem we need to define a metric ® on 2 x  such
that there exists a path between an arbitrary pair of states
o, 11 where the length of the path is exactly ®(a, n). We let
® be the Hamming distance which is the number of vertices
that are colored differently in the two states. For neighbor-
ing states o, 7, observe that (o, r) = 1. Consider a color-
ing o where o(v) = 1, o(w) = 2 for adjacent vertices v and
w. Let 1 denote the coloring which is identical to o except
n(v) = 2,n(w) = 1. Thus, ®(o, 7) = 2 but the shortest
path in § between these states is of length three.

In order to apply the path coupling theorem, we redefine
the state space of the Markov chain. Let the set @ = CV,
i.e., the set of all (not necessarily proper) k-colorings. Now
there exists a path of length ®(c, n) between an arbitrary
pair of states o and 7. The definition of the clusters S, (v, ¢)
and the transitions of the chain are identical for this enlarged
state space.

Observe that if we start the chain at a proper coloring, we
only visit proper colorings. Also, if we start at an improper
coloring we eventually reach a proper coloring. (To see
this simply reconsider the earlier argument for irreducibil-
ity.) Therefore, the only states with positive weight in the
stationary distribution are proper colorings and the chain is
still uniform over these states. Also, a bound on the mix-
ing time of the chain on this enlarged state space will give
the same bound on the mixing time of the chain restricted to
Jjust proper colorings.

To now use the path coupling theorem to get a bound on
the mixing time we must first define a coupling for neigh-
boring states ¢, 7. Then we need to show that the expected
change in ® = ®(o, 7) under this coupling is negative. For
the remainder of the analysis let & and 7 denote a pair of
neighboring states such that they only differ at vertex v.

Recall that for every cluster S, (, ¢) there is exactly one
equivalent cluster indexed by each vertex y € S,(v,¢).
Also, this cluster is flipped with total weight p, where o =
|Ss(z, ¢)|. Thus, when analyzing E[A®] we just have to
consider this cluster being flipped with weight p, as op-
posed to considering the cluster being flipped with weight
Pao/a for each vertex y in the cluster.

Notice that in order for a cluster S(z, ¢) to be different in
the two colorings o, T it must involve v, either v € S, (z, ¢)
and/or v € S;(z,c). Recall that if v € S, (z, ¢) then there
is an equivalent way to index the cluster with vertex v. Sup-
pose v € So(z,¢),v € S:(z,c). We then know that the
cluster S(z, ¢} is composed by colors 7(v) and ¢’. Further-
more, there exists a neighbor w of v such that: w has color ¢/,
S:(w,7(v)) = S;(z,¢) = Sr{v, '), and S, (w, 7(v))
So(z,c). We can conclude that the set D of clusters that
might be different in the two chains are
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e S, (w, 7(v)), Sr(w, o(v)) for any neighbor w of v,
e S,(v,¢),S;(v,c) for any color c.

The moves that attempt to flip a cluster in D turn out to
be the only moves that the analysis needs to consider. In par-
ticular, suppose the coupling between moves in ¢ and 7 is
simply the identity, i.e., each chain attempts the same move.
The flip of a cluster S ¢ D does not change ® since S is
the same in both chains before and after the move. Our cou-
pling is in fact the identity for moves that flip clusters not
in D. Before stating the coupling for all moves, we parti-
tion the set D as follows. Notice that the clusters in D are
composed of colors o(v) or 7(v) and at most one other color
c. We partition D into sets DD, based on the other color ¢ as
follows, let

I'. = {w|o(w) = ¢, w is a neighbor of v},

D, = S5,(v,¢)U Sy (v,ec)U
{Uwer A4S (w, 7(v)) U Sy (w, a(v)}}.

The only sets D, that might have non-empty intersection
are Dg(y) and Dy () which both consist of clusters com-
posed of colors o(v) and 7(v). We ignore this issue for now,
and address this special case (*) in the analysis. Note that
the sets Dy (), Dr(y) are simply a byproduct of redefining
the state space to all (not necessarily proper) colorings.

Before defining the coupling, observe that we can think
of it as a function f from a move in ¢ to amove in T, i.e.,
we choose a move in o and f defines the coupled move in
7. From a move in ¢ that flips a cluster .S, the coupling f is

e ForS ¢ D, f(S) = S, i.e., moves that flip clusters not
in the set D have the identity coupling.

e For S € D, f(S) € D.. Moves in the set D, for o
are coupled with moves in the same set for 7.

