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We introduce the notion of ‘balance” , and say that a rna-
troid is balanced if the matroid and all its minors satisfy

the property that, for a randomly chosen baais, the pres-

ence of an element can only make any other element less

likely.

We establish strong expansion properties for the bases-

exchange graph of balanced matroids; consequently, the

set of bases of a balanced matroid can be sampled and ap-

proximately counted using rapidly mixing Markov chains.

Specific classes for which balance is known to hold include

graphic and regular matroids.

1 Introduction and Preliminaries

Let S be a finite ground-set, and let B be a collec-

tion of subsets of S. Following standard terminology,

the set B is said to form the collection of bases of a

matmid &f(S, 23) if and only if (i) all sets in B have

the same cardinality (called the mnk of the matroid),

and (ii) for any pair of bases J31 and l?2 the following

exchange property holds: for all e E l?l there exists

an ~C l?2 such that 131\{ e}U{~} is in t3. A main ex-

ample is that of graphic matmids, whose ground-set

is the set of edges of a given graph and whose bases

are the spanning trees of the graph, Another exam-

ple is that of vectorial matmids, whose ground-set is

a set of vectors over some field and whose bases are

maximum cardinality linearly independent subsets of
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the set of vectors. A subclass of vectorial matroids

which will be of interest in this paper is that of regu-

lar matroids: they are vectorial over every field. All

graphic matroids are regular [28].

The bases-exchange gmph of a matroid M, hence-

forth denoted by G(A4), was introduced by Edmonds

[10] as the graph whose vertex-set is the collection of

bases of the matroid, with two bases B1 and 132 con-

nected by an edge if and only if 132 can be obtained

from 131 by the fundamental operation of removing

and adding one ground-set element: I?2 = 131\{e ~~}.

The bases-exchange graph has been studied before in

various combinatorial contexts [12, 20]; here we focus

on expansion related properties of G(M).

If B is a basis chosen uniformly at random from

23, and e is an element of S, let e denote the event

e E B indicating that e is in the chosen basis. The

matroid &f (S, l?) is said to satisfy the negative cor-

relation property if the inequality

Pr[e~] < Pr[e] Pr[~]

holds for all pairs of distinct elements e, f in S. Real-

ize that negative correlation is equivalent to Pr[el ~] <

Pr[e], thus expressing the intuitive fact that the pres-

ence of an element ~ can ordy make another element e

less likely; the negative correlation property has been

studied before in [5, 23]. Regular and in particular

graphic matroids are known to be negatively corre-

lated.

Here we strengthen the notion of negative corre-

lation to that of “balance”: We say that a matroid

M(S, B) is 6alanced if all its minors, including M

itself, satisfy the negative correlation property. (A

minor of a matroid is obtained by repeatedly per-

forming the operation of choosing an element e E S

and then selecting either those bases that cent ain e

or those that do not. In the case of graphic matroids,

this operation corresponds to contraction or deletion

of selected edges from the graph.)
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We first establish (Theorem 3.4) that the bases-

exchange graph G(M) of any balanced matroid M

has cutset expansion 1, i.e., for any bipartition of the

vertices of G(A4 ), the number of edges incident to

both partition classes is at least as large as the size

of the smaller partition class. Such strong expan-

sion properties had been conjectured by Mihail and

Vazirani [19], in fact for signific=tly wider classes of

graphs. The core of our proof here is to show that the

negative correlation property for two elements e and

~ implies negative correlation between an element e

and an arbitrary monotone property m on S\ {e},

Pr[em] < Pr[e] Pr[m] ,

which implies an enforcement of vertex neighbor-

hood analogous to bipartite expansion for certain

subgraphs on G(M) (formalized as a ‘(ratios enfome-

ment condition” in [18]), which finally implies expan-

sion for G(M) (this last step was observed in [18]).

Previous arguments for expansion of combinatorial

graphs involved using elements of the state-space to

encode paths and bound path congestion [6, 14, 19],

the discrete version of isoperimetries from differential

geometry [9, 16], and coupling arguments [2, 4].

The algorithmic significance of the expansion of the

bases-exchange graph derives from a sequence of well

known ideas, see for example [1, 3, 9,14,15, 19, 25],

as follows:

● Consider the natural random walk Xt, t = 0,1, . . .

on G(M): If Xt is the state (basis) at time t, then

with probability y one half Xt+l = Xt, and with proba-

bility one half Xt+l is determined as follows: Choose

e from Xt and ~ from S uniformly at random and,

if X’ = Xt\ {e} u {f} c B then Xt+l = X’, other-

wise Xt+l = Xt. It is easy to see that the Markov

chain Xt can be simulated efficiently (given, say, an

independence oracle), and that it converges to the

uniform distribution over 23 (it is symmetric). Most

import antly, the expansion of G(A4 ) suggests that Xt

has large conductance, and hence possesses the rapid

mizing property which amounts, roughly, to Xt ap-

proaching its stationary distribution arbitrarily close

for t= poly-log( [81 ). Therefore, the natural random

walk on G(M) can be used as an efficient almost

uniform sampling scheme for the set of bases of any

balanced matroid.

● In turn, efficient ahnost uniform sampling for self-

reducible combinatorial populations yields efficient

Monte-Carlo approximation schemes for their size,

and, in view of the fact of self-reducibility for bal-

anced matroids, we obtain an efficient randomized al-

gorithm to approximately count the number of bases

of any balanced matroid. In general, exact counting

of bases of a matroid is #P-complete [27].

● Our results thus show that the set of bases of a ma-

troid can be efficiently sampled and approximately

counted if balance can be established for the matroid.

