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We compute tight lower bounds on theg—Sobolev con-  on the spectral gap (Theorem 4.4) alag—Sobolev con-
stant of a class of inductively defined Markov chains, which stant (Theorem 5.4) of—recursive Markov chains. Our
contains the bases—exchange walks for balanced matroidapproach yields a tight bound on spectral gap for the ran-
studied by Feder and Mihail. As a corollary, we obtain im- dom walk on the Boolean cube (cf. Example 6.3). Further-
proved upper bounds for the mixing time of a variety of more, our bound oog—Sobolev constant for the cube is
Markov chains. An example: the “natural’” random walk within a factor 4 of the spectral gap. Thus, owing to a result
on spanning trees of a gragh as proposed by Broder — by Rothaus [19], our bound on thez—Sobolev constant is
which has been studied by a number of authors — mixes intight up to a constant factor.
time O(mnlogn), wheren is the number of vertices af Both spectral gap anldg—Sobolev constant of the cube
andm the number of edges. This beats the best previouswere already known by other methods [5]; however, the ad-
upper bound on this walk by a factaf. vantage of our “hands—on” approach is that it is robust and
extends tor—recursive Markov chains in general. Since
the log—Sobolev constant is more tightly related to mix-
ing time, as measured by convergence to stationary in total
variation distance, we obtain mixing times that are tygical

The most successful approach in recent years to sam-aboutO(k) shorter than those currently known. Herés
pling combinatorial structures (and hence estimatingrthei the roughly the “dimension” of the Markov chain, or the
number) has been Markov chain simulation. This technique depth of recursion defining it.
is the basis of the so—called Markov chain Monte Carlo  As a specific example, consider the “natural” ran-
method. In order to obtain useful performance guaranteesdom walk on spanning trees of a graphas defined by
it is important to have tight bounds on the convergence ratesBroder [3]: Suppose the current spanning tree (staté); is
of the Markov chains in question to equilibrium. Ourinter- choose an edge € E(G) and anotherf € T uniformly
est in this article is in a class of inductively defined Markov at random (u.a.r.); iff” = T U {e} \ {f} is a spanning
chains, which we call#-recursive”. This class will be de- tree thenT” is the new state, otherwise we remainZat
fined precisely in Section 3, but, roughly speakingr-a (This is a special case of the bases—exchange walk for ma-
recursive Markov chain is one that is either trivial or can troids mentioned earlier.) We show that the mixing time
be decomposed into two-recursive (sub-) Markov chains,  of this random walk isD(mn log n), wheren is the num-
such that the transitions between the two chains support aber of vertices ofG andm the number of edges. As far
matching of a certain kind. as we are aware, the best previously known bdunds

The paradigmatic example of a—recursive Markov — O(mn?logm), established by Feder and Mihail.
chainis the Boolean cube, but the class extends well beyond The rest of the paper is organised as follows. In Sec-
this simple case to cover, for example, the “bases—exchangdion 2 we give definitions of spectral gap ahg—Sobolev
walk” (Alg. 6.1) on balanced matroids studied by Feder and constants and how they result in bounds on mixing time.
Mihail [7]. The main results of this paper are lower bounds Section 3 defines the above mentionedecursive Markov
chains. In Section 4 lower bounds on the spectral gap of
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such Markov chains are derived and in Section 5 lower is an entropy like quantity, with

bounds on théog—Sobolev constant.
applications of the results found in Section 4 and 5.

