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The paper studies effective approximate solutions to combinatorial counting and 
uniform generation problems. Using a technique based on the simulation of ergodic 
Markov chains, it is shown that, for self-reducible structures, almost uniform 
generation is possible in polynomial time provided only that randomised 
approximate counting to within some arbitrary polynomial factor is possible in 
polynomial time. It follows that, for self-reducible structures, polynomial time 
randomised algorithms for counting to within factors of the form (1 +n-@) are 
available either for all fl E R or for no fi E R. A substantial part of the paper is 
devoted to investigating the rate of convergence of finite ergodic Markov chains, 
and a simple but powerful characterisation of rapid convergence for a broad class 
of chains based on a structural property of the underlying graph is established. 
Finally, the general techniques of the paper are used to derive an almost uniform 
generation procedure for labelled graphs with a given degree sequence which is 
valid over a much wider range of degrees than previous methods: this in turn leads 
to randomised approximate counting algorithms for these graphs with very good 
asymptotic behaviour. 0 1989 Academic Press, Inc. 

1, INTRODUCTION 

This paper is concerned with two classes of problems involving a finite 
set of combinatorial structures: counting them and generating them 
uniformly at random. 

Combinatorial counting problems have a long and distinguished history. 
Apart from their intrinsic interest, they arise naturally from investigations 
in numerous other branches of mathematics and the natural sciences and 
have given rise to a rich and beautiful theory. Uniform generation 
problems are less well studied but have a number of computational 
applications. For example, they can be seen as a way of exploring a large 
set of structures and constructing typical representatives of it. These may 
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be used to formulate conjectures about the set, or perhaps as test data for 
the empirical analysis of some heuristic algorithm which takes inputs from 
the set. 

The study of counting problems as a class from a computational perspec- 
tive was initiated by Valiant (1979a). A parallel approach to generation 
problems was proposed more recently by Jerrum, Valiant, and Vazirani 
(1986). In this paper, we improve and extend some results of the latter 
authors concerning the relationship between counting and generation 
problems, and in particular the existence of efficient approximation 
algorithms for their solution. 

Typically, the sets of structures we encounter are defined implicitly by 
some other combinatorial entity drawn from a family of problem instances, 
together with a relation R which associates with each instance x a finite set 
R(x) of solutions, as in the following examples: 

1. Problem instances: Boolean formulae B in disjunctive normal form 
(DNF). So!ution set R(B): all satisfying assignments of B. 

2. Problem instances: undirected graphs G. Solution set R(G): ail 
l-factors (perfect matchings) of G. 

3. Problem instances: positive integers n. Solution set R(n): all 
partitions of n. 

Thus we can talk about the counting and (uniform) generation problems 
associated with a relation R: given as input a problem instance x, count or 
generate the elements of the solution set R(x). 

Many naturally occurring relations of this kind exhibit a self-reducibility 
property, first studied by Schnorr (1976). Informally, this means that the 
solutions in R(x) have a simple inductive construction from the solution 
sets of a few smaller instances of the same problem. (For precise definitions 
of terms in this Introduction, the reader is referred to the next section.) All 
of the above examples are self-reducible: in 1, for instance, there is an 
obvious (l-l )-correspondence between the satisfying assignments of B and 
those of the reduced formulae BT and B,, which are obtained from B by 
substituting for one of its variables the values true and false respectively. 

For self-reducible relations, an efficient (i.e., polynomial time) algorithm 
for the counting problem immediately yields a polynomial time uniform 
generation procedure. This approach has been used extensively in the 
literature to generate particular combinatorial structures, such as 3 above, 
for which counting information is readily available, typically in the form of 
a recurrence relation (see, e.g., Guenoche, 1983; Nijenhuis and Wilf, 1978; 
Wilf, 198 1). 

Efficient exact solutions to counting problems are, however, relatively 
uncommon: indeed there are many natural relations, among them 1 and 2 
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above, whose counting problem is #P-complete and hence apparently 
intractable (Valiant, 1979a, 1979b), but whose construction problem can be 
solved in polynomial time. (Given a problem instance x, the construction 
problem asks for a solution y E R(x) if one exists, and the answer “no” 
otherwise.) In some cases, such as 1 above, the structures can also be 
generated efficiently. Note that generation seems to be harder in general 
than construction since it requires that all solutions be “equally accessible.” 

In circumstances where exact methods are elusive, it is natural to seek 
efficient procedures for counting structures approximately in some 
appropriate sense. Following Stockmeyer (1983) and Karp and Luby 
(1983), we allow our counting algorithms to flip coins, and demand that 
they produce an answer which approximates lR(x)[ within some specified 
factor with high probability. 

It turns out that, for self-reducible relations, the problems of 
approximate counting and almost uniform generation, in which a small 
bias in the output distribution over R(x) is allowed, are closely related. (An 
almost uniform generator will generally be as useful in practice as a 
uniform one and may be effectively indistinguishable from it.) Specifically, 
Jerrum, Valiant, and Vazirani (1986) show how the standard reduction 
from generation to exact counting can be modified so as to yield an almost 
uniform generator given only approximate counting estimates, provided 
these are within a factor of 1 + 0(1x1 pkR) of the correct values, where 1x1 is 
the input size and k,>O is a constant depending on R. Conversely, 
approximate counting to within any factor of the form 1 + 1x1 -p, with 
j? E R, is polynomial time reducible to almost uniform generation. They also 
locate these two problems for general NP relations within the second level 
of the (probabilistic) polynomial time hierarchy (Stockmeyer, 1977). 

In this paper, we present an improved polynomial time reduction from 
almost uniform generation to approximate counting for self-reducible 
relations, in which the counting estimates need only be within a factor of 
1 + O( 1x1”) of the exact values, for an arbitrary real constant ~1. Thus a very 
crude counting procedure (to within a constant factor, say) can be used to 
generate solutions almost uniformly, and so can in turn be bootstrapped in 
polynomial time to a counting procedure which approximates within a fac- 
tor of 1+ E for any specified E > 0. Moreover, the runtime of the improved 
procedure depends only polynomially on E- *. (Such an algorithm is often 
called a fully polynomial randomised approximation scheme.) A remarkable 
consequence of this result is that the concept of approximate counting to 
within factors of the form 1 + U( 1x1 -p), for fi E R, is robust with respect to 
polynomial time computation for the large class of self-reducible relations. 

The novel reduction is accomplished by stochastic simulation of an 
ergodic Markov chain whose structure mirrors the self-reducibility of the 
relation in question. The states of the chain include the solutions of 
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interest, and as the chain evolves it converges to a stationary distribution 
which is uniform over these states. Therefore, provided the convergence is 
rapid enough, a modest number of simulation steps will ensure that the 
final state is almost uniformly distributed over the solution set. A similar 
approach, based on a rather different type of Markov chain, can be used to 
generate in more direct fashion various structures such as matchings in 
graphs. This is the subject of another paper (Jerrum and Sinclair, 1988; see 
also Sinclair, 1988). 

As a stepping stone to the above result, we derive a simple charac- 
terisation of rapid convergence, in a suitably defined sense, for a broad 
class of finite ergodic Markov chains in terms of a structural property of 
the underlying weighted graph. This characterisation, which is related to 
recent work by Alon (1986) on eigenvalues and expander graphs, appears 
to be quite generally applicable and we believe it to be of independent 
interest. Further examples of its use appear in (Jerrum and Sinclair, 1988; 
Sinclair, 1988). Very recently, a similar characterisation for Markov chains 
was discovered independently by Lawler and Sokal (1988). 

Finally, as a concrete example of these ideas in action we consider the 
problem of generating labelled graphs with specified vertex degrees and a 
specified excluded subgraph. Using a result of McKay (1985) which 
provides analytic counting estimates for these graphs, we show that it is 
possible to generate them in polynomial time from a distribution which is 
very close to uniform provided only that the maximum degree grows no 
faster than O(HZ”~), where m is the number of edges. Although the problem 
is apparently not self-reducible under this restriction, our techniques can 
still be applied with a little extra work. This result represents a considerable 
improvement on hitherto known methods (Bollobas, 1980; Wormald, 
1984). It also implies the existence of polynomial time randomised 
algorithms for counting such graphs to within a factor of 1 + m -@, for any 
desired /PER. Since the approach here is quite general, it seems likely that 
other natural combinatorial counting and generation problems can be 
treated in similar fashion. 

The remainder of the paper is organised as follows. In Section 2 we 
introduce some definitions and notation. Section 3 covers the charac- 
terisation of rapid convergence for Markov chains and is largely self- 
contained. In Section 4 we use this characterisation to establish the 
improved reduction from almost uniform generation to approximate 
counting and discuss the implications of this result. Lastly, in Section 5 we 
apply the ideas of Section 4 to the degree constrained graph problem 
mentioned above. 
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2. DEFINITIONS AND NOTATION 

This section is devoted to establishing a formal framework for the 
notions mentioned in the Introduction. 

Let ,Z be a fixed finite alphabet in which the combinatorial structures of 
interest are to be encoded, and let R 5 C* x C* be a binary relation over 2. 
For each string (problem instance) XE C* the corresponding solution set 
with respect to R is 

R(x)= {~EC*: (x, y)eR}. 

We shall always assume that these sets are finite. Note that we make no 
distinction between strings which do not encode a “valid” problem instance 
and those which encode a problem instance with empty solution set. Thus 
the formal counterpart of Example 1 of the Introduction is 

R = { (x, y ): x E Z* encodes a Boolean formula B in DNF 

y E C* encodes a satisfying assignment of B}. 

Throughout we shall move freely between the formal and informal problem 
descriptions, assuming always that the encoding scheme used is 
“reasonable” in the sense of Garey and Johnson (1979). 

The counting problem for a relation R over C involves computing the 
function #R: Z* + N defined by #R(x)= lR(x)l. As indicated in the 
Introduction, we shall be concerned with effective approximate solutions to 
this problem which estimate the value of the function within a specified 
factor. This notion of approximation, which is familiar from combinatorial 
optimisation and asymptotic analysis, has also been applied to counting 
problems in computer science by Stockmeyer (1983) and Karp and Luby 
(1983). (A less conventional and much more severe definition of 
approximate counting is studied by Cai and Hemachandra, 1986.) 

If a, li, and r are non-negative real numbers with r 2 1, we say that ri 
approximates a within ratio r if cir-’ < a < 6r. Let R be a relation over Z‘, 
and p a real-valued function of the natural number n such that p(n) > 1 for 
all n E N. A randomised approximate counter for R within ratio p is a 
probabilistic algorithm V whose output on input x E ,5’* is a non-negative 
real-valued random variable g(x) satisfying 

Pr(V?(x) approximates #R(x) within ratio p( 1x1)) B 1, 

If % is in fact deterministic then it is an approximate counter for R within 
ratio p. In either case, %? is polynomial/y time-bounded if it runs within time 
p( [xl) for some polynomial p and all inputs XE C*. 