Balance is known to hold for graphic and more gener-

ally regular matroids; some counter-examples to bal-

ance are also known.

We further show that balance can be used to define

random paths between any pair of bases on the bases-

exchange graph, such that the length of these paths

and the path congestion through any specific edge

can be bounded (Section 4). This gives an alternative

proof of cut set expansion. The technique used here

to bound path congestion is derived from the ratios

enforcement condition by means of establishing the

existence of certain fractional matchings, and these

in turn control the jlow of paths through any edge

of the bases-exchange graph. The only previously

known method to bound path congestion was Jerrum

and Sinclair’s argument of using the state-space to en-

code paths [14]; such arguments have been successful

only for combinatorial graphs with strong symmetry

properties, e.g. matching graphs [6, 14, 19]. Our path

arguments here are of different type; in fact, matroid

related graphs do not appear to possess symmetry

properties. Furthermore, by extending a technique of

Diaconis and Strook [7] and Mihail [17] we show that

an analysis that uses paths rather than conductance

can yield a sharper convergence rate for the naturzil

random walk as well as for a modified version of the

natural random walk. The algorithmic significance of

this improvement is as follows:

● For arbitrary balanced matroids, where n is the

rank, m is the cardinality of the ground-set, and

c is a bound on total variation distance, we ob-

tain a sampling scheme based on the natural random

walk with O ((n log rn+log E–l )mn2 ) convergence rate

(Theorem 5.1). In particular, this result applies to

graphic and regular matroids and significantly im-

proves upon previously known bounds. For graphic

matroids, for the nat Ural random walk, Broder’s cou-

pling and conduct~ce arguments yielded, roughly,

O((n log rn+log C-* )m2n4) convergence rate [4]. For



regular matroids, Dyer and Frieze’s geometric argu-

ments yielded O ((n log m+log e–l )m4n4) convergence

rate [8].

● We analyze a modification of the natural random

walk and show O ((n log m + log e-l )n3) convergence

rate (Theorem 5.2). This bound is the first known

bound for matroids that remains polynomial even for

an exponentially large ground-set.

● For regular matroids we need O (inn) time to imple-

ment each step of the modified random walk (details

of this implementation are tedious but straightfor-

ward and are left for the full paper), which results

in O((n log m +log e-l)mn4) running time. There is

an alternative sampling scheme based on Kirkhoff’s

tree matrix theorem [28] (involving evaluation of de-

terminants and arithmetic modulo primes) with run-

ning time O (mn4 log m). However, even though OIU

scheme is worse by a factor of n, it is very simple con-

ceptually and much easier to implement (furthermore

our analysis of the running time is not necessarily

tight).

● For graphic matroids we need O(~) time to

implement each step of the modified random walk,

along the lines of Fredrickson [11], which results in

O((n log rn + log c-l)@n3) running time. For the

natural random walk, each step can be implemented

in O(log n) time [11]. There is m alternative sam-

pling scheme due to Aldous [2] and Broder [4] with

.E(C) running time, where C’ is the cover time of the

underlying graph. That scheme thus runs in expected

time O(nm) and is clearly faster than the one pre-

sented here. However, when we introduce a large

number of parallel edges in the graph the expecta-

tion of the cover time blows up analogously.

● For the latter case of graphs with a large number

of parallel edges we obtain a sampling scheme with

O ((n log m’ + log e-l )@n3 ) running time, where

m’ is the number of edges when parallel edges are

counted only once; this follows from Theorem 5.3.

(More generally, the introduction of parallel ele-

ments for a balanced matroid can significantly in-

crease the convergence rate of the natural random

walk, but leaves the bounds for the modified random

walk unchanged.) The alternative scheme based on

Kirkhoff’s tree matrix theorem is both less efficient,

O (m’n4 log m), and more complicated to implement.

The ability to introduce a large number of parallel

edges without any increase in the running time makes

it possible, for example, to o@Ut a spanning tree in

a graph where each edge has an associated failure

probability (such probabilities can be represented by

introducing a number of parallel edges proportional

to the probability of the edge remaining present), so

that each spanning tree is output with probability

proportional to that of its presence in a random con-

figuration of the graph.

We give a combinatorial proof of balance for regu-

lar matroids, exhibiting a structure that can be used

to significantly reduce the convergence rates for cer-

tain regular matroids. Previous proofs were of alge-

braic nature; e.g. see [5] for the special case of graphic

matroids.

The remainder of the paper is organized as follows.

Section 2 is concerned with classes of matroids that

satisfy or fail to satisfy balance: We give a combina-

torial proof of balance for regular matroids, and we

discuss counter-examples to balance. Section 3 ex-

ploits balance to satisfy a cert ain ratios condition and

establish expansion. Section 4 uses the existence of

certain fractional mat things derived from the ratios

condition to construct paths in the bases-exchange

graph; these paths are then used in Section 5 to

bound the convergence rates of two sampling schemes

for balanced matroids. Section 6 introduces a decom-

position property that follows in certain cases from

the construction in Section 2 and implies then tighter

bounds on convergence rates. Section 7 summarizes

the context of this work and outlines directions for

further research.

2 Achieving Balance

Consider a minor-closed family of matroids that sat-

isfy the negative correlation property. Then all ma-

troids in the family are balanced as well. For exam-

ple, graphic matroids whose bases are the edge sets of

spanning trees in a given graph are balanced. More

generally, all regular matroids are negatively corre-

lated, and the fact that their minors are also regulm

implies that all reguler matroids are balanced. We

give here a new combinatorial proof of the fact that

regular matroids are balanced.