2 Spectral gap, log—Sobolev constants and
mixing time

Unless stated otherwise, let throughout the pajer=
(Xo,X1,X2,...) be a time-reversible, irreducible and
aperiodic Markov chain on finite state spa@ewith tran-
sition kernel P(x,y). SinceM is finite, irreducible and

Section 6 contains

1 llom = [ D |f(@)Pm(z
€N

Formally, thelog—Sobolev constant resembles the definition
of thespectral gap

Em(f f) .
gy Va1 %0},

f Q@ — R, of the chain, wherévar,(f) is variance
with respect to (w.r.t.) probability distribution. But while

Aar = inf
M nfl{

aperiodic, it is also ergodic and has a unique stationary dis Spectral gap can be regarded as the difference between the

tribution . Furthermore,

Pt(xvy) = Pr(Xt =Y | Xo = I)a

the probability that aftet steps the chai/ is at statey
if it was initially at statex, converges toward the stationary
distribution, i.elim;_. P*(z,y) — =(y) forall z,y € Q.

first two largest eigenvalues of the transition kerRék, y),
there seems to be no analogous interpretationlégr
Sobolev constants. The bounds on mixing time using spec-
tral gap andog—Sobolev constants [5] are:

o 2+ log[l/m]
- 2

For the Markov chain Monte Carlo method to be of any .4

practical significance, the Markov chaid has to con-
verge quickly towards its stationary distribution. Thelear

est techniques for bounding the rate of convergence (or mix-

< 4 + loglog[1/m,]

o (1)

ing time) were coupling [1] and conductance [14]. Since Wherer. = mincq {r(z)} (we dropped the subscripts
then, an abundance of work has been carried out and we reof @ and as they were inessential). OSuppose thanea-
fer readers to survey articles such as [16] and [12] and theSures inputsize, then typically'r, = 2°("); thus using (1)

references given therein. This might be particularly hellpf

gains a factor of1/ logn whenever\ anda are of simi-

to readers unfamiliar with this area since here, we will only 1ar magnitude. It has been shown that< A/2 (see [19],

mention concepts immediately relevant for this paper.
Given two probability distributions: and ¢ on state
space? their total variation distances

1
e = Cllpy = 5 > lue) -
e

There are various definitions ofiixing timer. Here let it
be defined as

= i t : Pt ) — < -1 .
T r;leaécmm{ >0:||P(z, ) — 7Ty <e }

[5]). However, in contrast to spectral gap, log—Sobolewcon
stants are notoriously hard to compute. But in the few cases
where both spectral gap anes—Sobolev constant are ex-
plicitly known the above bound has proven to be amazingly
tight: for the symmetric two—point space, the Ornstein—
Uhlenbeck process dk or the standard diffusion on the-
spheren = \/2 (see [2], [8], [9]). A diffusion wherex =

A/4 is given in [15]. On the other hand, cases are known
wherea < A. Examples are random walks on generic
regularr—graphs (see [5]) or complete graphs (see [11]).
Very recent work [11] shows how quantities that are easier

Among the various techniques for bounding mixing time to compute, e.g. spectral gap or conductance, can be used
are spectral gap and logarithmic—Sobolev constants. Theto lower boundlog—Sobolev constants. Here, we will di-

logarithmic Sobolev constant of a chaii is defined as

. Em(f, f)
comsp (B2 ein ).
wheref : Q — R,
Enlf f) =5 3 (@)~ fw)Pn@)P,y)
z,yEeN

is the Dirichlet—form with respect to the Markov chali
with transition kernelP and stationary distributiont, and

£)= Y #(@)Pe(e)og LO°

zeN ||f||27r

rectly compute the spectral gap alg—Sobolev constant

of m—recursive Markov chains and show that our bound on
the log—Sobolev constant is sometimes tight up to a con-
stant factor. This is achieved by splitting the chain up into
two sub—chains and applying induction to obtain the desired
result. Other work where decomposition yields bounds on
spectral gap antbg—Sobolev constant is [4] and [17].

3 m—recursive Markov chains

Let G = (V, E) be an undirected graph. The subgraph
G of G induced by a subset C V has vertex sef and
edgesEs = {{z,y} € E | z,y € S}.



Let M = (2, P) be a Markov chain. Recall that we
stipulated thail/ be finite, time—reversible, irreducible and

4 Spectral gap ofr—recursive Markov chains

aperiodic. Hence, it converges towards a unique stationary

distribution, sayr. For.S C ( therestriction chainof M
on S is the Markov chain\/s = (.S, Ps) with

P(z,y) ifx,yesS x#y
1—=> ves P(z,y) ifz=y.