The significance of the lower bound of $ in the above definition lies in the 
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fact that it allows the counter to be “powered” so that the probability of 
producing a bad estimate becomes very small in polynomial time. (This 
would still hold if a were replaced by any fixed constant greater than t.) 
More precisely, we have 

LEMMA 2.1. If there exists a polynomially time-bounded randomised 
approximate counter V for R within ratio p, then there exists a probabilistic 
algorithm W which on inputs (x, S > EC* x R + runs in time polynomial in 
1x1 and lg 6-‘, and whose output is a random variable %“(x, 6) satisfying 

Pr((e’(x, 6) approximates #R(x) within ratio p( Ix])) > 1 - 6. 

Proof The required procedure W’ makes p(lg 6-l) calls to %, with 
input x, for a suitable polynomial p and returns the median of the values 
obtained. For the details, see Lemma 6.1 of (Jerrum et al., 1986). 1 

In the (uniform) generation problem for a relation R G C* x C*, we are 
given an input x EC* and asked to select an element of R(x) at random in 
such a way that each solution has equal a priori probability of being 
chosen. In practice, the strict uniformity requirement can generally be 
weakened slightly, and we say that a probabilistic algorithm 93 is an almost 
uniform generator for R if its output on ‘inputs (x, E) EC* x R + is a 
random variable $3(x, E) satisfying 

(i) Y(x, E) takes values in the set R(x) u {?} with ? # C, and 

R(x) # @ + Pr(g(x, E) = ?) < 4. 

(ii) There exists a function 4: C* x R+ -+ (0, 1 ] such that, for all 
YEC*, 

y 4 R(x) == Pr(%(x, E) = y) = 0 

y~R(x)=>(l+~)-‘&x,~)<Pr(%(x,~)=y)d(l+~)~(x,~). 

Thus E represents the pointwise bias tolerated in the output distribution. 
An almost uniform generator is fuZiy polynomial (Ep.) if it runs in time 
bounded by a polynomial in 1x1 and lg E ~ ’ : in this case, the generator may 
be regarded as effectively indistinguishable from a uniform one by 
polynomial time statistical tests. Note that as a matter of convenience we 
allow the generator to fail (i.e., output the special symbol ?) with 
probability 64. This can always be made to decay exponentially fast using 
repeated trials; moreover, if the construction problem is solvable in 
polynomial time, as is often the case for the relations we consider, then we 
can force the generator never to fail when R(x) is non-empty. 
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Remark. In the above definitions we have not been precise about our 
model of randomised computation. For deliniteness, we take this to be the 
probabilistic Turing machine of Gill (1977), in which the only source of 
randomness is a fair coin. However, we shall feel free to express algorithms 
in terms of much more general branching probabilities involving the ratio 
of two previously computed integers.. This behaviour can always be 
simulated by a fair coin to a high degree of accuracy at negligible extra 
cost. In particular, the notions of polynomial time approximation 
algorithm presented here are robust with respect to such changes in the 
model of computation. 

Next we formalise the concept of self-reducibility described in the 
Introduction. A relation R EC* x C* is (polynomial time) self-reducible, in 
the sense of Schnorr (1976), if 

(i) There exists a polynomial time computable length function 
I,: C* + N such that lR(x) = 0( I.#“) for some constant k, > 0, and 

Y E R(x) * IYI = ER(x) vx, y E P. 

(ii) For all XE Z* with ZR(x) = 0, the predicate ,4 E R(x) can be 
tested in polynomial time. (A denotes the empty string over C.) 

(iii) There exist polynomial time computable functions +: C* x 
Z* -+ 2’ and 0: C* + N satisfying 

4x) = mIxI) 
f,(x) > 0 - o(x) > 0 VXEC* 

Ill/k w)l d I.4 vx, WEE* 
~AII/(x, ~1) = max{I,(x) - 14, O} vx, WEE* 

and such that each solution set can be expressed in the form 

R(x) = u {WY: Y E WV%, w,,> W’E p(r) 
Condition (iii) provides an inductive construction of the solution sets as 

follows: if the solution length lR(x) is greater than zero, R(x) can be par- 
titioned into classes according to the small initial segment w  of length a(x), 
and each class can then be expressed as the solution set of another instance 
$(x, w), concatenated with w. The partitioning of satisfying assignments of 
a DNF formula indicated in the Introduction is easily seen to be of the 
required form, under some natural encoding. An atom is an instance x E .Z* 
with solution length I,(x) = 0: in the above example, these would include 
(encodings of) the constants true and false, viewed as DNF formulae. Con- 
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dition (ii) says that, for atoms x, we can test in polynomial time whether 
R(x) = 0 or R(x) = {A}. Note that this, together with condition (iii), 
implies that we can test whether a candidate solution y E C* belongs to any 
solution set R(x) in time polynomial in 1x1 + Jyl. In view of condition (i), 
the existence problem associated with R is therefore in NP. (R is called a 
p-relation in Jerrum et al., 1986.) It appears that the vast majority of 
naturally occurring relations can be formulated so as to be self-reducible. 

It is conceptually helpful to capture the inductive construction of 
solutions of a self-reducible relation explicitly in a tree structure. For each 
XEC* with R(x) # 0, the tree of derkations T,(x) is a rooted tree in 
which each vertex v bears both a problem instance label inst(v) E C* and a 
partial solution label sol(v) E .Z*, defined inductively as follows: 

(i) The root u has labels inst(u) = x and sol(u) = A. 
(ii) For any vertex v in TR(x), if the problem instance z = inst(u) is 

an atom then u is a leaf. Otherwise, define 

W(u) = (w E .F’(“: R(ll/(z, w)) # 0). 

(Note that W(v) is non-empty.) Then v has a child v, for each w  E W(v), 
with labels inst( v,) = ll/(z, w) and sol( v,.) = sol(u) . w. 

Note that the labels sol(v) are distinct, while the inst(v) are in general not. 
It should be clear that the labels sol(v) for leaves v are precisely the 
elements of R(x), so there is a (Ill)-correspondence between leaves and 
solutions. More generally, for any vertex v of Z’,(x) there is a (l-l)- 
correspondence between the solution set R(inst(v)) and the leaves of the 
maximal subtree rooted at v. The bounds on (T and + in the definition 
of self-reducibility ensure that the depth of TR(x) is bounded by 
lR(x) = O((xlk”), and that the number of children of any vertex is also 
polynomially bounded. 

In order to infer the structure of the tree of derivations, it is clearly 
necessary to solve the existence problem for the relation in question. Since 
we will not always be able to do this with certainty, it is useful to define 
the self-reducibility tree pR(x) as above except that the restriction 
R(@(z, w)) # 0 in the definition of W(v) is removed. Obviously FR(x) 
contains TR(x) as a subgraph and their labels agree. All solutions in R(x) 
still occur precisely once as labels of leaves of p,(x), but there may be 
other leaves whose partial solution labels are not in R(x). The depth and 
vertex degree of FR(x) remain polynomially bounded as before. 

Most known uniform generation algorithms for combinatorial structures 
(see, e.g., Nijenhuis and Wilf, 1978) may be viewed as instances of the 
following generic reduction to the corresponding counting problem. Given 
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that the structures are described by a self-reducible relation R, select a 
random path from the root of the tree of derivations to a leaf (solution), at 
each stage choosing the next edge with probability proportional to the 
number of solutions in the maximal subtree rooted at its lower end. This 
information may be obtained from a counter which evaluates the function 
#R for appropriate problem instance labels in the tree. By appending a 
correction process based on the a posteriori probability of the path, this 
procedure can be made to work even if the counter is slightly inaccurate, 
specifically if it is within ratio 1 + O(nekR), where k, > 0 is a constant 
satisfying iR(x) = O(lxlk”) (see Jerrum et al., 1986, and also Bach, 1983). 
Furthermore, if the counter is randomised then a Ep. almost uniform 
generator is still obtained. (In the latter case we have to work with the self- 
reducibility tree rather than the tree of derivations.) Since a f.p. almost 
uniform generator can itself be used to construct a polynomially time- 
bounded randomised approximate counter within ratio 1 -t K@ for any 
desired p E R, counters within the threshold ratio 1 + O(n -““) can be 
bootstrapped to achieve arbitrarily good asymptotic behaviour (Jerrum et 
al., 1986). 

When rather cruder counting information is available (to within a 
constant factor, say) the above “one-pass” technique breaks down owing to 
the accumulation of errors which are too large to be corrected. We will 
therefore adopt a more flexible, self-correcting approach in which a 
random process moves dynamically around the tree, with backtracking 
allowed. The generator we will construct in Section 4 views the vertices of 
the tree of derivations as the states of a Markov chain ,&Y?(x) in which 
there is a non-zero transition probability between two states iff they are 
adjacent in the tree. The transition probabilities themselves are computed 
with the aid of the crude approximate counter. Clearly all states com- 
municate, so that, leaving aside questions of periodicity, if the chain is 
allowed to evolve for t steps from any initial state the distribution of its 
final state approaches a unique stationary distribution as t + co. Now 
suppose that this distribution is uniform over the leaves of the tree. Then 
we get an almost uniform generator by simulating the chain for sufficiently 
many steps starting at (say) the root and, if the final state is a leaf, 
outputting the corresponding solution. 

The efficiency of this procedure will of course depend crucially on the 
rate of convergence of the chain. In particular, since the size of the tree is in 
general exponential in 1x1, we require the chain to be very close to 
stationarity after visiting only a small fraction of its states. There appear to 
be no quantitative results in the literature which would readily provide 
useful analytic bounds on the rate of approach to stationarity in this case. 
Accordingly, in the next section we develop a characterisation of rapid 
convergence, in a suitably defined sense, for a broad class of Markov 
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chains. This will enable us to show in Section 4 that the almost uniform 
generation procedure sketched above is in fact fully polynomial. 

Remark. The Markov chain approach to almost uniform generation 
also points to a fundamentally different strategy which appeals neither to 
self-reducibility nor to counting. Here transitions are made more or less 
directly between solutions by means of local perturbations, in a manner 
suggested by Broder (1986) and familiar from Monte Carlo studies in 
statistical physics (Binder, 1976). We can also consider generating solutions 
from more general distributions by making appropriate adjustments to the 
stationary distribution of the chain. The machinery developed in the next 
section can be used to analyse Markov chains of this kind as well: for 
applications, the reader is referred to (Jerrum and Sinclair, 1988; Sinclair, 
1988). 

3. MARKOV CHAINS AND RAPID MIXING 

We assume that the reader is familiar with the elementary theory of finite 
Markov chains in discrete time: an introduction can be found in (Feller, 
1968, Chap. XV). First, we establish some’ terminology and quote some 
basic facts. 