We refer to the circuits and cocircuits of a matroid

as “cycles” and “cut s“, by analogy with the case of

graphic matroids. A cycle is thus a minimal set which

cannot be augmented to a basis, while a cut is a min-

imal set whose complement does not cent ain a basis.
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The regular matroids are known to be the orientable

binary matmids, defined by the following property

[28]. It is possible to assign (1) values C(g) for each

cycle C and each element g, so that C(g) = &l if

g E C and C(g) = O otherwise; and (2) values D(g)

for each cut 11 and each element g, so that D(g) = +1

if g E D and D(g) = O otherwise; most importantly,

~c(9)D(9) = o
9

for all cycles C and cuts -D. Intuitively, in the case

of graphic matroids, assign a conventional direction

to all edges in the underlying graph, then traverse

each cycle C’ in one of the two possible directions,

setting C(g) = +1 for each edge traversed depending

on whether the edge is traversed in the conventional

direction; the edges of each cut D separate a set A

of vertices in the graph from its complement ~, so

traverse all edges in the cut from A to ~, setting

D(g) = ~ 1 depending on whether the edge is tra-

versed in the conventional direction. Since a cycle

will traverse a cut the same number of times from A

to ~ as from ~ to A, it follows that the sum over all

g of C(g)D(g) is zero.

We refer to sets which can be obtained from bases

by removing one element as near-bases. Every near-

basis IV defines a unique cut DN cent ained in the

complement of IV. We refer to sets which can be

obtained from bases by adding one element as uni-

cycles. Every unicycle U defines a unique cycle Cu

contained in U. A useful property relating near-bases

and unicycles is the following. If U = iV U {e, f}, then

D~(e)D~(~) = -Cu(e)Cu(f).

To see this, note that the only elements that could be

both in DN and in Cu are e and ~, so that by the zero

sum property we have Cu(e)DN(e) + Cu(~)DN(~) =

O; the above equality follows then if all four quantities

involved are zero, while if one of them is non-zero,

say D~(e) # O, then iV U {e} is a basis, so U\{t}

is a basis and C’u(~) # O, giving DN(~)/ZIN(e) =

-CU(e)/C~(~).

We can now define an important quantity, If e # ~,

we let

A,f = ~ llN(e)DN(~) = - ~ Cu(e)Cu(~).

N u

The equality of the two expressions follows from the

fact that non-zero terms in the sums arise only with

pairs iV, U such that U = N U {e, f}. For the theorem

below, it will be convenient to select a specific element

e and require that D(e) = –C(e) = 1 for all cycles C

and cuts D containing it. This condition can easily

be enforced by changing the signs of all elements of

chosen cycles or cuts, without violating the conditions

on C(g), D(g), and without affecting the value of Aef.

With this condition, if e belongs to the cycles and

cuts involved and U = IV U {e, f}, then the above

equations become simply

~ C(gp(g) = 1

g#e

ll~(f) = Cu(f)

A.f = ~ ~N(~) = ~ b(f).

N:eEDN U:eGCU

Intuitively, for graphic matroids, the quantity Aef

measures whether cycles cent aining e, ~ arising :from

unicycles tend to traverse e and ~ in the same or

in opposite directions, or equivalently, whether cuts

containing e, f arising from near-bases tend to be tra-

versed by e and ~ in the same or in opposite direc-

tions, For graphic matroids, we can show that the

quantity Aef coincides with a quantity from the the-

ory of electrical networks: If a unit resistance is as-

signed to each edge in the graph, and a current of IBI

enters and leaves at the endpoints of e, then the po-

tential drop between the endpoints of j is Aef. The

result below has been shown before for graphs with

Aef defined as a potential drop in [5]. We use indices

on B to indicate subsets of B satisfying certain con-

ditions concerning the presence or absence of certain

elements in the chosen bases.

Theorem 2.1 The buses of a regular rnatroid satisfy

lBl”lBe~l = lBellBfl -A~f

Proof. From pairs (B, B’) ~ l?= x I?.f, we ob-

tain pairs (1?”, l?’”) ~ 23. x Z3zf, by means of an

exchange involving e and an element g + e. More

specifically, we let B“ = B U {e}\{ g}, and B“~ =

B’\{e} U {g}, and assign a weight to this exchange

equal to C~uie}(g)Dw\ie](g). If this weight is non-
zero, then the resulting B“ and B’” are indeed bases
in Be and 13zt respectively, and a non-zero Wei@

cannot occur here for g = ~ since DB~\fel(.f) = 0.

The above weight can also be expressed as

%’\{e}(9)cB’’’u{ e}(9). From the point of view of
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a pair (B”, l?’”) 6 Be x &f, if this weight is non-

zero for some g # e, ~, then the reverse exchange

B = B“\{e} U {g} and 1?’ = B’” U {e}\{g} gives back

a pair (B, B’) 6 2.%x Z3~f. Therefore

pei.p=fl

= E (z ‘13’’\{e}(9)cB’’’U{e} (9))
(B’’,l?’’’)et,% xf%f9#e

=
~ (x ‘B’’\{e}(9)cB’’’u{e}(9))

(B’’,B’’’)623ex17zt i7#e,f

+ z DB1/\{e}(f)cBw”{e}(f)
(B’’,B’’’)@3e X f3~

=
z (~ CBu{e}(g)DB’\{e} (9))

(B,Bf)@FX13ef g#e

+( ~ ~131/\{e}(f))( ~ cB’’’U{e}f))))