PS (LC, y) = {
YyF#T

Notice thatM = M. SinceM is time—reversible, it fulfils

thedetailed balanceondition, which says that

m(z)P(x,y) = n(y)P(y, x) forall z,y € Q.

This condition is extremely useful because if a probability
distribution;, meets detailed balance, thens a stationary
distribution. Now observe that if/s itself is irreducible,
then its unique stationary distributionis, whererg(z) =
n(x)/m(S) forz € S andn(S) = > cgm(x); thisis
becauserg fulfils detailed balance (or equivalentl\s is
time—reversible with respect tey).

Observe thatV/ is equivalent to a random walk on an
undirected graptG = (V,E) with V. = Q andE =
{{z,y} | P(z,y) > 0} where for current vertex the sub-
sequent vertey is chosen with probability’(z, y). CallG
theunderlying graph ofM. Let A # (), A # () be a bipar-
tition of Q. The set ofcrossedges’ (A4, A) C FE is the set
of edges with one endpoint iA and the other ind. Any
assignmenty : C(A, A) — R satisfying

S w(z,y) =malx) and Y wlz.y) = 4(y)

yEA €A

is a m—matching. The graphG is called =—matchableif
there exists a bipartitiom, A that allows ar—matching.
The breaking up ofG into the disjoint subgraphs: 4
and G ; such thatA, A allows ar—matching is referred
to as asplit (of G) (or alternatively we say that is split
into G 4 andG z). By aseries of splitsve mean a sequence
G = Gg,,Gs,,... ,Gs, = Gg, l € N, where eaclGg,,

i = 2...1, is obtained by splittingzs, , andGg is said
to be obtainedby a series of splits. A Markov chaif/

is m—recursive orG if:

1. Qis of sizel, or

2. G is m—matchable and iz is split into, sayG 4 and
Gz, thenM 4 is w4—recursive orG 4 andM 5 is mz—
recursive or 5.

A prototypical example is the random walk on the Boolean
cube.

Our ultimate goal is to establish a lower bound on the
log—Sobolev constant. However our approach is more eas-
ily understood in the context of spectral gap. So we con-
sider this parameter first, on the one hand as a warm up
exercise, on the other as a benchmark for our bound on the
log—Sobolev constant.

Suppose thal! = (Q2, P) is m—recursive on an under-
lying graphG = (Q,E). The main result of this sec-
tion is a lower bound on the spectral gap &f (Theo-
rem 4.4). The idea of the proof is to find a valtg,
st.E&u(f, f) > AuVarg(f) forall f : Q@ — R. Then,
from the definition of spectral gap\y; > Ay is an im-
mediate consequence. We will find such a valug by
decomposition/induction.

The first ingredient is the observation that variance and
Dirichlet form can be split up w.r.t. a partition of the state
space:

Lemma4.1l Let A, A be a partition ofQ2, f : & — R
and a probability distribution ort?, then

Var, (f) = W(A)Va’rﬂ'A (f) + W(A)Varﬂ'A’ (f) + ctvar, (f)a

where

ctvar, (f) = 7(A)m(A) (Br, [f] — Ex,[f])?

is aweighted crossterm,

Er,lf] =) ma(@)f (@),

Var,, (f) = Z ma(2) (f(x) = En,[f])?

TEA

are expectation and variance w.rt,4, and similarly for
Ex [flandVar,  (f).

Proof. Despite the fact that the lemma is standard knowl-
edge now, we will include a proof for the sake of complete-
ness. A proof of

Varr(f) = m(A)Varr, (f) + m(A)Varz, (f)
+7(A)(Ex, [f] — Ex[f])?