Let the sequence of random variables (X,),““_, be a time-homogeneous 
Markov chain on a finite state space [N] = (0, 1, . . . . N- 1 }, NB 1, with 
transition matrix P = (pii)&\. (All Markov chains in this paper will be 
assumed to be of this form.) Thus for any ordered pair i, j of states the 
quantity pij = Pr(X, + , = j ( X, = i) is the transition probability from state i to 
state j and is independent of t. The matrix P is non-negative and stochastic, 
i.e., its row sums are all unity. For SEN, the s-step transition matrix is 
simply the power P” = (PC)); thus p$) = Pr(X, + s = j 1 X, = i), independent of 
t. We denote the distribution of X, by the row vector rc(‘)‘= (rc~~))~&‘, so 
that rr!‘) = Pr(X = i) Here f . II (O)’ denotes the initial distribution, and 
II(‘)’ = kCo)‘Pr for all t E N. Usually we will have rrj”) = 1 for some iE [IV] 
(and 0 elsewhere); i is then called the initial state. 

The chain is ergodic if there exists a distribution R’ = (n,) > 0 over [ZV] 
such that 

lim p!?) = 71. I/ J Vi, jE [IV]. 
s - a 

In this case, we have that R(‘)’ = aco”P’ -+ II’ pointwise as t + co, and the 
limit is independent of rc . (O)’ The stationary distribution II’ is the unique 
vector satisfying a’P= tr’, Ci rri = 1, i.e., the unique normalised left eigen- 
vector of P with eigenvalue 1. Necessary and sufftcient conditions for 
ergodicity are that the chain should be (a) irreducible, i.e., for each pair of 
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states i, Jo [N], there is an s EN such that p:) > 0 (j can be reached from i 
in a finite number of steps); and (b) aperiodic, i.e., gcd(s: p!) > 0} = 1 for 
all i, jE [N]. 

Suppose now that we wish to sample elements of the state space, 
assumed very large, according to the stationary distribution rr’. This 
problem arises frequently in the mathematical modelling of physical 
systems, where states correspond to configurations of the system and 
appropriate functions of the stationary process to physical constants or 
parameters (Binder, 1976), and is also fundamental to stochastic 
optimisation techniques such as simulated annealing (Kirkpatrick, Gellatt, 
and Vecchi, 1983). In the applications we have in mind here, some of the 
states can be identified with certain combinatorial structures of interest and 
rr’ is uniform over these states. However, our approach will address the 
general problem. 

The desired distribution can be realised by picking an arbitrary initial 
state and simulating the transitions of the Markov chain according to the 
probabilities pii, which we assume can be computed locally as required. As 
the number t of simulation steps increases, the distribution of the random 
variable X, will approach rc’. Clearly, for this process to be effective it is 
necessary to know a priori how many steps are required to achieve a dis- 
tribution sufficiently close to R’ for our purposes, or in other words to have 
some bound on the rate of convergence of the chain. As a time-dependent 
measure of deviation from the limit, we define the relative pointwise 
distance (r.p.d.) over a non-empty subset US [N] after t steps by 

Au(t)=max W-71il. 

i,js U 
7cI 

Thus d U (t) gives the largest relative difference between rr(‘)’ and rr’ at any 
state Jo U, maximised over all possible initial states iE ZJ.’ The inclusion of 
the parameter U merely allows us to specify that certain portions of the 
state space are not relevant in the sampling process, as will prove helpful 
later. The aim of this section is to obtain a useful upper bound on A, as a 
function of t. In particular, we want to investigate conditions under which 
convergence is rapid in the sense that A CN3(t) becomes very close to 0 while 
t 4 N: this is sometimes referred to as the “rapid mixing” property (Aldous, 
1981). 

A number of techniques for investigating the rate of convergence of 

1 This measure, which is a symmetrical version of the separation distance defined in (Aldous 
and Diaconis, 1986) has been chosen by analogy with our definition of almost uniform 
generation in Section 2. We could alternatively have used a measure based on the variation 
distance, namely d;(r) = maxiE u x,Ipt’ - nj[jl. F or most interesting chains, this choice makes 
no essential difference to the rapid convergence criterion. 
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Markov chains have recently been proposed by other authors. Methods 
based on coupling (Aldous, 1981) and stopping times (Aldous and 
Diaconis, 1986) are attractive and yield tight bounds for simple chains, 
such as random walks on hypercubes and various card-shuflhng processes. 
However, the analysis involved appears to become extremely complex in 
more interesting cases where the chain lacks a highly symmetrical structure. 
The approach used here based on the eigenvalues of the transition matrix is 
more classical, but seems hitherto to have been of little practical value. Our 
contribution is to develop from it a simple yet powerful tool for obtaining 
good analytic bounds for a broad class of chains. Crucially, we will be able 
to apply this tool to chains which have not proved amenable to analysis by 
other means. 

An ergodic Markov chain is said to be time-reversible if either (and 
hence both) of the following equivalent conditions holds: 

(i) For all i, jE [TV], pii~i=pjjnj. 
(ii) The matrix D”2PD-1’2 is symmetric, where D’12 is the diagonal 

matrix diag(7chi2, . . . . 7crp i) and D- ‘I2 is its inverse. 

Condition (i) says that in the stationary distribution the expected numbers 
of transitions per unit time from state i to state j and from state j to state i 
are equal, and is usually called the “detailed balance” property. As we shall 
see, time-reversible chains are particularly susceptible to detailed analysis, 
and for this reason play a major role in applications where a rigorous 
quantitative treatment is necessary (see, e.g., Keilson, 1979). 

It is illuminating to identify an ergodic time-reversible chain with a 
weighted undirected graph containing self-loops as follows. The vertex set 
of the graph is the state space [NJ of the chain, and for each pair of states 
i, j (which need not be distinct) the edge (i, j) has weight wii= nipii= njpji. 
By detailed balance this definition is consistent. Thus there is an edge of 
non-zero weight between i and j iff pii > 0. We call this graph the underlying 
graph of the chain. It should be clear that such a chain is uniquely specified 
by its underlying graph. 

As already stated, the stationary distribution rr’ of an ergodic chain is a 
left eigenvector of P with eigenvalue 1, = 1. Let { &: 1 < i < N- 1 }, with 
Ai E C, be the remaining eigenvalues (not necessarily distinct) of P. By stan- 
dard Perron-Frobenius theory for non-negative matrices (Seneta, 198 I), 
these satisfy (Ai1 < 1 for 1 < i< N- 1. Furthermore, the transient behaviour 
of the chain, and hence its rate of convergence, is governed by the 
magnitude of the eigenvalues 2;. In the time-reversible case, condition (ii) 
of the definition implies that the eigenvalues of P are just those of the 
similar symmetric matrix D’l’PD - ‘I’, and so are all real. This fact leads to 
a clean formulation of the above dependence. 
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PROPOSITION 3.1. Let P be the transition matrix of an ergodic time- 
reversible Markov chain, 11’ its stationary distribution and (Ai: 0 6 i 6 N - 1 } 
its (necessarily real) eigenvalues, with A,, = 1. Then for any non-empty subset 
US [N] and all t E N, the relative pointwise distance A,(t) satisfies 

A.(t)< 4nax 
mini, U rcj’ 

where A,,,, =max{l&(: l<i<N-l}. 

Proof: Let D ‘I* and D ~ ‘I2 be as in the definition of time-reversibility, so 
that the matrix A = D”*PD- ‘I* is symmetric with the same eigenvalues as 
P, and these are real. Hence we can select an orthonormal basis 
(e”“:O<i<N-l) for RN consisting of left eigenvectors of A, where 
e(j)’ = (ej!‘)) has associated eigenvalue Izi and e,!‘) = rc,!/* for Jo [N]. 

Following (Keilson, 1979) A has the spectral representation 

N-l N-1 
A = c Aie(i)e(W = 

I=0 
;To JiE(“, 

where EC’) = e”‘e”)’ is a dyad (i.e., has rank 1) with E(‘)E(j) = 0 for i # j, and 
ECi)* = EC’). It follows that, for any t E N, A’ = xi A: EC’), and hence 

N-I 
p’= D-l/*A’D’/* = 1 l;(D- l/*e(‘))(e(‘)‘D”*) 

i=o 
N-I 

= 1 No’ + c ~f(D~1/2e(i))(e(i)‘D1’2), 
i-1 

where 1 N is the N-vector all of whose entries are 1; in component form, 

By definition, the r.p.d. A,(t) is therefore given by 

where the second inequality follows from the Cauchy-Schwarz inequality 
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(Kolmogorov and Fomin, 1970, p. 38) and the orthonormality of 
the e”‘. 1 

Proposition 3.1 says that a time-reversible Markov chain will be rapidly 
mixing in the sense indicated earlier provided that a’ is not extremely small 
in any state of interest and that A,,.,,, is bounded away from 1. The first of 
these conditions can be checked immediately from our knowledge of n’ and 
is rarely violated in practice. We therefore focus our attention on the 
second condition, which is not so easily handled. (Note that P is a large 
matrix so that direct numerical evaluation of the eigenvalues is not 
feasible.) 

Suppose the eigenvalues of P are ordered so that 1 = 1, > I, > . > 
A,- i > - 1. Then the value of A,,, is governed by 1, and A,-, , the latter 
being significant only if some of the eigenvalues are negative. Negative 
eigenvalues correspond to oscillatory, or “near-periodic” behaviour and 
cannot occur if each state is equipped with a sufficiently large self-loop 
probability. Specifically, it is enough to have min, P,~ B +. To see this, let I, 
denote the Nx N identity matrix and consider the non-negative matrix 
2P - IN, whose eigenvalues are pi = 2A; - 1. By Perron-Frobenius, pi > - 1 
for all iE [N], which implies that A,,-, > 0. 

In fact, negative eigenvalues never present an essential obstacle to rapid 
mixing because any chain can be modified in a simple way so that the 
above condition holds without risk of slowing down the convergence too 
much: 

PROPOSITION 3.2. Let P be the transition matrix of an ergodic time- 
reversible Markov chain, and 1 = & > 1, > . . > 1, _ , > - 1 its eigenvalues. 
Then the modified chain with transition matrix P’ = +(I, + P) is also ergodic 
and time-reversible with the same stationary distribution, and its eigenvalues 
{A:}, similarly ordered, satisfy Ah_, > 0 and Ai,, = A’, = $(l + A,). 

From the above discussion, it is sufficient for rapid mixing to bound the 
second eigenvalue A, away from 1. We shall do this by relating A1 to a more 
accessible structural property of the underlying graph. 

Intuitively, we would expect an ergodic chain to converge rapidly if it is 
unlikely to “get stuck” in any subset S of the state space whose total 
stationary probability is fairly small. We can formalise this idea by con- 
sidering the cut edges which separate S from the rest of the space in the 
underlying graph, and stipulating that these must be capable of supporting 
a sufficiently large “flow” in the graph, viewed as a network. With this in 
mind, for any non-empty subset S of states with non-empty complement s 
in [N] we define the quantity Gs= Fs/Cs, where 
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c,= 1 71, 
itS 

the capacity of S; 

Fs= 1 Pqni the ergodicflow out of S. 
ie.S 

/ES 

Note that 0 <F, < C, < 1. Qs may be visualised as the conditional 
probability that the stationary process crosses the cut from S to S in a 
single step, given that it starts in S. Finally, we define the global conduc- 
tance of the chain by 

It is easy to see that F,= Fs for all such sets S. This implies that 
Gs= GsCs( 1 - C,)-‘, so we may equivalently write 

@= min max(@,, Qs} 
O<ISI<N 

Now suppose that the chain is time-reversible, and let G be its under- 
lying graph. Then for all S as above we have 

Fs=F,-= 1 wii, 
its 
its 

a function of the edge weights of G. The conductance @ E Q(G) may then 
be viewed as a structural property of the weighted graph G. In view of the 
above remarks, we might hope that Q(G), which in some sense measures 
the minimum relative connection strength between “small” subsets S and 
the rest of the space, has some bearing on the rate of convergence of the 
chain. This relationship is manifested via a bound on the second 
eigenvalue 1 i . 