B’tEt3e B/ff~~

= I&l “ l~ejl + ‘~f

3 From Balance to Ratios, Ex-

pansion, and Fractional Match-

ings

In this section we derive expansion for balanced ma-

troids. The proof is inductive on the rank and, in an

intermediate e step, relies on a certain enforcement of

ratios analogous to bipartite expansion. More sp ecif-

ically, for a matroid M(S, B) with bases-exchange

graph G(M), let Ge(M) = G(Be, Z%, E) denote the

bipartite subgraph of G(M) where edges that corre-

spond to exchanges not involving a specific element e

are omitted. Let fiuther I’e denote vertex neighbor-

hood in Ge(M). The bases-exchange graph G(M) is

said to enforces ~atios if for every element e c S the

following holds [18] :

Lemma 3.1 For every balanced matroid M(S, B),

and the theorem follows. D the bases exchange graph G(M) enforces ratios.

The theorem immediately implies Pr[e~] S

Pr[e] Pr[ f ], so negative correlation and hence balance

follow for regular matroids.

Regular matroids are a subclass of the binary ma-

troids (i.e., vectorial over GF[2] ). There is a binary

matroid SS that does not satisfy the negative corre-

lation property [23]; it is known that all binary ma-

troids not containing Ss as a minor are balanced [22].

Some additional matroids that violate the negative

correlation property have recently been found [24]

and shown to constitute counter-examples t o nega-

tive correlation for truncations of the graphic (forests

of fixed cardinalit y) and for truncations of the dual of

the graphic (connected spanning subgraphs of fixed

cardinality) [26], as well as for transversals. For in-

stamce, if we consider the graph consisting of a path

of length 5 with each edge replaced by two paral-

lel edges, add an edge e joining the endpoints of

the path, and add a self-loop f anywhere, then for

connected spanning subgraphs with 6 edges we have

pr[ef] = ~ > ~” ~ = Pr[e] Pr[f]. The matroid just
described as a truncation of the dual of the graphic

can also be shown to be a truncation of the graphic

and a transversal matroid as well.

Proof. Let AC t?=and let m~ = VBCA AeieB,eixe e;.

Note that the set of bases in Be satisfying mA is pre-

cisely the set A, while the set of bases in B? satisfying

mA is precisely the set I’e(A). Hence the first ratios

condition is equivalent to

Pr[mAIZ] > l?r[mAle] . (1)

Analogously, for A ~%, let w = VB6A Aei~B,ei #e~>
and note that the set of bases in B= satisfying ~ is

the set A, and the set of bases in 23, satisfying ~ is

the set I’e(A). Hence the second ratios condition is

equivalent to

In turn, the last two conditions follow from the lemma

below:

Lemma 3.2 (Main Lemma) FOT every balanced

matroid M{ S, i?), any monotone property m over the

variables in S \ {e} is negatively correlated with e:

Pr[me] < Pr[m] Pr[e] .
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Proof. We show equivalently that Pr[rnle] < Pr[m].

The reasoning is inductive on the size of the ground-

set. The case where M has rank n = 1 is easy to verify

(and this is also the only point where the monotonic-

ity of m is used). For the inductive step note that

Pr[mle] = Pr[~le] Pr[m\~e] + Pr~\e] Pr[7nl~e],

and Pr[m] = Pr[~] Pr[ml~] + Pr~] Pr[m\~].

Note further that (i) Pr[~\e] < Pr[~] from the fact

that M is balanced, (ii) Pr[rnl~e] < Pr[m[f] by ap-

plying the inductive hypothesis on B~ for the prop-

erty m with the variable f forced to 1, and (iii)

Pr[ml~e] < Pr[ml~] by applying the inductive hy-

pothesis on 237 for the monotone property m with

the variable ~ forced to O. If, in addition, it was the

case that (iv) Pr[ml~e] > Pr[nz[~e], then the lemma

would follow by averaging principles: Pr[m[ e] <

Pr[~] Pr[ml~e] + Pr[~] Pr[ml~e] by (i) and (iv), <

Pr[~] Pr[ml~] +Pr[~] Pr[m\~] = Pr[m] by (ii) and (iii).

We argue that there exists always some element ~

such that (iv) holds. In particular, note that

f#e f#e

Hence for some ~, Pr[flme] > Pr[~le] (with Pr[fle] >

o), which is equivalent to Pr[nz[fe] > Pr[mle], which

is finally equivalent to Pr[ml~e] z Pr[ml~e]. This

completes the proof of Lemma 3.2, and Lemma 3.1.

00

Remark: The proof of the lemma can be extended to

show that if ml and 7n2 are two monotone properties

over disjoint sets of variables from the ground-set,

then Pr[mlm2] < Pr[ml] Pr[m2].

Say that a bipartite graph G(U, V, E) admits a

fractional matching if there exists an assignment of

nonnegative weights to the edges in E such that for

each vertex in u c U, the sum of the weights of edges

incident on u is IVI, and for each vertex in v E V, the

sum of the weights of edges incident on v is IUI.

Corollary 3.3 For any balanced matroid M(S, B),

and for every eve~ element e E S, the bipartite graph

G.(M) = G(13e, Z?z, E) admits a fractional matching.

Proof. Consider the bipartite graph G* obtained

from G. by making I*I copies of each basis in f3=,

making IBe I copies of each basis in Z3z, and including

edges between all copies of each pair of adjacent bases

in Ge. Enforcement of ratios for G(M) implies now

that G* satisfies Hall’s condition, and hence G* has a

perfect matching P. By identifying the copies of each

basis and assigning to each edge of E a weight equal

to the number of edges of P that correspond to it,

the conditions for a fractional matching are satisfied.

c1

Theorem 3.4 For every balanced matroid M(S, B),

the bases-exchange graph of M has cutset expansion

1.