+ W(A)(EMX [f] = EW[f])z



can be found in [13]. Now, observe that

m(A)(Er, [f] = EW[f])2 + W(A)(EWA [f] - EW[f])z
= 1(A)(Er, [f] = 7(A)Er, [f] — 7(A)Ex . [f])?
+ 7(A)(Er, [f] = 7(A)Er, [f] — 7(A)Ex [f])®
= 1(A)(1(A)Er, [f] = 7(A)Ex,[f])?
+7(A)(1(A)Er, [f] = 7(A)Ex, [f])?
= 1(A)m(A)*(Er,[f] — Ex,[f])?
+ 1(A)m(A)* (B 4 [f] — Exa[f])
= m(A)m(A) (B, [f] = Er, [f])?
O
Similarly,

Lemma 4.2 For a partition 4, A of Q, f : & — Rand a
probability distribution on Q

Em(f ) = m(A)errs (f, F) + 7(A)Enr, (f, f) + ctey (f),
wherecte,, (f) = 3 zca (f(z) — f(y))*m(2)P(z,y).

yeEA

Proof. As before, the lemma is standard and the proof in-
cluded for the sake of completeness. Observe that given a

partition A and A the Dirichlet form can be rewritten as

Eulf ) =5 3 (@)~ fw)n@)P,y)
z,yeA
+5 Y (@) = F)Pr(@)P(,y)
LyEA

+) (f(@) = f(y)*n(2)P(e,y).

Since

1

m(A)ema(f. ) =5 > (f@) = f(y)m(2) Pl,y)

z,y€A
and
r(Aeny (1) = 5 3 (@) = F@)*n(@) P, ),
x,y€A

the lemma holds. O
The following lemma is the main stepping stone for the
induction in Theorem 4.4.

Lemma 4.3 Assume that\/ = (2, P) is a finite, time—
reversible, irreducible and aperiodic Markov chain with
stationary distributiont on a m—matchable graphG =
(Q, E). Then

ctey (f) >2 min {P(*Tvy)}CtVarﬂ (f)
z,y}EE

{z.y

Proof. SinceG allows ar—matching, there exists a bipar-
tition A, A and an assignment such thatr(z)/7m(A) =

S yeaw(@,y) and thusEy,[f] = ecy w(z,y)f (@);
similarly for Ex . [f]. Thus:

CtVar,r (f)
= 7(Ar(A) (X Va9 (@)~ [y )

T€A
yeEA

Observe thaEmeg w(z,y) = 1. Applying the Cauchy—
Schwarz inequr:llity yields:

Ctvar, (f) < T(A)T(A) Y wz,y)(f(z) — fy))*.

T€A

yeA
Thus, to complete the proof it suffices to find a facjauch
that

nr(A)m(A) Y wia,y)(f(@) = f(y))*

z€A
yeEA

< Y w(@)Pla,y)(fa) = f(y))*

z€A
yeEA

Observe that sincé/ is time—reversible, we can always

chooseA such thatr(A) < 7(A). Furthermorew(z, y) <
Yyeaw(z,y) = 25 Thus
i (@)
m(A)r(Aw(z,y) < 7(A)r(A)
m(A)
1 m(x)P(z,y)
< —7(x - .
=3 S S P y))
This shows that our claim is valid fornp =
2ming, yep{P(z,y)}. O
The significance of Lemma 4.3 is that

2ming, yep{P(z,y)} is exactly the valuel, we

were looking for, i.e. it satisfie§y; (f, f) > A Varg(f)
forall f: Q2 — R. Thisis made rigorous next.

Theorem 4.4 Given a finite, time—reversible, irreducible
and aperiodic Markov chaid/ = (2, P) with stationary
distribution 7 on a graphG = (Q, E)) such that) is m—
recursive onz. The spectral gap ao¥/ is lower bounded by
twice the minimum transition probability 8, i.e.:

v > 2{$rr£réE{P(x,y)}
Proof. It suffices to show that for any : Q@ — R
and for all S C Q where Gg is obtained by a se-
ries of splits of G the following holds: &y, (f, f) >
2ming, yep{P(z,y)} Vary (f). The proof is by in-
duction on the size of the state space of the restriction



chainMg = (S, Ps). For|S| = 1 the varianc&/ar,,(f) =
%Zmes(f(x) — f(y))*ns(z)ms(y) = 0 and the induc-
tion hypothesis is trivially true.