LEMMA 3.3. For an ergodic time-reversible Markov chain with underlying 
graph G, the second eigenvalue I, of the transition matrix satisfies 

Proof. Let e’ = (ei)y=Wo’ be an eigenvector of P with associated eigen- 
value ?, < 1, and define the matrix Q = IN - P (the “Laplace operator” 
associated with P). Then clearly 

e’Q = (1 - A)e’. (1) 
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Define the subset of states S= {in [NJ: ei > O}. It is easy to check that, 
since P is stochastic and A< 1, xi ei = 0. Hence 0 < 1 SI < N, and we may 
assume without loss of generality that C, = xi, s ni d 4. Now let 6’ = (Ci) be 
the vector defined by 

tic ei/ni, for iES; 
0, otherwise. 

Renumbering states as necessary, we shall assume that to 2 t, 2 . . > 
t, _ I, which implies also that S = (0, 1, . . . . r ) for some r with 0 < r < N - 1. 

Taking the scalar product of (1) with 6’ gives 

(e’Q, 2’) = (1 - A)(e’, e’). (2) 

The right-hand side of (2) is just 

(1-A) c “$f. (3) 
ieS 

Note that if Q= (qv) then qii= -pii for i#j, and qii= 1 -pii=cj+ipii, SO 
we can expand the left-hand side of (2) as 

C C :iqjieja 1 C tiqjie, 
ieSje[N] isSjcS 

= - zs zs wii@igj + zs jsi wiip? 

j#i 

= -2 1 w,&i:j+ 1 wii(Pf +6/q 

i-cj icj 

= 1 w,i(ci-eTj)2, (4) 
icj 

where the inequality follows from the fact that all contributions with j$ S 
are positive. Using (3) and (4), Eq. (2) therefore yields 

1 -A,Ci(i wij(ci-gj)2 
, 

CieS7ciPf . 

Now consider the sum 

(5) 

c wi,(c+~j)2,<2 c w,(f?f+$)<2 1 7#. 
iii i<J res 
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Combining this with (5) gives 

1-A,Zi<jwij(ei-6j)’ ~~i<jwij(‘i+~j)* 

’ ~icsniP; 2 CiE s I@; 

>’ 
( 

~i<jwij(E:-~;) 2 
‘2 CiES7tie^f ) ’ (6) 

where we have used the Cauchy-Schwarz inequality. To complete the 
proof, we need to relate the quotient in (6) to the quantity Q(G). To do 
this, consider the increasing sequence (S,); =0 of subsets of S with 
Sk = { 0, . . . . k}. The numerator of the quotient in (6) may be expressed in 
terms of ergodic flows across the boundaries between successive sets Sk as 
follows: 

i < j  

= k;. (3 - 3 + 1) *x.sk wii 
iCSk 

(7) 

Now the capacities of the Sk satisfy C, d Cs < f for 0 6 k < r, and hence by 
definition of 0, F, 2 Q(G) Csk. We therefore get from (7) 

i-cj k=O 

=@(G) i (S;-;;+,) i TC, 
k=O i=O 

=@(G) i xi i (+C:+,) 
i=O k=i 

=@(G) 1 TC+?:. 
iCS 

This inequality ensures that the quotient in (6) is bounded below by D(G), 
so that finally 

as required. 1 
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Combining Propositions 3.1 and 3.2 and Lemma 3.3 we arrive at the 
main result of this section, which says that the number of steps required for 
an ergodic time-reversible Markov chain to lose its memory (approach 
stationarity) is 0(@(G)-2 lg(l/n ,,,)), where G is its underlying graph and 
nmin the minimum stationary probability of any state. Thus, under mild 
assumptions about the stationary distribution, convergence is rapid if Q(G) 
is not too small. 

THEOREM 3.4. Let G be the underlying graph of an ergodic time-rever- 
sible Markov chain, modified iSnecessary as in Proposition 3.2 to ensure that 
min, pii > 4, and A’ its stationary distribution. Then for any non-empty subset 
U c [N] and all t E N, the relative pointwise distance A,(t) satisfies 

A (t) < (1 - @(G)*P) 
u 1 minicu 7ri ’ 

Remarks. (a) Theorem 3.4 has a converse which states that, under the 
same assumptions, A,,,(t) > (1 - 20(G))’ (Sinclair, 1988). Hence we effec- 
tively have a characterisation of rapid mixing for time-reversible chains in 
terms of the graph-theoretic quantity @. (Note however that this does not 
cover cases in which rci is extremely small for some i. Such chains may 
exhibit a range of convergence behaviour regardless of the value of @b(G).) 

(b) In the interest of simplicity, we have appealed to the rather crude 
device of Proposition 3.2 for eliminating negative eigenvalues: the effect of 
this operation on the conductance is to reduce it by a factor of t. In prac- 
tice it may often be possible to reason about negative eigenvalues on an ad 
hoc basis for the chain at hand. Proposition 3.1 and Lemma 3.3 may then 
be used directly to get a bound on A,(t). 

(c) Lemma 3.3 and its proof parallel an earlier continuous result of 
Cheeger (1970) for Riemannian manifolds. In the discrete setting, the 
lemma and its converse are closely related to recent work of Alon (1986) 
and Alon and Milman (1985) (see also Dodziuk, 1984) in which a 
relationship between a similar structural property of simple, unweighted 
graphs and the second eigenvalue of the adjacency matrix is established. 
This property, called the magnification, measures the minimum number of 
vertices adjacent to a small subset S as a fraction of ISI, and is a 
generalisation of the widely studied concept of expansion for bipartite 
graphs. Our conductance @ is a weighted edge analogue of magnification, 
and is the natural quantity to study in the present application. The 
significance of Alon’s result as a sufficient condition for rapid mixing for 
certain Markov chains has been noted by several authors; in particular, 
Aldous (1987) states a restricted form of Theorem 3.4 for random walks on 
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regular graphs. Our characterisation based on the conductance seems to 
provide a cleaner and more natural formulation of this connection. Very 
recently, Lawler and Sokal (1988) have independently discovered results 
similar to those presented in this section but in a rather more general 
context. 

Theorem 3.4 allows us to investigate the rate of convergence of a time- 
reversible chain by examining the structure of its underlying graph. For 
rapid mixing, this will typically involve deriving bounds of the form 
@P(G) = Q((lg N))k) as the number N of states increases, for some constant 
k. The exciting feature of this characterisation is that, with a bit more 
work, suitable conductance bounds may actually be derived analytically for 
a number of interesting chains. In this way we are able for the first time to 
establish the rapid mixing property for chains which lack a high degree of 
symmetry and which have not proved amenable to analysis by other 
methods. In the next section, we show how this can be done for the chain 
based on the tree of derivations mentioned at the end of the last section. 
Further applications may be found in Jerrum and Sinclair (1988) and 
Sinclair (1988). 

4. REDUCTIONS 

We return now to the main theme of this paper, namely the construction 
of an efficient almost uniform generator for a self-reducible relation given 
only very approximate counting information. 

Let R SC* x C* be self-reducible, and x E Z* a problem instance with 
R(x) # a. As advertised in Section 2, our aim is to set up an ergodic 
Markov chain Aw(x) whose states are the vertices of the tree of 
derivations TR(x) and whose stationary distribution is uniform over the 
leaves of the tree. 

The chain is based on an elaboration of the standard reduction from 
uniform generation to exact counting indicated at the end of Section 2. We 
may view the counter in this reduction as assigning to each edge of the tree 
of derivations an integer weight equal to the number of leaves in the sub- 
tree rooted at its lower end; the process is then a transient Markov chain in 
which the transition probabilities from any vertex (state) to its children are 
proportional to the corresponding edge weights. Suppose now that the 
process is no longer constrained to move downwards but may also 
backtrack from any vertex to its parent, the transition probabilities to all 
adjacent vertices being proportional to the edge weights: thus from any 
internal vertex upward and downward movements are equally likely. To 
eliminate periodicity, we add to each state a self-loop probability of -& 

643/82/l-8 
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Viewing this process as a symmetric random walk with reflecting barriers 
on the levels of the tree, it is easy to see that it converges rapidly 
(essentially in time polynomial in the depth of the tree) to a stationary 
distribution which is uniform over levels and also uniform over leaves. 
Hence a short simulation of the chain generates leaves almost uniformly, 
and the probability of failure can be made small by repeated trials. Now 
suppose that we have available only an approximate counter for R, so that 
the edge weights in the tree are no longer accurate. Then we have grounds 
for optimism that this procedure might still work efficiently: the hope is 
that, since each edge weight influences transitions in both directions, the 
process will actually be self-correcting. 

Suppose then that we are given a polynomially time-bounded 
approximate counter G9 for R within ratio p(n) = 1 + O(n’) for some c1 E R. 
Thus the error ratio in %?’ need not even be constant, but may increase 
polynomially with the problem size. Note first that, since R is self- 
reducible, %’ can always be modified so as to give an exact answer (which 
will be either 0 or 1) when its input is an atom; also, its output may always 
be rounded up to the nearest integer at the cost of adding at most 1 to p. 
We shah assume throughout this section that %’ incorporates these 
modifications. We may also assume without loss of generality that p is 
monotonically increasing. To begin with, we shall consider the case where 
@ is deterministic; the additional technical problems posed by randomised 
counters will be dealt with later. 

For a problem instance x as above, let V, E be the vertex and edge sets 
respectively of TR(x), and set rn = IR(x), r = p( 1x1). Note that both m and r 
are polynomially bounded in 1x1, and that the depth of the tree is at most 
m. For each edge (u, v) E: E define the quantity 

if u is the parent of u; 
otherwise. @I 

(Recall that inst( .) gives the problem instance associated with any vertex of 
the tree.) Since 59 is deterministic, f: E + N + is a well-defined function on 
E. The crucial property to bear in mind is that for any edge P E E, f(e) 
approximates within ratio r the number of leaves in the maximal subtree 
below e. 

Next we define for each vertex u G V a degree 

d(v)= 1 f(U, u). (9) 
u:(u.c)r E 

Note that d(u) 2 1 for all 21 E V, and that 4 v) = 1 if v is a leaf because %? is 
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exact for atoms. For each ordered pair u, u of vertices, the transition 
probability p,, from v to u is then defined to be 

I 

f(u, ovwv), if (24, v)EE; 

pcu = l/2, if u = 0; (10) 

0, otherwise. 