Proof. In Section 4 we argue that, by means of

fractional matchings , we can define random paths

between any pair of bases such that the expected

number of paths through any specific edge is at

most lB1/2 (Corollary 4.2). Thus for A C B, there

are IAI . 1~1 paths constructed from A to ~; each

path leaves A through some edge in the cutset of

A: C(A); but, by linearity of expectations and the

bound on path congestion, the expected number of

paths leaving A is at most IC’(A)I . [13\/2; and there-

fore Ic(A)I z 21A/. 1~1/113/ 2 m.in(lA/, 1~1). O

Remark: An alternative inductive proof that by-

passes paths and shows expansion directly from ratios

enforcement was obtained previously in [18].

Corollary 3.5 For any balanced ?natroid M, the

natural random walk on the bases exchange gr’aph

G(M) is rapidly mixing: The conductance is @ >

l/2mn, and hence the total variation distance d(t)

can be bounded by c in time t = Q(nlog m +

log e-l )m2n2.

Proof. The total variation distance d(t) has been

bounded from above by 1131(1 – @2/2)t in [25], where

the conductance @ in the case of symmetric NIarkov

chains is the product of the transition probabilities

with the cut set expansion. Hence, from Theorem 3.4

and the definition of the natural random walk, @ can

be bounded by by l/2mn. D

4 From Fractional Matchings to

Path Congestion

In order to obtain bounds on convergence rates that

are tighter than those of Corollary 3.5, we shall use

the fractional matchings defined in Corollary 3.3 of

the previous section to construct paths joining all
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pairs of bases in the bases-exchange graph of a bal-

anced matroid, while keeping the path lengths and

the number of paths through each basis small.

We thus wish to construct ]13[2 paths in the bases-

exchange graph of a balanced matroid M ( S, B), one

path for each choice of an origin B and a destination

B’. The construction begins with the choice a ran-

dom permutation el,.. ., em of the m elements of S.

Consider a specific destination B’ = B&, ...&~. where

each ~; is either ei or Z, depending on whether ei is

present or absent in B’. Note that the paths with des-

tination B’ are initially uniformly arranged over the

set of all bases B, in that each basis B has exactly one

path with destination B ‘. We shall ensure that after

i steps, the paths with destination B’ are uniformly

arranged over Bi = B&l ...ei. the set of bases that agree

with B’ in the first i elements, in the sense that the

expected number of paths at each such basis after i

steps is the same for all of them. This condition holds

initially, when i = O and L?i = B. Assume induc-

tively that after i steps, the paths with destination B’

are unifornily arranged over Z?i = 1$+1 u t?&l, where

‘;+1 = ’61 ...e~?;+~ and ~~+1 = B&l ...ei~. The paths

at f3i that are already at 13i+1 are left there for the

(i+ l)th step. The paths at Bi that are currently at

B~+l are sent to 13i+l by means of a fractional match-

ing from 23~+1 to Bi+I. Such a fractional matching

exists by Corollary 3.3 applied to the minor Mel ...~i.

the probabilities given to each possible exchange are

chosen proportionally to the associated weights in the

fractional matching, thus ensuring that after (i+ 1)

steps, the paths with destination B’ are uniformly

arranged over Bi+l. After m steps, all paths are at

t3~ = {B’}, as desired.

Lemma 4.1 The ezpected number of paths leaving a

basis B in t3&, ...&i at step i is [13\ Pr[~[41 . . . 13~_1].

Proof. The paths leaving a basis ~ in B&l ...~i at step

i are those with destination some B’ in Z?el ~i_lz....
For each such B’, before step i, the IB[ paths des-

tined to it are uniformly arranged over Bel ...ei_l. so

at each of these bases there are 1231/lBel .,,ei., I paths

wit h destination B’, in expectation. Mutliplying this

quantity by the number Ili?&,.+ej_lzl of possible desti-

nations B’ gives the quantity IB[ Pr[~lel . . . &_l ] as

required. O

The same bound holds for paths entering ~.

Note that a particular exchange involving two el-

ements ei and ej with i < j can be used only

during step i, and that the expected number of

paths using such an exchange at step i is at most

[131rnin(Pr[e;l&~ . . . &~_~],Pr[~le~ . . .&I]).

Corollary 4.2 The expected number of paths

through any edge (B, B’) is at most 1t31/z.

In order to bound the expected length of paths

and the expected number of paths through a basis,

we give the following lerm-na.

Lemma 4.3 Given a basis B, consider a sequence

of bases and elements Bo, el, Bl, e2, B2, . . . . em, B~ =

B, where Bi is chosen so that it agrees with B in

el, . . . . ei and each ei is chosen uniformly from the

elements other than el, . . . . ei_l. Then the expected.
number of ei such that Bi_ 1 and B differ in e; is at

most 2n.

Proof. If ei is chosen so that B;_l and ~ differ in

it, then with probability 1/2 the element ei is present

in B, since the symmetric difference of two bases con-

t ains the same number of elements from each. Since

@ has only n elements, we expect such a choice to

happen at most 2n times. H

Corollary 4.4 The expected length of a path from

any B to any B’ is at most 2n.

Proof. Follows from Lemma 4.3, where B =

BO, B1,... , B~ = B’ = ~ is the path from B to B’

andel, . . . , em is the random order in whih the edges

were chosen to be fixed. D

Say that a path goes through a basis if this basis

is on the path but is not its destination.