The specific coupling for flips of clusters in the set D,
will be defined later in the analysis. Since flips of clusters
in D, are coupled together for the chains, we can denote the
effect of these moves by

E[Ap.] = E[A®|o and T flip clusters in D,].

Recall that for clusters S & D, moves that flip these clusters
do not change ®. We then have that

nkE[A®] =Y E[Ap, @]

The key component of the analysis is the following
lemma. Let é. = |T|.

Lemma 5 For each colorc € C,



(@) Ifé. =0, then E[Ap,®] < —1.
() Ifé. > 0, then E[Ap @] < 4. — 1.

Based on this lemma, we get our main result.

Proof of Main Theorem 1: v

Let § = &(v) denote the degree of vertex v. Observe that
the number of colors ¢ with d, = 0, i.e., that do not appear in
the neighborhood of v, is exactly k— 6+ 3", 4 o0 —1).
Together with the lemma this implies that

nkE[AD] < —k + 16_15.

Recall from the path coupling theorem that we need to
bound # such that E[®(g;4+1, 7t41)] < B®(0, 7) for all
oy ~ 7. Lettingo = o0y,7 = 7, we have a bound
on E[A®(0y, 7;)]. Since E[®(0¢41,Te41)] = @(or, ) +
E[A®(0;, 7)) and ®(oy, ) = 1, thus, 8 < 1 — k—_;z—l—A.
Applying the path coupling theorem stated earlier we get the
following bound when k > 1A,

< log(2en).

nk
k—%A

Proof of Lemma 5:

(a) Observe that D. = {S,(v,c) U S,(v,¢)} and fur-
thermore, S, (v,¢) = S:(v,¢) = {v}. Since each chain
has only one cluster in D, the coupling for the move that
flips the cluster in D, is obviously just the identity. This
move might only change v and after the move we know that
o(v) = 7(v) = c. Thus, E[Ap ®] = —

(b) Let wy, ..., w;, denote the set T'. of neighbors of v
with color c. All of the clusters in the set D, are composed
of colors c and o(v) or ¢ and T(v). In fact, the clusters in the
set ), have the the following relauonshlp

For ¢ # o(v),

So (v, ¢)'= {UiS: (wi, 0(v))} U {v}
For ¢ # 7(v),

Sr (v, )= {U;So (wj, 7(v))} U {v}

Note that in the case when ¢ = ¢(v), we have S, (v, ¢) =
Sr(wi,o(v)) = 0. Similarly ¢ 7(v) implies that
Sr(v,¢) = Sy(w;, 7(v)) = 0. As mentioned earlier it may
also occur that Dy () N Dy(yy # 0. We ignore this special
case (*) until the end of the proof.

For a color ¢, all of the clusters in the set D, might not be
distinct. It may occur that S;(wi, o(v)) = S, (wir, o(v))
or similarly for S, (w;, 7(v)). We do the following to in-
sure that we consider the flip of each cluster exactly once.
I S (wiy, 0(v)) = Sr(wiy, 0(v)) = -+ = Sy (wiy, o (v)),
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redeﬁne Sr(wi,,o(v)) =0 forall 1 <’ < 1. Similarly for

(va (v))

To define our coupling, we need to distinguish the
largest of the clusters Sr (w;, o(v)) and also of the clusters

So(wj, 7(v)). Leta; = |S; (w;, a(v)], A = |S,(v,¢)| <
14+ 0, Infact, A=1+ 3, a; forc &€ {o(v), tau(v)}.
Similarly, let b; = |S,(w;, 7(v))|, B = |S;(v,¢)] < 1+
Zj b;. Also, let amax = max; a; and imay is the corre-
sponding index for amax (similarly for byay and jmay). For
colors ¢ # o(v), note that amay > 0, while for ¢ # 7(v),
bmax > 0. Inthe case when ¢ = o(v) we have A = apay =
0 and for ¢ = 7(v), B = bmax = 0.

We can now state the coupling for moves in M,. The
idea s to couple the big flips, S, (v, ¢) and S, (v, ¢), with the
largest of the other flips, Sy (wi..,., 7(v)), So (Wj,.., T(V))-
Then for each w;, couple together (as much as possible) the
remaining weights of the flips S, (w;, 7(v)), Sy (wi, o(v)).
More precisely, the coupling is the following:

I with weight p4, flip S, (v, ¢) and S, (w;_,,,0(v)).

II with weight pp, flip S, (v, ¢) and S, (wj,..., 7(v)).