Thus there is a non-zero transition probability between two states iff they 
are adjacent in the tree. The self-loop probability f ensures that the chain is 
aperiodic. It is clearly also irreducible, and hence ergodic, and it is a simple 
matter to verify that the stationary distribution rc’ = (E,),~ &, is proportional 
to the degrees, i.e., 

40) 7rIL,=- 
D 

VVE v, (11) 

where D = C,, ,, d(u). 
Let us first check that sampling from V according to the distribution rc’ 

does in fact give us an efficient generation procedure for R, so that the 
approach of the previous section applies. Since leaves of the tree corre- 
spond to solutions, while other vertices must necessarily correspond to 
failure of the generator, we have to verify that I’ is uniform and sufficiently 
large over the leaves. (Recall that an almost uniform generator must have 
bounded failure probability.) Uniformity follows directly from the fact that 
d(u) = 1 for all leaves u, so x, = l/D. That this is not too small is a 
consequence of the following lemma. 

LEMMA 4.1. In the stationary distribution of A%?(x), the probability of 
being at a leaf is at least 1/2rm. 

ProoJ Observe that the degree sum D over the tree T,(x) may be 
written 

D= 1 d(u)=2 1 f(e). 
L’ t v <’ t E 

Now consider the collection of edges at some fixed level of the tree. By (8) 
the weight of each such edge approximates within ratio r the number of 
leaves in the maximal subtree rooted at its lower end. Since these subtrees 
are disjoint, the aggregated weight of all edges at this level is at most 
r #R(x). Summing over all levels of the tree yields the bound 

D = 2 1 f(e) d 2rm #R(x). 
etE 

(12) 
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Since 71, = l/D for each leaf u, the stationary probability of being at a leaf is 

as claimed. 1 

Recall that m and r are each polynomially bounded in 1x1, so the failure 
probability can be reduced to $ by repeating the entire experiment only 
polynomially many times. 

We now adress the trickier question of the rate of convergence of the 
chain A%(x), assuming for the moment that an efficient stepwise 
simulation from some initial state can be performed. It is easy to see that 
the chain is time-reversible by virtue of detailed balance.2 We will therefore 
try to estimate the conductance 0 of its underlying graph, as defined in the 
previous section, and appeal to Theorem 3.4. 

LEMMA 4.2. Let G be the underlying graph of the Markov chain A?‘%(x) 
defined above. Then the conductance of G satisfies 

Q(G) > (4r2m)-‘. 

Proof: Note first that in G each edge (u, u) E E has weight 
w,, =f(u, v)/20, while the loop at u has weight d(u)/2D and all other edges 
have weight zero. In what follows, we will identify subsets of V with the 
subgraphs of TR(x) which they induce. If Ss V is a subtree (connected 
subgraph) of TR(x), we let root(S) denote the vertex of S at minimum 
distance from root(V), the root of T,(x). 

In order to bound the conductance of G, we claim that it suflices to 
consider flows out of all subtrees S with root(S) # root(V). (Informally, the 
process will converge fast because it is quite likely to emerge from any such 
subtree, travelling upwards, within a small number of steps.) To see this, 
note first that Q(G) 3min Qs, where the minimisation is over all non- 
empty subsets SE V with root( V) # S. But we may write any such S as the 
union TO u . . . u T, of disjoint subtrees no pair of which is connected by an 
edge in 7’,Jx), and we have 

~ss~-~i FTt FT~ 
cS cicTn 

>min-=min@T,. 
iC, I 

Hence it is clear that Q(G) 2 min Qs, where the minimisation is now over 
all subtrees S of T,Jx) with root(S) #root(V), as claimed. 

* This is actually also an immediate corollary of the fact that AW(X) is a free process, i.e., 
the edges corresponding to non-zero transition probabilities form a tree. 
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A lower bound on Gs for such subtrees is readily obtained. We may 
assume without loss of generality that S is maximal. Then the flow out of S 
is just Fs =f(cut(S))/20, where cut(S) is the cut edge connecting S to the 
rest of the tree. But sincef(cut(S)) approximates the number of leaves L(S) 
in S within ratio r, the flow is bounded below by 

&. >m 
S’2rD’ 

(13) 

On the other hand, summing edge weights in the subtree S as in the proof 
of Lemma 4.1, we may easily derive the bound 

“Fs d(u) =.f(cut(S)) + 2 1 f(e) G 2rmWh (14) 
eE E(S) 

where E( 5’) is the set of edges in S. Since Cs = C,, s d(u)/D, putting (13) 
and (14) together yields 

@,3> 1 
CS’4rZm’ 

which completes the proof of the lemma. 1 

Since both m and r are at most polynomial in the problem size 1x1, the 
bound in Lemma 4.2 is sufficient to ensure that the chains .,&Z(x) are 
rapidly mixing. More precisely, for each x E C* with R(x) # 121, let d’“‘(t) 
denote the r.p.d. of J@%(X) over the whole state space V after t steps. Then 
we have: 

LEMMA 4.3. There exists a function q: C* x R+ + N such that q(x, E) is 
polynomially bounded in 1x1 and lg EC’, and for each XE Z* with R(x) # a, 

d’“‘(t)6~/2 for all t>q(x,E). 

Proof: For each such x, the chain &V(x) satisfies the conditions of 
Theorem 3.4. Furthermore, we have seen that min,, y rry = l/D, which by 
(12) is bounded below by (2rmlZI”))‘. (Note that solutions are strings of 
length m over the alphabet C, so #R(x) < ICI”.) Applying Theorem 3.4, 
and using the bound on Q(G) obtained in Lemma 4.2, we get 

d’“)(t) < 2rmlCI” (1 - (32r4m2)-I)‘. 

The function q defined by 

q(x, s) = 32r4m2(ln(2rm) + m 1nlZI + ln(2/.s)) 

then clearly satisfies the requirements of the lemma. 1 
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We are now in a position to state the first major result of this section. 

THEOREM 4.4. Let R GZ* x C* be self-reducible. If there exists a 
polynomially time-bounded (deterministic) approximate counter for R within 
ratio 1 + O(n’) for some tl E R, then there exists a fully polynomial almost 
uniform generator ,for R. 

Proof. Let V be the approximate counter for R as specified above. We 
proceed to construct an almost uniform generator 9 for R which uses % as 
an oracle. 

On inputs (x, E) E C* x R +, 9 initially calls % with input x and halts 
with output ? if %(x)=0, which is the case if and only if R(x)= 0. 
Otherwise, 9 simulates the Markov chain J%?(x) defined above, starting 
at the root of T,(x). From their definition in (lo), the transition 
probabilities from any state can be computed by appropriate calls to V 
since we may easily keep track of the problem instance labels of the ver- 
tices. (Note that we are also inferring the structure of the tree locally in the 
process.) The simulation halts after q(x, E) steps, where q is the function 
specified in Lemma 4.3, outputting the corresponding solution if the final 
state is a leaf and ? otherwise. Since the degree of the tree is bounded by a 
polynomial in 1x1 and all problem instance labels have size at most 1x1, 
each step can be simulated in polynomial time. Together with the bound 
on q from Lemma 4.3, this ensures that Y always halts in time bounded by 
a polynomial in 1x1 and lg E ‘. 

Now let 9(x, E) be the output random variable of Y on inputs (x, a). 
Clearly $9 only ever outputs valid solutions, so Pr(Y(x, E) = y) = 0 if 
y# R(x). Moreover, since the chain has been allowed to evolve for 
sufficiently many steps, we may deduce from Lemma 4.3 that 

for any solution y E R(x), where D depends only on x and is defined at 
(11). Assuming as we may that E < 1, this ensures that the bias is within the 
required bound E. Finally, if R(x) # 0 Lemma 4.1 implies that 

Pr(g(x, a) = ?) d (1 - 1/2rm)( 1 + s/2). 

Assuming further that E < l/rm, this bound can be reduced to l/e < l/2 
using only (2rm)2 iterations of the procedure 9. 1 

If the approximate counter in Theorem 4.4 is randomised as defined in 
Section 2, so that it may occasionally produce arbitrarily bad results, the 
reduction still goes through but at the cost of some tiresome technicalities. 
We summarise the proof in this case. 
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THEOREM 4.5. The result of Theorem 4.4 still holds even if the 
approximate counter for R is randomised. 

Proof (sketch). Let x be a problem instance for which R(x) # Qr. As 
before, assume p is monotonic and set m = I,(x), r = p( 1x1). We begin by 
considering the intermediate case where the counter 9? is randomised but 
always produces estimates which are within ratio r of their correct values. 
We again define a Markov chain J%?(x) on the tree TR(x), whose tran- 
sition probabilities are determined as follows, Suppose the process is 
currently at vertex v, and let U be the set of children of v. For each 
UE Uu (v}, make a call %?(inst(u)) to the counter and denote the result 
c(u); then make a further inde~ndent set of calls ~(inst(~)) for the same 
vertices u and denote their sum d(v). Finally, make a transition to an 
adjacent vertex u with probability 

c(u)/4r2d(~), if u is a chiid of u; 

c(v)Pr*d(u), if u is the parent of v, 
(15) 

and remain at u otherwise. (Note that the factor 1/4r* ensures that these 
transitions are always well defined, and that there is a self-loop probability 
of at least 4 in each state; we have used a rather than 4 for consistency with 
the second part of the proof.) Clearly, if %? is deterministic this reduces 
(except for a uniform factor of 1/2r*) to the original chain. In the ran- 
domised case, it is easy to see that the transition probability puu from v to u 
is actually the expectation 

where the random variablef(u, v) is defined as in (8) and is independent of 
d(v). The stationary distribution R’ therefore satisfies 

rr, cc l/E(d(v) -‘) \JVE v, 

and the fact that %? is exact for atoms implies that d(v) = 1 with probability 
1 for leaves v. The chain is clearly still time-reversible, and the rest of the 
proof goes through essentially as in the deterministic case, with d(u) and 
f(u, u) replaced by l/E(d(v)-‘) and E(f(u, Y)) respectively. 

Now suppose that the counter may in addition produce arbitrarily bad 
results with some small probability 6: by Lemma 2.1 we may assume that 
6 < 2-P(IXi) for all problem instances in the tree, where p is any desired 
polynomial. Since we are no longer able to infer the structure of TR(x) with 
certainty, we must now work in the larger self-reducibility tree TT,(x) (cf. 
Section 2). We let V, P denote the vertex sets of TR(x) and T,(x) respec- 
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tively. Note that p\V consists of a union of disjoint maximal subtrees of 
p,(x). Some modifications to the transition probabilities are also 
necessary. At vertex u E v, we compute values c(u), for u E U u (u}, and 
d(v) as before, where now U is the set of children of u in ?,Jx). If d(u) = 0 
then we make a transition to the parent of u (if it exists) with probability +, 
and remain at u with probability a. Otherwise, we test whether 
C,c(z4)>4r2d(u): f i so, we remain at o; if not, we make a transition to a 
neighbouring vertex with probabilities as in (15). (Note that the self-loop 
probability in each state is at least t.) Once again, the leaves of T,(x) are 
treated as a special case. 