Corollary 4.5 The expected number of paths

through a basis B = B;l ,,6,,, is at most 2nlt31.

Proof. By Lemma 4.1, this expectation is

[BIE [~~1 Pr~~l@l,.. . , &;-l]], the expectation being

over all permutations in which the ei’s are chosen.

Now Lemma 4,3, where B. is chosen uniformly from

B and Bi is chosen uniformly from Be, ...~i. implies

that E [~~1 Pr~~lel,. . . ,ii–1]] <2n. Cl

5 From Path Congestion to Rapid

Mixing

Consider

exchange

the natural random walk on the bases-

graph G(M) of a balanced matroid
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M(S, 23), as defined in the introduction. In this sec-

tion we show how the bounds on path congestion

yield bounds on the convergence rate of the natu-

ral random walk; the bounds derived here are signif-

icantly better than those of Corollary 3.5 in terms of

conductance. We further consider the modification

of the natural random walk which uses both bases

and near-bases; for this modified random walk the

convergence rate becomes even faster. The modified

random walk Yt is as follows: With probability y one

half Yt+l = Yt, and with probability one half Yt+l is

determined as follows: (i) if Yt is a basis then choose

e from Yt uniforxnly at random and Y~+l = Yt \ {e};

(ii) if ~ is a near-basis and Dfi ~ S is the cut of

Yt, then choose ~ from Dy, unifornily at random and

Yt+l = YtU{~}. It is easy to verify that when Yt is sta

tionary, the probability of a basis is 1/21231, and the

probability of a near-basis with cut D is lD1/2n[13[;

furthermore the probability that Yt is on a basis is

exactly 1/2. Hence Yt is also appropriate to use as a

sampling scheme for t3.

We proceed to bound convergence rate in terms of

path congestion. In particular, for a Markov chain

z~, t=o,l,... on state space S and transition matrix

P’ = !j(P + 1), let % denote the stationary distribu-

tion of Zt. Let wij = ~ipij measure the ergodic ji’ow

between states i and j, and suppose that the ergodic

flow w~j is the same between any two states for which

pij # O, so let w denote this ergodic flow. Assuming

that random paths have been defined between any

pair A and B of states of the Markov chain (so that

these paths use edges (i, j) such that pij # O), let t

denote an upper bound on the expected length of the

path from A to E. Finally, among all paths that have

been defined between pairs of states choose one path

at random according to the distribution that assigns

probability rAmB to the path from state A to state

B. Let L be an upper bound on the probability that

the chosen path contains a specific edge (i, j). Then

the following bound can be obtained for the variation

distance d(t) at time t:

The detailed proof of the above bound is left for the

full paper; here we give an outline as follows. Let

hi(t)= Pr[Zt = i] –Ti, and we shall use hi as short for

hi(t). First, it is not hard to check that

Let d’(t) = ~i ~. Next, using techniques analogous

to those that appeared in [17], the following can be

derived: First an equation that attributes discrep-

ancy from st ationarit y to discrepancy of the hi’s at

the endpoints of (j, i)’s such that Pji # 0:

Next an equation stating that each step of the M.arkov

chain results in an averaging of the discrepancies

along the endpoints of (j, i)’s such that pji # O; thus

the tot al discrepancy should decrease:

And fumlly a bound stating that the averaging of the

discrepancies along the edges is more effective (and

hence the convergence is more rapid) if it involves

(j, i)’s with significantly different discrepancies at the

endpoints of j and i:

Now recall that paths have been defined between any

pair A and B of states of the Markov chain (so that

these paths use edges (i, j) such that p~j # O). Let

PAB denote the chosen path from A to B and the

event that PAB was chosen, and let ij E PAB denote

the event that edge (i, j) was used in the path from

A to B. Let /Ajj denote the length of the path from

A to B, and recall that 1 denotes an upper bound

on the expected length of lAB. FinaUy, recall that

among all paths that have been defined bet ween pairs

of states we choose one path at random according to

the distribution that assigns probability mAZB to the

path from state A to state B. Recall that L is an

upper bound on the probability that the chosen path

cent ains a specific edge (i, j). Then along the lines

of [7, 21] (except that we are using expected rather

than maximum path length here) we get:
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d’(t) – (i’(t + 1)

Finally using all the above and noting that d’(0) ~

l/mti., we get the desired bound on the variation

distance.

For the natural random walk on any balanced ma-

troid &f(S, B) we have w = l/[ Z3[nzn, 1= 2n by Corol-

lary 4.4, and L = l/21B[ by Corollary 4.2 and the

definition of L. Hence

Theorem 5.1 POT the natural random walk on any

balanced matroid the total variation distance can be

bounded bye in time t= Q(nlog m+log c-l)n’m.

For the modified random walk, paths between

bases are defined as for the bases-exchange graph in

Section 4, except that near-bases are used to simulate

the edges of the bases-exchange graph in the obvious

way. The expected number of such paths through

an edge can be bounded by the expected number of

paths through a vertex of the bases-exchange graph;

the latter expectation is at most 2n[Bl by Corollary

4.5. Paths whose endpoints include near-bases are de-

fined by first choosing a neighboring basis uniformly

at random, and then choosing a random path be-

tween bases, thus reducing path congestion due to

paths with arbitrary endpoints to path congestion

due to paths whose endpoints are only bases. From

the above observations and the definition of L it is

not hard to verify that for the modified random walk

L = (2n + 1)/lB[. Furthermore, w = l/2nlBl and

J=4n + 2. Thus

Theorem 5.2 For the modified random walk on any

balanced matmid the total van”ation distance can be

bounded bye in time t = Q(n log m+log e-l)n3.