III For each wy,

Let ¢; (g}) denote the remaining weight of the flip
of S;(wi, o(v)) (S (wi, T(v)) respectively). Specifi-
cally, let

a = Pa; — PA ifl = imax
A otherwise
r_ Pv, — PB ifl = jmax

= Db, otherwise

Ila with weight min(g;, ¢;),
ﬂlp ST(wl) 0’(?))), Sa(wl: T(U))

IlIb with weight ¢, — min(q;, ¢;),

flip Sy (wi, o(v))

Illc with weight ¢; — min(g;, q;),

flip Sy (wi, 7(v))

Let us analyze the effect of each of these coupled moves.
After coupled move (I), the colorings are still identical on
the cluster which before the move was S, (w;_, , o (v)).
Thus, their Hamming distance has increased by at most A —
@max — 1. Similarly, coupled move (II) increases the Ham-
ming distance by at most B — byayx — 1.

For coupled move (Illa), since both flips effect w; this
move increases the Hamming distance by exactly a; +b; —
Whereas, moves (I1Ib) and (Illc) increase the distance by q;



and b; respectively. Let us use a function f(w;) to denote
the effect of moves (IIla), (I1Ib), and (IIlc).
f(w) = ayq + big; — min(qs, q;)
We now have that
E[Ap @] < (A= amax—1)pa+ (B~

+ flw)
p

We divide the remainder of the analysis into three differ-
ent cases depending on the value of 4.

e Suppose that 6. = 1.

The situation is fairly simple: A < a; +1,B < b +
1,91 = Pa, —Pa, 97 = pv, —pp. Without loss of generality,
assume that ¢; > g. From (1), we get the following bound

E[Ap . ®] < ai(ps, —pa)+ (b1 = 1)(ps, — PB)
S al(pa1 _pal+1) + (bl - 1)(pbx —pb1+1)

The second key property of the parameters p, gives us
the intended bound

ps
(1)

bmax -

E[Ap,®] <

(=]

e Suppose §, = 2.
The following claim dramatically simplifies the situation.

Claim 6 When 8, = 2, E[Ap_®] is maximized for ay =
az=a<3andby =by=b=1
We can now calculate f(w; ), f(wz), and E[Ap, ®].
flwy) = (a—1)pa+bpy=(a—1)pa+1,
f(wa) = (a—1)(pa—pa)+b(ps — pB)
E[Ap. )] (A = 2a)pa + (B —2b— 1)ps
+2(a - l)pa + prb
= 2((1 - l)pa + P2a+1 + 2

From the first key property of the parameters p;, we have
our intended bound on E[Ap @],

IN

2 1
<Zyo=tg 1

E[Ap, @] 3 6

o Suppose that 5. > 2.
Consider the following definition
g(wl) = alpaz + blpb, - min(pa, 1pbz)
Notice that g(wi) = f(wi) forl # imax,! # Jjmax. Let
uslookat f(w;_, ), f(wj....). Suppose! = imax = Jmax-

flwr)

= amax(pamu - PA) + bmax(pbm,,, - pB)
— Min(Pa ., ~ PA; Pbmax — PB)
< @max(Pamax — PA) + bmax(Pbo.. — PB)

— Min(Payyars Powax) + P4 + PB
= g(w) + pa(—amax + 1) + pB(—bmax + 1)
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Similarly when ¢max # jmax, We get that

F(Wins) + F(W)m0,) <
g(wimax) + g(wjmax) + pA(_amax + 1)
+pB(‘bmax + 1)

Thus, we can bound the sum of f(w;) in terms of the sum
of g(wi),

Zf(wl) _<_ Z!](W)*H’A (_amax+1)+pB(—bmax+1)-
! l

Plugging in this bound on the sum of f(w;) into (1) we
get the following bound

E[Ap.®] < (A-2amax)pa

+(B - 2bmax)pB + Zg(u}l). )
i

We observed earlier that for our settings of p;, (i —c)p; <
3 for ¢ > 2 (or of course when i = 0). Thus, (4 —
2amax)Pa, (B — 2bmax)pp < . We can also easily bound
g{wi). Assume q; < b; and thus p,, > ps,. We then have

4

g9(wr) = arpa, + (b = L)py, < p1+2ps = 3.

Combining these bounds with (2) we can complete the
case 6. > 2,

1 4
-4 25,
7273

11
< —6—56— 1 for 6, > 2.