This chain is clearly ergodic on some subset of v containing V, namely 
those states which communicate with the root. Henceforth we redefine v to 
include only such states. The chain is also still time-reversible because it is 
a tree process. Let us first observe that the new vertices in P\V have 
negligible effect. All transitions from V to v\V occur with at most tiny 
probability 6, so if started in V the process is unlikely to leave V during the 
course of the simulation. Should it enter a subtree in v\V, however, the 
random variable d(u) at the root vertex u will take the value 0 with 
probability very close to 1, thus causing the chain to leave the subtree 
rapidly. In fact, it is not hard to see that thestationary probability rc, of a 
vertex u E 8\ V is at most O(@), where k is the distance of u from V in 
FR(x). As a result, the total weight of r\V in the stationary distribution is 
small. Furthermore, the large exit probability from subtrees SG v\V 
ensures a lower bound on Qs similar to that in the proof of Lemma 4.2. 

Examination of the transition probabilities within V reveals that we can 
view this portion as a chain of the restricted kind described in the first part 
of the proof whose transition probabilities have been perturbed by a factor 
in the range (1 f 6’), where 6’ depends on 6 and can be made exponentially 
small, It is then easy to see that the stationary probabilities of states in I’ 
undergo similarly small perturbations in the range (1 f d’),. As a result, a 
lower bound as in the proof of Lemma 4.2 also holds for subtrees S with 
root(S) E V, and so for all subtrees, which again implies that the conduc- 
tance Q(G) is suitably bounded below. Assuming that the simulation starts 
at the root, we therefore get rapid convergence over the subset V of the 
state space,3 which is sufficient since V includes all leaves of TR(x). A test 
applied to leaf labels ensures that no non-solutions are output. i 

Remark. There is actually a simpler way to prove Theorem 4.5, though 
the resulting algorithm is less natural and the process is no longer strictly a 
Markov chain. Note that the simulation of Theorem 4.4 can still be 

3 More precisely, we are using the r.p.d. A .(I) over V here, as defined in Section 3. 
Theorem 3.4 implies a sufficient condition for rapid mixing with respect to this measure also. 
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performed using a randomised counter if we arrange to remember the 
outputs of the counter on all previous calls so that each edge weight is 
computed at most once. Provided all values returned by the counter are 
accurate within the given ratio, we are effectively in the situation of 
Theorem 4.4 and our earlier analysis applies. By powering the counter, we 
can ensure that this condition fails to hold with very small probability, so 
the effect on the overall process will be negligible. 

Theorem 4.5 has an interesting consequence for counting problems. First 
let us generalise our notion of approximate counting to allow the error 
ratio in the estimate to be specified as part of the input. If R is a relation 
over C, then a randomised approximation scheme for #R is a probabilistic 
algorithm V whose output on input (x, E) E Z* x R+ is a non-negative 
real-valued random variable 3(.x, E) satisfying 

Pr(%(x, E) approximates #R(x) within ratio 1 + E) > t. 

59 is a fzdly polynomial randomised approximation scheme (fpras) if it runs 
in time bounded by a polynomial in 1x1 and E- ’ for all inputs (x, E). Note 
that the definition of fully polynomial here differs from that for almost 
uniform generators in the absence of a logarithm. 

Jerrum, Valiant, and Vazirani (1986) show how to construct a fpras for 
#R for a self-reducible relation R given a Ep. almost uniform generator for 
R. In view of Theorem 4.5, this means that we can bootstrap a very crude 
counter for R to one with arbitrarily good asymptotic behaviour as follows. 
Suppose there exists a polynomially time-bounded randomised 
approximate counter for R within ratio 1 + O(n’) for some real CI (which 
we may think of as large). Then by Theorem 4.5 there exists a Ep. almost 
uniform generator for R, and hence by the above result of Jerrum et al. a 
fpras for #R. (Recall that Jerrum et al. establish this only for c1< -k,, a 
small threshold value as defined in Section 2.) We have therefore proved 
our next result. 

THEOREM 4.6. Let R E C* x Z’* be self-reducible. If there exists a 
polynomially time-bounded randomised approximate counter for R within 
ratio 1 + O(n’) for some CI E R, then there exists a fully polynomial ran- 
domised approximation scheme for #R. 

The chief significance of Theorem 4.6 is that it establishes a notion of 
approximate counting which is robust with respect to polynomial time 
computation, at least for the large class of self-reducible relations: a 
randomised approximate counter within ratio I+ O(n’) can always be 
improved to one within ratio 1 + n pb for any desired real /I with at most a 
polynomial increase in runtime. Thus we are justified in classifying the 
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counting problem for a self-reducible relation R as tractable if there exists a 
polynomial time randomised algorithm which with high probability 
approximates #R(x) to within some factor of the form 1 + 0( 1x1”), with 
aER. We suggest that this notion will be useful in the future classification 
of hard counting problems, as studied, e.g., by Stockmeyer (1983) and 
Karp and Luby (1983). 

Remarks. (a) The bootstrapping described in Theorem ,4.6 actually 
holds for a rather trivial reason if the relation R has a property which we 
might call self-embeddability. Informally, R is self-embeddable if there exists 
an efficiently computable function [ which takes a pair x,, x2 of problem 
instances and embeds them in an instance 5(x,, x,), whose size is at most 
linear in lx,1 and 1~~1 and whose solution set is in (1-1)-correspondence 
with the product set R(x,) x R(x,). An example is the relation which 
associates with a directed graph G its set of (directed) Hamiltonian paths: 
the required embedding function 5 takes a pair G,, G2 of graphs and adds 
a new vertex u, together with edges from u to all vertices of G, and from all 
vertices of G2 to u. To bootstrap a counter for a self-embeddable relation, 
given a problem instance x we apply the embedding construction to obtain 
an instance z with #R(z) = #R(x) p(‘.“) for some suitable polynomial p; we 
then use the counter to approximate #R(z) and take the p( Ixl)th root of 
the result, which yields an improved estimate of #R(x). Although many 
natural relations turn out to be self-embeddable, there seem to be a number 
of significant exceptions among self-reducible relations, including DNF- 
satisfiability and natural restricted versions of familiar relations, such as 
Hamiltonian paths in planar graphs. Moreover, the Markov chain reduc- 
tion technique presented here can sometimes be applied even in the absence 
of self-reducibility. Evidence for this is provided by the relation GRAPHS 
discussed in the next section, which is apparently neither self-embeddable 
nor self-reducible under the degree restrictions imposed there. 

(b) Theorem 4.5 can also be used to derive a surprising bootstrap- 
ping result for generators. Specifically, given a polynomially time-bounded 
generator for a self-reducible relation R which is almost uniform with bias 
U( 1x1 PkR), where k, is a constant as above, it is possible to construct a f.p. 
almost uniform generator for R (Sinclair, 1988). The new generator of 
course achieves exponentially small bias in polynomial time. 

5. GRAPHS WITH SPECIFIED DEGREES 

Given a sequence g = (g,, . . . . g, _ ,) of non-negative integers, is it possible 
to efficiently generate labelled graphs with vertex set (0, 1, . . . . n - 1 } in 
which vertex i has degree gi, 0 < i d n - 1, such that each graph occurs with 
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roughly equal probability? We conclude this paper by showing how the 
approach of the previous section can be used to answer this question 
affirmatively, provided that the maximum degree does not grow too rapidly 
with the number of vertices n. 

Our motivation for looking at this problem is twofold. First, there is its 
inherent interest as indicated below. Second, and perhaps more important, 
it serves to illustrate how our ideas may be used to exploit a much wider 
class of asymptotic counting results than has hitherto been possible, even 
for structures which are not self-reducible. We suggest that other natural 
structures can be handled similarly. 

The special case of the problem in which the graphs are regular, i.e., 
gi = k for all i and some k, is of particular interest and has been considered 
by several authors. Regular graphs are a natural class to study in their own 
right and have recently become an important model in the theory of 
random graphs (Bollobis, 1985). A generation procedure would provide a 
means of examining “typical” regular graphs with a given number of 
vertices and given degree and investigating their properties, about many of 
which little is known. Furthermore, it has recently been shown by 
Wormald (1987) that generation techniques for labelled graphs with a 
given degree sequence can be used in the uniform generation of isomor- 
phism classes of regular graphs. 

Wormald (1984) gives efficient algorithms for uniformly generating 
labelled cubic and degree-4 graphs on n vertices. However, these are based 
on specific recurrence relations and do not generalise easily to higher 
degrees. A simpler method discussed in (Wormald, 1984), and already 
implicit in the work of Bollob& (1980), uniformly generates labelled 
regular graphs of arbitrary degree k, but the probability of failure remains 
polynomially bounded only if k = @(log n)1’2). When the degree is per- 
mitted to increase more rapidly with n, it seems difficult to generate the 
graphs with anything approaching equal probabilities: in the approach of 
Tinhofer (1979), for example, the probabilities associated with different 
graphs may vary widely. Our method, which relies on the reduction to 
counting developed in the previous section, requires only that k = O(~Z’/~) 
and achieves a distribution over the graphs which is asymptotically very 
close to uniform. 

In keeping with our general approach, we begin by defining a relation 
which describes the graphs of interest. For the sake of clarity, we shall not 
refer in this section to an encoding scheme: it should however be clear how 
to translate everything into the formal framework of Section 2. A (la&/led) 
degree sequence on vertex set [n] = (0, . . . . n - 1 } is a sequence 
g = h ...> g, ~ ,) of non-negative integers such that xi gi = 2e(g) is even, 
and a graph on g is a graph with vertex set [n] in which vertex i has degree 
gi, 0 < id n - 1. (All graphs here are assumed to be simple and undirected.) 
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If the vertex set is understood, we shall identify a graph with its edge set. It 
is actually convenient to generalise the above problem by allowing a set of 
forbidden edges to be specified. Accordingly, we define the relation GRAPHS 
which associates with each problem instance of the form (g, X), where g is 
a degree sequence on [n] and X is a labelled graph with vertex set [n], the 
solution set 

GRAPHs(g, X) = {G: G is a graph on g having no edge in common with Xl. 

We refer to X as an excluded graph for g. Although this relation is self- 
reducible as it stands, we get a more symmetrical structure using the 
relation R defined by 

R(g, X) = { (G, cu ): G E GRAPHS&, X) and w  is an edge-ordering of G}. 

Clearly, we can move freely between these relations since any solution set 
R(g, X) contains precisely e(g) ! ordered copies of each element of 
GRAPHS(g, x). 