Consider now the case where each element may

have a very large number of elements parallel to it.

These parallel elements may cause a large increase

in the state space size IS I. To avoid this increase,

collapse all parallel elements, and view the number

of parallel elements as a weight on the resulting ele-

ment after collapsing; the probability of any given ba-

sis is now proportional to the product of the weights

of elements in it, multiplied by n for bases, and by

the sum of the weights of elements in the associated

cut for near-bases. This transformation reduces the

size of the state space, but may increase the factor

m~.X/rti. due to the weight differences. To reduce

this quantity, we choose as a starting point for the

random walk a basis of maximum weight, so that TAD

/can be replaced by m~aX _&& and n~aX T~aX .b=i~ is

at most m/n, where m is the number of elements after

parallel elements have been collapsed. Therefore for

the modified random walk, unlike the natural random

walk, the number of parallel elements does not affect

the running time. A basis of maximum weight needed

to start the random walk can be found by greedily

selecting elements of largest weight while preserving

independence.

Theorem 5.3 The bounds for the modified random

walk on any balance matmid remain the same after

an arbitrary number of parallel elements are added

while maintaining balance.

The algorithmic significance of Theorems 5.1, 5,2,

and 5.3 was pointed out in the introduction.

6 Better Path Congestion, De-

composition, Symmetry, Series

Parallel

In the graph consisting of bases and near-bases for

a balanced matroid, we have constructed paths be-

tween each pair of bases, and bounded the load on

edges using a bound of about nl 131on the load of ba-

sis vertices, Since each basis has n incident edges, one

for each element of the basis, one might expect the

load on each edge to be bounded by 1231. If a bound

of a IBI holds for some a, the n3 factor of convergence

rate for the modified random walk can be reduced to
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an2. We shall now examine conditions that can yield

SUCh bounds.

Consider the bipartite graph with edges joining

bases and near-bases. Given an element e, one can

find a fractional matching between all bases, each

with weight lZ3e1, and all near-bases JVe such that e

belongs to their associated cut, each with weight 1231.

To see this, note that the bases in Be can be matched

to the near-bases in Afe, simply by removing e from

each of them. The weight assigned to this edge is

113.1, satisfying the weight constraint for each basis

in Be, and leaving at each near-basis in Me a weight

of I&l to be satisfied using the edges joining & to

N.. If we view each near-basis in ~e as representing

a corresponding basis in B., then this bipartite graph

is simply the bases-exchange graph associated with

e, and we can infer that a fractional mat thing giving

weight [13eI to each basis in Ii?z and weight IBZ[ to each

near-basis in Afe does exist.

Given a near-basis N in Afe and an element ~ # e

that belongs to the cut of N, denote by wef N the

weight assigned to the edge joining N to the basis

N U {f} by the above fractional matching for e. For

convenience, if U = N U {e, f}, we write wefu =

weflv. For ~ other choices of f,~ ,U, we set ?UefN =

O, wef u = O. The definition of fractional matchings

requires wefN ~ O, and in addition, the two conser-

vation equations

E U)e~N = 1~1 for given e and ~ with e E ~N,

f

z wefu = 123e] for given e and U with e c CU.

f

We have thus constructed m fractional matchings

from 23 to JV, one for each choice of e. Suppose that

we now add these m fractional matchings, by adding,

for each basis, each near-basis, and each edge, its

weight from each of the fractional matchings. The

resulting weight for each basis is X= [Z3eI = nlZ31, and

for each near-basis Nit is ~eeD~ 1231= ]Drvl ‘ [B[. k

both cases, the weight is equal to the degree of the

basis or near-basis times [B!. Note that there is a very

simple fractional matching satisfying these weight

constraints, namely the uniform fractional matching

that assigns weight IB[ to each edge joining a basis

and a near-basis. We say that a balanced matroid

has the exact decomposition property if the uniform

fractional matching can indeed be obtained as the

sum of m fractional mat things, one for each element

e. In terms of weights, this means that the weights

assigned to a particular edge joining N and N U {f}

must add to IB[, and since the weight of this edge for

the fractional matching with e = j’ is /13jl, we must

have

z WefN = IZ371 for given ~ and N with i C D,N.

e

Note that this property must hold if symmetry holds, .

namely} if wefN = wfeN for all e, f, N. ~ symlne-

try holds, then exact decomposition follows from the

first conservation equation. One can also consider the

weaker a-decomposition property, which only requires

e

for some a. Note that this property always holds for

a= n, since the sum weight of the basis N U {f} is

n[t3[.

Lemma 6.1 If a balanced matroid and all its minom

satisfy the a-decomposition pToperty, then its path

congestion is at most (a + 2) IBI and the n3 factor

of the convergence rate foT the modijied random walk

reduces to cxn2.

Proof. Consider the first step of all paths. Let e be

the element chosen for the first step, and consider an

edge joining N U {j} to N. If e = f, then the load of

this edge is ll?~[. If e # f, then the load is determined

by the fractional matching, and it is precisely Wef N.

Since e is chosen uniformly at random from all m

elements, the expect ed load is

At the (i + l)th step of the paths, if ~ is one of

the i elements el, ez, ..., e~ used for the first i steps,

then the load for the edge under consideration is zero.