Assume thaiS| > 1 and Mg has stationary distribu-
tion Tg. SinceM is m—recursive or, the chainMg is mg—
recursive onGg. Thus there is a split affs into, sayG 4,
Gi. By Lemma 4.2:En,(f, f) = ms(A)Em,(f, f) +
ms(A)En; (f, f) + ctey (f) which is by induc-
tion hypothesis greater tharRming, {P(z,y)} x
(ms(A)Vary, (f) + ms(A)Varg (f)) + ctey, (f). By
Lemma 4.3: cte, (f) > 2ming yep{P(r,y)} ¥
ctvar, (f).  Thus, applying Lemma 4.1 we obtain:
Ents (f, f) = 2min{w,y}eE{P(xvy)}Var‘rrs(f)- i

Remark: An unnatural feature of Theorem 4.4 (and
later Theorem 5.4) is that the existence of one single low-
probability transition is enough to degrade the bound. What
we mean is the following: led/ = (9, P) be a Markov
chain whose transition probabilities are similar in size
(i.e. differ by at most a small constant factor). We define
a “perturbed chainM ' = (2, P') whose transition proba-
bilities agree with)/ except between a pair of distinguished
statesr andy. For this pairz, y, we arrange thaP(z,y) =
P(y,z) = 0 while 0 < P'(z,y), PT(y,z) < 6, where§
is some small value much less thain, ,\cz{P(z,y)}.
(The stationary distribution may be retained by choosing
Pt(z,y) and P(y, z) to satisfy detailed balance.) Then
our bound forh,;+ is much smaller than that fox,,, even
though the spectral gap df/ is actually slightly larger
than that ofM. This is counter—intuitive since the addition
of a tiny extra edge should not have such a huge impact.
This paradox can be resolved by a closer look at the proof
of Lemma 4.3 and Theorem 4.4. Both continue to hold if
2ming, yep{P(z,y)} is replaced by

min w(x)]i(x, y)
{eyyec(ad) n(A)m(A)w(z,y)

()

Thus, the tiny transition probability can be compensated
for as long as the—matching does not assign it significant
weight. In general, this will apply whenever a vertex is inci

chains. As before, we assume that = (2, P) is m—
recursive on the underlying grapi = (Q, E) (Theo-
rem 5.4). Again, we will identify a valué,; such that

if Gs is obtained by a series of splits&y, (f, f)
apLqg(f) forall f: Q@ — R. The approach is along the
same lines as the proof of Theorem 4.4. Similar to variance
and Dirichlet—form, the entropy—like quantii;. (/) can be
split up with respect to a bipartitiod, A of Q.

Lemmab5.1

Lr(f) = m(A) Ly () + m(A)Lr i () + cte,. (f),

where
I£15.
cte, (f) = m(A) [ f]5.., log ~——5"4
I£15.
- HfHQTr
(A)||£1l3 -, log A
R TTH
is aweighted crossterm,
£l —ﬁ]f o) (e
€A
and
2
X
Z|f | 7TA lOg |f(2)|
x€EA ||f||2,7TA

and accordingly for| f[|, .. - and Lz (f).

Proof. Again, the proof is standard and included merely for
the sake of completeness. Recall that

=Y If(@)

e

@)
I .
e he

3)

Splitting up (3) with respect tel, A yields

dent to more than one edge of the cut. Thus, an alternative

formulation of Lemma 4.3 and Theorem 4.4 involving (2)
will be closer to the truth. However, later on we will only
be dealing with Markov chains whose transition probabil-
ities are uniform, i.e. all non—zero transition proba@kt
are identical, and for those chains the current versions of
Lemma 4.3 and Theorem 4.4 are sufficiently well suited.