Next we specify a self-reducibility on R by defining the tree of derivations 
T,(g, X), assuming that R(g, X) # 0. In this tree, the object (G, o) will 
be derived by successively adding the edges of G in the order determined by 
w. More precisely, the partial solution labels of the tree are in (l-l)- 
correspondence with pairs (H, w), in which Z7 is a graph with vertex set 
[n] which can be extended to at least one graph in ciRAPr-rs(g, X), and o is 
an edge-ordering of fl. The root has label (0, a), while the children of 
the vertex with label (R, o) have labels of the form (Ru {(i, j)}, 
w  + (i, j)) for some edge (i, j), where o + (i, j) denotes the extension of w  
in which (i, j) is the largest element. The problem instance label of a vertex 
u is determined by its partial solution label (& w) as follows. Let 
E = (I$, . . . . En- i) be the degree sequence of R, and define h = g - h, where 
the subtraction is pointwise. Also, let Y be the subgraph of Xv Z7 obtained 
by deleting all edges (i, j) for which either fii =gi or Ej=gj. Then the 
problem instance label of u is (h, Y). 

Note that the deletion of redundant constraints from Xu R is not 
necessary for the consistency of the tree, but it will prove useful later-in 
the proof of Lemma 5.3-that Y represents only the essential excluded 
graph. From now on, we will in fact assume that all problem instances 
(g, X> have had redundant constraints removed. In particular, this means 
that the problem instance label of the root of the tree is just (g, X). It also 
justifies our use of e(g) as a measure of input size for this problem when 
stating approximation results below. 

Now that we have a tree of derivations for R, Theorem 4.4 will give us 
an efficient almost uniform generator for R, and hence for GRAPHS, 
provided we can count these structures with sufficient accuracy. The 
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counting problem for GRAPHS has received much attention over a number 
of years, where the aim has chiefly been to extend the validity of 
asymptotic estimates to a wider range of degrees (see McKay, 1985 for a 
brief survey). The best result available to date is due to McKay, and we 
quote this below. 

Given a degree sequence g on [In] and an excluded graph X for g, 
let x=(x0, . . . . x,-r) be the degree sequence of X, and define 
yk, X) = max{ sL,,, gmaxxmax >, where g,,, = maXi gi and x,,, = maXi xi. 
We shall use y to express bounds on the degrees involved in the problem. 
Furthermore, if g,,, > 0 set 

a!) = & 1;: gi(gi- l); ,a, m = - 2eig) ,.zxgigj. I, 

THEOREM 5.1 (McKay, 1985). There exists Q positive constant r0 with 
the property that, for any problem instance (g, X) with g,,, > 0 and 
y(g, X) < e(g)/lO, the quantity 

CMg))! 
e(g)! 2e(g) nl:d g,! exp( - W - 4g)* - Ag9 X)1 

approximates #GRAPHS(g, X) within ratio exp(r,y(g, X)2/e(g)). 

Remarks. (a) Actually, McKay’s result is slightly stronger than this: 
we have stated it in a simplified form which is adequate for our purposes. 

(b) The estimate in Theorem 5.1 immediately leads to a simple 
method, suggested by Wormald (1984) and implicit in the earlier work of 
Bollobas (1980) for generating graphs whose degrees grow slowly with the 
number of edges: make gi copies of vertex i for each i, generate a pairing 
(i.e., a perfect matching in the complete graph on these vertices) uniformly 
at random, and then collapse the copies to a single vertex again. The result 
will be a multigraph on g, and the distribution over caAPHs(g, X) is 
uniform, but the procedure may fail since not all the graphs generated in 
this way will be simple or avoid X. The exponential factor in (16) can be 
interpreted as approximating the probability that a randomly chosen 
pairing yields an element of GRAPHS(g, X). It is then clear from the 
definitions of 1 and p that, provided y(g, X) = O(log e(g)), this probability 
is polynomially bounded below, so that the method is effective in this 
range. For regular graphs, this implies a degree bound of 0( (log n)“‘). 

Let us now restate Theorem 5.1 in a more convenient form. 

COROLLARY 5.2. Let Q, B be fixed real numbers with Q > 0 and 
B 2 100Q4. Then for all problem instances (g, X) for which either e(g) < B 



124 SINCLAIR AND JERRUM 

or Yk, J3 6 Q*e(g)“*, the quantity #R(g, X) can be approximated in 
polynomial time within a constant ratio. 

Proof We have already observed that #R(g, X) = e(g)! #GRAPHs(g, X), 
SO we need only approximate the latter. Note that when e(g) > B the bound 
on y ensures also that y(g, X) < e(g)/lO, so we may appeal to Theorem 5.1. 
The expression in (16) can clearly be evaluated in polynomial time and 
yields an approximation within the constant ratio exp(r,,Q4) in all relevant 
cases, except when g,,, = 0 or possibly when e(g) < B. The first case is 
trivial; to handle the second, observe that for fixed B there are only a 
constant number of instances, up to relabelling of the vertices, for which 
e(g) d B, so all counting in this range may be done exactly by explicit 
enumeration. (Alternatively, in practice any convenient approximation 
method may be used, subject to the proviso that it yields the answer 0 iff 
# GRAPHS(g, X) = 0: this property can be tested in polynomial time using 
matching techniques.) 1 

Now let us see whether Corollary 5.2 is powerful enough to allow us to 
construct a generation algorithm for GRAPHS via the reduction to counting 
embodied in Theorem 4.4. Ideally, we might hope to handle instances for 
which y(g, X) grows as Q(e(g)“*). However, this does not follow 
immediately since the relation R is no longer self-reducible when restricted 
in this way. In other words, even if g,,, and x,,, are suitably bounded, the 
tree T,(g, X) will in general contain vertices whose problem instances 
(h, Y) are unbalanced in the sense that the degrees are rather large com- 
pared to the number of edges e(h), so that we cannot guarantee reasonable 
counting estimates over the whole tree. We will overcome this problem by 
naively pruning the tree in such a way as to leave only problem instances 
which do fall within the bounds of Corollary 5.2, though we will have to 
do a little work to check that the effects of this are not too drastic. 

For any pair Q, B of real numbers with Q > 0 and B b 100Q4, we 
call a problem instance (g, X) (Q, B)-balanced if either e(g) < B or 
y(g, X) < Q?e(g)“*. If (g, X) is (Q, B)-balanced and R(g, X) # 0, then the 
pruned tree Tkp.B)(g, X) with respect to Q, B is obtained by deleting from 
T,(g, X) each vertex whose problem instance label is not (Q, B)-balanced, 
together with the entire subtree rooted at the vertex. 

Now consider defining a time-reversible Markov chain &%‘(g, X) on the 
pruned tree in precisely the same manner as in Section 4, using the 
counting estimates of Corollary 5.2. Our first claim is that the conductance 
bound of Lemma 4.2 still holds, so that .&‘$?(g, X) is rapidly mixing. To see 
this, imagine a corresponding chain on the complete tree T,(g, X) in which 
all counting estimates are within the constant ratio of Corollary 5.2: 
clearly, in this case the conductance is bounded as in Lemma 4.2. But 
JP&?(g, X) is obtained from this chain simply by deieting some subtrees 
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and, as the reader may readily verify, the removal of extremal portions of a 
Markov chain cannot decrease its conductance. Hence the bound of 
Lemma 4.2 applies to .NU(g, X) also. 

We turn now to the effect of the pruning operation on the stationary dis- 
tribution. As before, the distribution will be proportional to the “degrees” 
d(u) defined as in (9) and can be made uniform over leaves by counting 
exactly at this level. (When we speak of “leaves” of the pruned tree, we 
shall always mean those vertices which are also leaves of the original tree 
T,(g, X).) However, since we have lost some leaves by pruning, it is by no 

means obvious that the induced distribution on GRAPHs(g, X) obtained by 
forgetting the edge orderings is even close to uniform, or that the failure 
probability is still bounded. Both these facts will follow from the lemma 
below, which says that in the pruning process we lose at most a small frac- 
tion of the leaves corresponding to any graph in GRAPHs(g, X) provided 
that the constants Q, B are suitably chosen. 

LEMMA 5.3. Let 9 be a family of problem instances (g, X> satisfying 
max 1 g,,, t xmax > = O(e(g)“4) and /3 a real constant. Then there exists 
a pair of real numbers Q, B as above (which depend on 9 and /I) such 
that, for each instance (g, X) E 9 with GRAPHS(g, X) # 0, and 
each GE GRAPHS(g, X), the pruned tree Tkp,B’(g, X) contains at least 
e(g)!( 1 - e(g)-8/4) leaues with solution label G. 

We postpone the rather technical proof of this lemma until we have 
examined its consequences, which constitute the central results of this 
section. 

THEOREM 5.4. For any fixed real b’, there exists a polynomial time 
algorithm which generates elements of GRAPHS(g, X) almost untformly with 
bias at most e(g))B, provided that the degrees involved are bounded as 
maxk,,,, x ,,,I = W4g)“4). 

Proof We assume without loss of generality that fl >/O and that 
e(g) > 0. Let Q, B be real numbers satisfying the conditions of Lemma 5.3 
for the given value of /?. Assuming that GRAPHS(g, X) # 0, simulate the 
Markov chain &%?(g, X) as defined above. By the discussion preceding 
Lemma 5.3, the chain is rapidly mixing so a polynomially bounded 
simulation suffices to ensure a r.p.d. of at most e(g)pP/4. But by 
Lemma 5.3, the stationary distribution of the chain induces a distribution 
over GRAPHs(g, X) which is almost uniform with bias at most e(g))8/4, 
since e(g) 2 1 and fl> 0. The overall bias is then at most e(g))“, as 
required. Finally, again by Lemma 5.3, the stationary probability of being 
at a leaf is bounded below as in Lemma 4.1 except for an additional factor 
due to pruning of (1 - e(g))B/4) 2 t. 1 
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COROLLARY 5.5. For any fixed real /3, there exists a polynomial time 
algorithm which generates labelled k-regular graphs on n vertices almost 
uniformly with bias at most nB, provided that the degree is bounded as 
k = O(n113). 

We could of course allow the bias in the above algorithm to be specified 
as part of the input. However, there is no reason to suppose that the 
resulting generator would be fully polynomial since we can say nothing 
useful about the behaviour of the counter in Corollary 5.2 for “small” 
instances as Q and B vary. Thus the polynomial bias claimed here is 
apparently the best we can achieve in polynomial time. Note that the 
source of the bias is essentially just the pruning operation on the tree: the 
effect of the truncation of the Markov chain is exponentially small as in 
Theorem 4.4, and thus negligible by comparison. 

It remains now for us to prove Lemma 5.3. For this we require a 
preliminary technical result. 

PROPOSITION 5.6. Let Z be a random variable denoting the number of 
green objects in a random sample (without replacement) of size s > 0 from a 
population of size m 2 2s made up of g green and b = m -g blue objects, and 
let p = E(Z) = sgfm. Then for any real a > 0, 

2e ap 
Pr(Z>ap)<s - 

0 a 

Proof. Note that Z is distributed hypergeometrically with mean 
E(Z) = p as claimed. Now set r = au. If r < sg/(m -s) then the right-hand 
side of the above inequality is greater than 1 and there is nothing to prove. 
Assume therefore that r > sg/(m - s). For each i, 1 < i< s, the probability 
that the ith choice yields a green object, conditional on the preceding 
choices, certainly cannot exceed g/(m -s), since there are always at least 
m-s elements remaining in the pool. Thus for any r’ EN with r’> r we 
have 

But we have also 
r’ S 

0 
s! r’ 

r' 
&< 2 

=r'!(s-r')! r'! r’ ’ 0 

by Stirling’s approximation, so that 
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Now the function f(x) = (c/x)-‘, with c E R+, is monotonically decreasing 
for c/x < e; hence, since I’ > r > sg/(m -s), we have the bound 

and consequently 

2e ‘lc 
Pr(Z>r)6 2 Pr(Z=r’)<s - , 

c=rrl 0 c1 

as required. 1 

Proof of Lemma 5.3. By virtue of the asymptotic bounds on g,,, and 
we may choose Q > 0 such that max{ g,,,, x,,,} < (Q/4) e(g)‘/” for 

zl?%stances in the family. This implies a lower bound on B of 100Q4: 
further constraints on B will be introduced below. Note that all instances in 
the family are certainly (Q, B)-balanced. 