This case occurs with probability i/m. Otherwise,

the edge joining N U {f} to N will be involved in the

fractional matching for some e = e~+l after the chosen

el, e2,.,. , e; have been contracted or deleted, depend-

ing on whether they occur in N or not. This minor

has only m – i elements, so the expected load is now

bounded by ~ IBI in this case. Since this second

case occurs with probability (m – i)/m, the expected

load for this step is again bounded by ~ ]231. Adding

this quantity over aIl m steps of the paths (plus the
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initial load assignment from near-bases to bases), we

obtain a bound of (a + 2)1231 on the path congestion,

thus reducing the ns factor for the convergence rate

to cm2. O

The main obstacle in obtaining bounds for the val-

ues of a achievable for a-decompositions is the fact

that the fractional matchings are in general not ex-

plicitly known. We now give a case where such an

explicit construction can be obtained.

Theorem 6.2 If a regular matmid sat@es

D(e)D( f )Aef >0 for all cuts D and elements e, f,

then symmety and exact decomposition hold. The

regular matroids such that exact decomposisition (as

well as symmetry) holds for the matmid and all its

minors are precisely the gmphic matmids on graphs

whose biconnected components are either K4 or a

series-parallel graph.

Proof. We set wefN = DN(e)DN(f)Aef. These

quantities are nonnegative by assumption, and satisfy

the conservation laws: If e E DN, then

x wefN = - ~ DN(e)DN(f)~CU(e)Cu(f)

f f #e

= ~ (DN(t?)@(r?))2 =U ~ 1 = Iq.

u UeeCu

Similarly, if e c CU, then ~f Wef u = 123,1. Further-

more, the symrnetry property wefN = Wf .N holds by

the definition of Aef, and thus exact decomposition

holds as well.

There are two dual graphic matroids that do not

satisfys ymmetry or exact decomposition, namely K~

and K~, obtained from K4 by replacing a single edge

wit h either (1) two parallel edges, or (2) two edges in

series. If both are excluded as minors, then the du-

als of Ks and Ks,s are also excluded, so the regulm

matroid must be graphic [28]; furthermore, a bicon-

nect ed component cent aining K4 as a minor must

then in fact be K4, and a biconnected component

has no K4 as minor if and only if it is a series-parallel

graph. In a series-parallel graph, one cannot find two

cycles through two given edges e, f that traverse e in

the same direction but traverse f in opposite direc-

tions; otherwise, the two cycles would give a K4 mi-

nor. It follows that C(e)C( f ) cannot be nonzero and

have different signs for two different cycles C. There-

fore DN(e)DN(f)Ae~ = -CU(e)CU(f)Aef ~ O, sat-

isfying the conditions for symmetry and exact decom-

position. In a clique Kn, one has Aef = O if e, f do

not share any vertices, because there is an isomor-

phism of K. that leaves e fixed but swaps the end-

points of f. If e shares an endpoint with f, then

the direction used by a cycle through e, f in travers-

ing e determines the direction used in traversing f,

so symmetry and exact decomposition hold as before

for series-parallel graphs. They hold in particular for

K4, and since all its minors are series-parallel graphs,

the two properties hold for the minors as well. D

Remark: The above is not a complete characteri-

zation of the balanced binary matroids that have an

exact decomposition, since the Fano matroid, an ex-

cluded minor for regular matroids, satisfies symme-

trY (settingWe f N = 4,6 depending on whether both

or only one of the elements of N form a basis with

{e, f}).

We do not know whether an a constant exists such

that the a-decomposition property holds for all bal-

anced matroids.

7 Conclusions and Open Prob-

lems

The following conjecture of Mihail and Vazirani [19]

remains unresolved. Define the I-skeleton of a con-

vex polytope as the graph whose vertex-set is the set

of vertices of the polytope and whose edges corre-

spond to l-dimensional faces (edges) of the polytope.

The conjecture states that all O-1 polytopes are ex-

panding, with cutset expansion 1 (a O-1 polytope is a

polytope whose vertices have O-1 coordinates). A re-

lated graph on O-1 vertices can be obtained by remov-

ing horn the complete graph all edges that intersect

other edges (two such edges must necessarily meet at

their midpoint ). For cert ain structured combinatorial

problems, where O-1 vertices correspond to solutions,

the two graphs coincide; this is the case, for exam-

ple, for perfect matchings of a graph and for bases of

matroid [19]. For matroids, this graph is the bases-

exchange graph. We have introduced balanced ma-

troids, and shown that balance implies cut set expan-

sion 1, and hence obtained efficient sampling and ran-

domized approximation schemes for bases of balanced

matroids. It is worth noting the role that vertex-pairs

meeting at their midpoint (as used in the definition

of the above combinatorial graph) play in proofs of

expansion; see [19] and the proof of Theorem 2.1.

An interesting question is the evaluation of the

pO@IIOdd f(Z) = ~~>~ akZk at Wme point ~,
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where ak is the number of spanning sets of size [7]

n + k. For graphic matroids, the value ~(0) gives

the number of spanning trees, the value f(1) gives

the number of connected spanning subgraphs, and

(1 - p)np~-n~(~-l) gives network reliability for fail- [81

ure probability p; the evaluation of the last two quan-

tities is #P-complete [27]. More generally ~(z – 1) =

2’(1, z), where T is the Tutte polynomial; dual ex-

pressions for independent sets (forests in the case of
[9]

graphic matroids) instead of spanning sets can be ob-

t ained by interchanging the arguments of T [13, 29].

The quantities f(z) are multiplicative under the op-

eration of joining two graphs at a single vertex, a

property that does not hold for the individual coef- [1o]

ficients ak; for instance, see the counter-example to

balance for spanning connected subgraphs in Section

2.
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