5 log-Sobolev constant of w—recursive

Markov chains

A similar inductive proof can be used to obtain a lower
bound on théog—Sobolev constant af—recursive Markov

= > 1f (@) w(@)log | f ()|
€A
+ > 1f (@) w(@) log | £ ()

z€A
2 2
=112 og [ £115 x -

Notice that||f||§,ﬂ =m(A)|Ifl3.., + (A |3, and

> 1f(@)

z€A

x)log | f(x)I”

= 1(A)Lrn(f) + 7(A) [ f1I3, Jog 1 fll5 ., -



Then

L(f) = 1(A) Ly (f) +7(A)Lr, (f)
+ (A1 £152, log [1£15
+7(A) I£113,5  Log 1 £115 .

—log || fI5.. (w(A) [ £15 ., + (D) I £13.., )

and observe that this is merely an alternative formulationo  , is time—

the claim.

Section 4 related the crossterms of Dirichlet form to vari-

and the second one

> (f@) = fy) w(z,y)

z€A
yEA

2 2
2y = I1f1l2, )2
. :
I1f112,7

As regards the first inequality, observe the following. ®inc
reversible w.r.twr, we can choosel such that
n(A) < 7w(A) without affecting the very first inequality
which upper boundst,_(f) and remember thad/ al-

> m(A)m(A)

(4)

ance. Now, we have to relate the crossterms of Dirichlet |5, ar—matching betweenl and A such thatu(z, y) <

formandl.(f).

Lemma 5.2 Assume thatV/ = (2, P) is a finite, time—

reversible, irreducible and aperiodic Markov chain with

stationary distributiont on a r—matchable graphG =
(Q, E). Then

ctey, (f) > II;i}IéE{P(x,y)}Ct/;ﬂ (f)

1
2 {x,
Proof. Let A, A be a split ofG. Usinglnz < z — 1 we
obtain
2 2

Hf||277rA - ||fH2,7r
1115,
112, = 1115

1F 13,

cte, (f) < W(A) ||fH§,ﬂ'A

(A) |12,

since|| I3 . = 7(A) | fI5 ., + 7(A) [ f]3 ., we see that
the right—hand side of the above inequality is equal to

A 13m0 = 1£137,)°
Ifl5m

Itis then enough to show that

7(A)m(A)

U150 = 1150 )2
1£15 '

(x

dyeaw(z,y) = =OVE Thus,

m(z)

27 (x)P(z,y)
A 27(z) <

B min{r,y}eE{P(xay)} .

IN

w(z,y) <

3

This establishes the first inequality. To finish the proof
we must show that the second inequality (4) is valid. Set
Fy = Y calf(x)|?n(x) and F; analogously, then the

= 2
it (AT(A) ((Fa _ Fx
RHS turns int FatFo) (ﬂ(A) ﬂ(A)) . Observe that

Y (f@) = fy) w(z,y)

z€EA
yeEA

Fa .
=2 2 ; f@) fyw(z,y) + Tﬁ)'

According to the Cauchy—Schwarz inequality

X wl\xr wlxr ﬂ
;f( )W w(@,y) f(y)v/w( ,y)s,/W(A)W(A)

yEA

and so

2
) ule | Fa _ | Fa
;(f(x) @) <,y>z< A W(A)>.

It therefore suffices to show that

| Fa Fx 2> m(A)m(A) ( Fa  Fi >2
w(A) m(A) T (Fa+ F3) \nm(A) w(A)

This can be done with the help of two intermediate inequal- Which is equivalent to

ities. The first is

FA_FAQ o Fa Fi
( =V w<A>> > ) (6~ 7ch)

where F'4 + F; has been normalised tb. Below, in
Lemma 5.3 we will show that the last inequality is valid,
which concludes the proof of Lemma 5.2. O



Lemma 5.3 Letz, y € (0,1). Then

(i) -so-n G-

Proof. The claimed inequality is equivalent to

1—=z

>
1—y 0

;

and hence to

Sincex, y € (0,1), inequality (5) is equivalent to

\/x(l —y)+ \/y(l —z) <1.