For problem instances with e(g) < B there is nothing to prove as no 
pruning takes place in the tree T,(g, X). So let (g, X) be an instance in the 
family with m = e(g) > B, and G be any graph in GRAPr-rs(g, X), assumed 
non-empty. In order to estimate the proportion of all m ! derivations of G 
present in the pruned tree T p*“)(g, X), we estimate the probability that a 
randomly chosen derivation of G is present. More precisely, consider the 
random process (8(1))yz 0, where R(O) = @ and, for t > 1, t7(‘) is a sub- 
graph of G having precisely t edges which is obtained from R(‘-‘) by 
adding a single edge, all unused edges of G being equiprobable. If we iden- 
tify B(‘) with a problem instance label (h (‘) Y(‘)) in the tree of derivations , 
as before, then a random derivation (a(“) is still present after pruning iff 
(h”‘, Y(‘)) is (Q, B)-balanced for 0 d t 6 m. The proportion of all m ! 
derivations of G which are present after pruning is therefore just 

(I), Y(l)) is (Q, B)-balanced) (17) 

We proceed to obtain a lower bound on (17) by showing that, for each t 
separately, (h (1) Y(l)) is almost surely (Q, B)-balanced, provided we make , 
B large enough. Clearly, this is just the event that the problem instance 
corresponding to a randomly chosen t-edge subgraph of G is (Q, B)- 
balanced. The proof divides into four stages, corresponding to various 
ranges of values of t. 

(i) If O<t <m/2, then Pr((h (‘) Ycr)) is (Q, B)-balanced) = 1. We , 
always have hk& <g,,, and y& < x,,, +g,,,, so that y(h(‘), Ycf)) < 
2y(g, X). Furthermore, for all t in this range, e(h”)) 2 e(g)/2. From our 
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initial choice of Q, we conclude that (h (I’ Yet)) is (Q, B)-balanced for all , 
such t. 

(ii) If m/2 < t d m - m5”, then Pr( (h(l), Y”‘) is (Q, B)-balanced) 2 
1 - mpB-‘/4. Recall that i!!(‘) can be viewed as a randomly chosen t-edge 
subgraph of G, or equivalently, its complement H(‘) in G as a randomly 
chosen s-edge subgraph of G, where s = m - t. Now we have 

y(h”‘, Ycr)) = max{hL& y,$&, /$,gX2} 

G ham&,,, + g,,,) d h”) Qe(g)“4. max 

Hence (h”’ Y”)) 
Qe(h(1))1/2 e(gi - l/4 

will certainly be (Q, B)-balanced if h$, < 
, i.e., if the maximum vertex degree h!$g, of the random 

s-edge subgraph H (‘) does not exceed Qs”‘m -l/4 We can estimate the . 
probability of this event using Proposition 5.6 as follows: let i E [n] be any 
vertex with gj > 0. Then if we colour green all gj edges of G adjacent to j, 
and all other edges of G blue, the random variable hj”) is distributed as the 
number of green edges in a random sample (without replacement) of s 
edges of G. We are therefore in the situation of Proposition 5.6, with 
Z = hj’), g = gj, and tail value clp = Qs”2m-‘/4, where p = sgjfm is the mean 
of hj’). The factor c( is quite large, viz., 

a-Qm”42viZQm”4>4\/i 

s’12g, max ’ ’ 
g 

where we have used the facts that s < m/2 and g,,, d (Q/4)m”4. The tail 
value itself satisfies 

QSli2 
Cr/.L= - > Qm I/16, 

m’/4 

since also s B m5j8. Proposition 5.6 therefore yields 

Pr(h!” > CI~) < s I 

where c = (2 fi/e)Q > 1. Thus the probability that any vertex degree h/(‘) 
exceeds the bound is at most m2cpm”“, which is less than m-P-‘/4 for all 
m > B provided B is chosen large enough. 

(iii) If m-m ‘I8 < t < m - B, then Pr( (h(‘), YCt)) is (Q, B)-balanced) 
> 1 - mpB-‘/4. As in (ii) above, let s = m - t and view H(‘) as a randomly 
chosen s-edge subgraph of G. In view of (i), we may assume that s<m/2. 
By definition of y, (h , (I) Y(l)) will be (Q, B)-balanced if hga, and yg’,, are 
each bounded above by Qe(h(‘))‘/4. In the case of hgh, we proceed via 
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Proposition 5.6 precisely as in (ii), only this time with tail value a~ = Qs”“. 
We find that 

since now s<m . ‘I* Further, a~ = Q.r ‘I4 3 QB114, so we get the tail estimate 

Pr(h!‘) > LX~) < s J 

Thus the probability that any vertex degree A,!‘) exceeds Qs”~ is at most 
m2(cm)-8’, where c > 0 is fixed and /?’ can be made arbitrarily large by 
suitable choice of B. By setting B appropriately, we can clearly make this 
less than rne8-l/8 for all m > B. 

A similar argument can be used to handle y!& : for a vertex i E [n] with 
gj > 0, let r(j) be the set of vertices adjacent to j in G. At this point we 
make use of the fact (refer to the definition of problem instance labels in 
the tree) that Y(‘) includes only essentid excluded edges, i.e., edges (i, k) for 
which both hj’) > 0 and hp) > 0. From this it is clear that 

yj’)< I{iEr(j):hj’)>O}l. (18) 

Now colour green all edges of G with an endpoint in r(i), and the remain- 
der blue, and again view H(‘) as a random sample of size s from the edge 
set of G. Each time a green edge is selected, it contributes at most two to 
the right-hand side of (18). Thus yj’) < 22, where the random variable 2 is 
the number of green edges in the sample, so the required tail probability 
may be estimated from Proposition 5.6 with g = xi, r(jI gi < g:,,, and 
CL~ = Qs”~/~. The bounds on s in this range imply 

cl> Qm > S m'132, 
2s3'4d,ax Q 

and crp 3 QB”“/2, so that 

Pr( y!‘) > 2ap) < Pr(Z > CI,U) < s J 

Exactly as above, this ensures that the probability that any vertex degree 
y!‘) exceeds Qs114 is at most m -p-‘/8 for all m > B, provided we make B 
lirge enough. Combining the bounds for I$!,& and y!&, we arrive at (iii). 

(iv) Iftarn-B, then Pr((h”‘, Y(‘) ) is (Q, B)-balanced) = 1. This is 
true by definition, since e(h”‘) = m - t < B. 
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In view of (i)-(iv), the probability of the conjunction in (17) is now 
easily seen to be bounded below by 1 -me8/4, as claimed in the 
lemma. 1 

We conclude our discussion of graphs with specified degrees with some 
remarks on the counting problem. The reduction in (Jerrum et al., 1986) 
from approximate counting to almost uniform generation mentioned at the 
end of Section 4 may be viewed more generally as a means of 
approximating the number of leaves in a rooted tree T given an almost 
uniform generator for the leaves in the maximal subtree rooted at any ver- 
tex. For any such subtree S, let L(S) denote the number of leaves in S. The 
idea is to generate leaves of T almost uniformly and compute the fraction s 
of the sample which belong to the subtree S rooted at some suitably chosen 
child of root(T): this will be a reliable estimate of the true fraction if the 
latter is not too small and the sample is large enough. An estimate of L(T) 
is then obtained by recursively estimating L(S) and multiplying the result 
by SK’. The aggregate of the sample sizes required to achieve an 
approximation of L(T) within ratio 1 + E with high probability is bounded 
by a polynomial function of c-’ and the depth m and maximum degree of 
T, assuming the generators have bias at most about E/m. 

Now consider the situation of Theorem 5.4: can we apply the above 
technique to estimate the number of leaves in the pruned tree TkQ,“)(g, X)? 
Note first that an almost uniform generator for the leaves in any maximal 
subtree S is available since we may simulate just this portion of the 
Markov chain .@Z(g, X), transitions out of S being censored. Moreover, 
the reduced chain clearly inherits the rapid mixing property, so the 
generator will be efficient provided only that the subtree has sufficiently 
many leaves. It is not hard to see that, by modifying slightly the method in 
(Jerrum et al., 1986, Theorem 6.4) for selecting a subtree for the recursion, 
we can ensure that this condition always holds with high probability. 

Choosing E = mP8/4 for some PER, we therefore get a randomised 
approximate counter which estimates the number of leaves in Tkpg”)(g, X) 
within ratio 1 + m -“/4 in polynomial time. But by Lemma 5.3 this number 
itself approximates m! #GRAPHS(g, x) within ratio 1 + m-‘/2, so we are in 
fact able to approximate #GRAPHS(~, X) within ratio 1 + m --’ in 
polynomial time for any desired p E R. We summarise this discussion in our 
final theorem. 

THEOREM 5.7. For any fixed real & there exists a polynomially time- 
bounded randomised approximate counter for GRAPHS within ratio 
1 + e(g) -B, provided that the degrees are bounded as max( g,,, , x,,, } = 
O(4gP4). 
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Theorem 5.7 implies the existence of a polynomial time algorithmic 
method for computing the number of labelled graphs with specified degrees 
(assuming that these are not too large) with a relative error which is 
smaller than any desired power of the number of edges. The asymptotic 
behaviour of such a counter thus compares very favourably with available 
analytic estimates, such as Theorem 5.1. While this is a remarkable 
theoretical result, we suspect that the various powers and constants 
accumulated in the reductions will render the method impractical if a high 
degree of accuracy is required. 

Finally, we should observe that the counting problem for GRAPHS is 
apparently hard to solve exacfly even under the degree restrictions imposed 
in this section, so that the approximation approach pursued here is 
justified. More precisely, we can say that the problem of evaluating 
#GRAPHS for instances (g, X) whose degrees are bounded as 
max 1 gmax y ha, } = O(e(g)li4) is #P- complete. To see this, note first that 
there is a simple reduction from the well-known #P-complete problem of 
counting perfect matchings in a graph G, under which the excluded graph 
X is the complement of G and the degree sequence is (1, 1, . . . . 1). The 
#P-completeness of the restricted version follows from the fact that the 
former problem remains #P-complete even for very dense graphs G, 
specifically when G has minimum vertex degree n - O(n’14), as can be 
shown using a reduction of Broder (1986). 
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