E[Ap_®]

IA

This completes the proof except for the special case
(*) when Dy(y) N Dyyy # 0. Let zy,...,25,,, and
Y1, Yo, denote the respective sets I'y(,y and I'; (5. In

particular it might occur that
So (i, 7(v)) = So (v, 7(v)), S (y5,0(v)) = 57 (v, 0(v)).

In order for this to happen there must exist an alternating
path between z; and y; using colors o(v) and 7(v). In such
a case, we let S, (v, 7(v)) = S;(y;,o(v)) = 0. Notice that
the set D,y is still unchanged and in fact, it is the same as
previously analyzed (with A = a; = amax = 0) except
that we now have B = )~ b; < 1+ 3_, b;. The previous
proof still holds in this case. For the set D), assume j =
1 and we have the simplified situation where A = a; =
0, B = bmax = 0; while for j > 1 we have a; > 0 (as
before, note that if S-(y;,0(v)) = S:(y;r, o(v)), then we
set Sr{yjs,o(v)) = 0.) It is now easy to obtain the desired
bound,



[ D, ] < Z @jPa; < (6c — 1)p1
255 <6 v)
11
< ?56 -1
m
Proof of Claim 6:
Without loss of generality, assume that p, . — pa <
Pbaax — PB and a3 = amax. Considering f(wy),
(a1 = 1)(pa, — pa)
+b1(Pb1 - PB) lfbl = bmax
w =
flwn) (a1 = 1)(pa, — pa)
+b1ps, otherwise
Similarly, the other important quantities are
a2pa, + b2(pe. — pB)
_ ~min(pa,, o, — pB)  if by = bmax
fluz) = aspa; + baps,
—min(pa,, P,) otherwise
E[ADcCD] = (A —ay — l)pA + (B — bmax — 1)pB

+f(w1) + f(wo)

Suppose that by = z,bs = y and we swap these values,
i.e., letb; = yand by = 2. Then E[Ap ] mightchange only
from the min(, ) in f(w2). Thus, E[Ap_®] is maximized
when b, = max(z,y),b; = min(z,y). We assume from
now on that b2 > b1 which implies the following simplified
situation:

flwr) = (a1 = 1)(pa, — pa) + b1ps,,
Flw2) = aapa, + b2(ps, — pB)
— min(pa,, Po, — PB),
E[Ap.®] = (A—2a;)pa+(B—2by-1)pp

+(a1 — 1)pa, + aapa, + bipy, + baps,

— min(pa,, Po, — PB)-

We can complete the proof by considering the two cases

for min(pa,, v, — PB)-
® pa, < po, — pp: We then have

E[Ap @]

= 1)pa, + (A — 2a1)pa
(B d 2b2 - 1)])3.

(a1 = 1)pa, + (a2
+b1Pb1 + b2sz +

Observe that (a1 — 1)p4, is maximized for a; = 3, while
(A=2a1)pa > 0 & a1 = az < 3. Thus, the terms involv-
ing a; and a» are maximized for a; = as < 3. Similarly,
the terms by py, , baps, are maximized forb; = by = 1, while
(B—2by—1) < 0ifby # byand (B — 2by — 1) = 0 if
by = bs. Thus, the maximum of E[Ap ] is whenb; = by =
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1 and a; = a2 < 3 which completes the proof of the claim
in this case.

Before considering the next case, note that when a;
02:3,51 :bg—_— 1,

E[Ap,®(3,1,3,1)] = 2p1 + 4ps.

® Do, > P, — pB: In this case,

E[Ap @]

(a1 = 1)pa, + a2pa, + (A — 2a1)pa
+b1ps, + (b2 — 1)pe, + (B — 2bs)ps.
The equation is symmetric in the pair (a;, a2) and (ba, b1).

Considering the terms involving a;, a2 we complete the
proof as follows:

(a1 = 1)pa, + @2pa, + (A — 2a1)pa
2p3 + p1 ifa; # as
- Op1+p1+ps ifa; =as

IN

E[Ap,®(3,1,3,1)].

)
{
lg
2

Remark

The proof showed that E[A®] < 0 when k = LA, In
order to show rapid mixing in this case, we need to bound
a = Pr[A® # 0]. The difficulty arises when a pair of states
o, i are far apart in terms of ®, say ®(c, 1) = n. Each ver-
tex v may have 246(v) colors in its neighborhood and thus
no moves that decrease ®. By some recoloring of at most
éd (v) neighbors of vertex v, we can guarantee v has some

. gy
color available. Thus, a > (#) 6 which implies the
chain is rapidly mixing when the maximum degree A is a
constant and k = LA

5 Connections to Phase Transitions

The author’s thesis [10] gives a more comprehensive in-
troduction to phase transitions along with pointers to ap-
propriate references. For completeness, we prove the fol-
lowing lemma which implies theorem 3. A sketch of this
argument was explained to us by J. van den Berg. Much
stronger results are contained in the work of Frigessi, Mar-
tinelli, Stander [4] and Stroock, Zegarlinski [9] (for a brief
discussion of these results see [10]). The following lemma
refers to the flip dynamics defined on the set of proper col-
orings.

Lemma7 For k > d + 1, a mixing time of O(nlogn),
where n = (2L)%, of the flip dynamics on Qy, for all fixed ]
boundary configurations implies there is no phase transi-

tion in the k-state zero temperature anti-ferromagnetic Potts
model on Z.°.



This lemma implies theorem 3 from the following obser-
vation.

Proof of Theorem 3:

Our proof of theorem 1 holds for a graph with a fixed
configuration on a subset of vertices. Thus the conditions
of lemma 7 hold when k > %ld. =

Proof of Lemma 7:

For @, = (V,FE), fix a pair of colorings 7, 7’ of the
boundary 0Q); . The idea is to compare . and p,+ by con-
sidering a pair of Markov chains (¢,), (7;) that have the re-
spective fixed boundary colorings 7, 7’ and thus stationary
distributions g, and p,. We run these chains until they are
close to their stationary distribution; meanwhile the chains
are coupled to maintain (if possible) the same color at the
origin. Observe that when & > d + 1 there exists a pair of
colorings oy, 19, with respective boundary colorings r, 7/,
such that og(z) = no() for all z & HQ; these are the ini-
tial states of the chains.

Let p, (O) denote the marginal distribution at the origin
O and let

pt = Pr[o¢(0) = n,(O0)).

We run the chains for T" steps, a time sufficient to get
within variation distance 1/ L of the stationary distribution.
For p, and p,/, we can then bound the variation distance
between their respective marginal distributions at the origin
o,

drv{p-(0), p-(0)}
< dpv{ps(0),07(0)} +pr + drv{nr(
< 1/L+pr+1/L.

0), ur(0)}

Therefore, in order to show that there is no phase transi-
tion it is sufficient to show that pr | 0 as L — oo. From
a pair of colorings o, 77, the coupled transitions for the two
chains are

[F1] Choose a vertex v and color ¢ uniformly at random.

[F2] If the clusters S, (v, ¢) = Sy (v, ¢), then flip both (or
neither) with the appropriate probability; otherwise the
clusters flip independently.

Let v ~ w denote a pair of vertices that are within a dis-
tance at most 6 of each other (distance refers to the number
of edges in the shortest path). Consider the vertex v cho-
sen in step (F1] and suppose that o;_1(v) = n,—1(v) but
o¢(v) # n¢(v). In order for this to occur, there must exist a
vertex w ~ v such that oy (w) # n;~1(w). Since initially
the only vertices that differ are on the boundary, there must
exist a ‘path of disagreement’ from the boundary to v. More
formally, let P denote a path (wg ~ wy ~ -+ ~ w; = O)
such thatwy € 0@ L and similarly, let A denote a set of times
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(t1 < - <
0<j<y,

t;). We say the event £(P, A) occurs if for all

0r;-1(w;) = -1 (w;) and o¢, (wy) # 0, (w;).

In order for a specific event £( P, A) to occur, at each time
t; vertex w; must be chosen by the flip dynamics in step
[F1). The probability of this occurring is at most (1/2L)%
and thus Pr[£(P, A)] < (1/2L)*¢. Let £(P) denote the
event that £( P, A) occurs for some set of times 4. Since the
number of such sets A4 is at most (T) we get the following

bound:
pretn (1) (i) < ()

Let £ denote the event that £(P) occurs for some path
P. The number of such paths of length i is bounded by the
number of walks (with neighbors defined by ~) of length 7
that start at the origin, which is exactly (2d — 1)%. The min-
imum length of a path from the origin to the boundary is at
least L and thus,

Te(2d — 1)5\"
Pr(&) < Z <———622L_)di ) )

i>L

From our assumption about the mixing time of the flip dy-
namics, we have T' = O((2L)%log® L) which implies the
following bound:

6<3,

i>L

(2d = 1)%log” L
(——i) l0as L — oo.
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