Then user = cos?a andy = sin?b for a, b € R to con-
clude the proof. O
We can now formulate the main result

(5)

Theorem 5.4 Given a finite, time—reversible, irreducible
and aperiodic Markov chaid/ = (92, P) with stationary
distribution 7 on a graphG = (Q, E) such thatM is 7—
recursive onG. The logarithmic Sobolev constant f is
lower bounded by half the minimum transition probability
of M, i.e.:

min {P(z,y)}.

1
M= eyer

Proof. The proof is of a similar flavour as the proof of The-
orem 4.4. It is carried out by induction on the size of state
spaces of restriction chains 8f. Let Mg = (S, Ps) with
stationary distributionrg be a restriction chain on underly-
ing graphGs = (5, Es) obtained by a series of splits 6f.

If |S] 1, then wg(x) 1 forz € S, in
which casel 3, s (f(2) — f(y))*s(x) Ps(z,) > & x

miny,y)ep{P(7, 1)} Caes |f (@) 7s(w) log 5
0 is trivially true. o
Inductive step: AsMg is wg—recursive, the underly-
ing graphGgs can be split into two non-empty set
and A such that: Eu(f, f) ms(A) e, (f, ) +
ms(A)En, (f, ) +cte,, (f). By induction hypothesis this
is greater thani ming, ,yep{P(z,y)} (7s(A)Lx, (f) +
75(A)Lr 4 (f)) + ctey, (f). By Lemma 5.2 this in turn
is greater thani ming, ,yep{P(z,y)} (7s(A)Lx, (f) +
75(A) Ly, (f) + cte, (f)) and finally using Lemma 5.1:
5JV[S (fa f) > %mln{w,y}eE{P('Tvy)}‘Cﬂs(f) O
Remark The bound on thdog—Sobolev constant we
state here is nearly tight in that any significantimprovetnen

specifically by a factor greater th&nwould implicitly lead

to an improvementin the bound drstated in Theorem 4.4,
(This follows from the known inequalityy < A/2 [19],
[5]). But the bound in Theorem 4.4 is tight, e.g in the case
of the hypercube.

6 Application

In this section we will discuss some applications of The-
orem 4.4 and Theorem 5.4. The applications we have in
mind are random walks on bases—exchange walks on bal-
anced matroids.

6.1 Balanced matroids

Matroids are algebraic structures that capture the concept
of linear independence. Formally, a pait = (S, Z) with
a finite ground sef and independent sefsC 2° forms a
matroid if

1. 0eZ,
2. fAeZandB C AthenB ¢ Z, and

3. if A,B € T and|B| = |A| + 1 then there exists ¢
B\ Asuchthatd U {e} € .

A matroid can be entirely defined by its set of maximal
independent sets drasesB C 2° (sometimes we will
use B(M) to denote the bases of a matrald or con-
versely M(B) to denote the matroid with bas#&y. Bases
possess the following two properties:

1. all bases are of the same size, namelyrérk of M
and

2. for every pair of basesX,Y € B and every ele-
mente € X there exists an element € Y s.t.

(X \{eph)u{s}teB.

The properties of matroid bases suggest a very natu-
ral random walk onB. Define the bases—exchange
graphG(M) = (B, E) as the undirected graph with ver-
tex set3 and two verticesY, Y € G(M) are connected by
an edge iff X @ Y| = 2, i.e. only one element aX is not

in Y and vice versa. In future, we will call every random
walk on the bases—exchange grapgteaes—exchange walk
As an example take the following random walk:

Algorithm 6.1 Let X be the current basis. We move on to
basisX’ according to the rule
1.) Choose a ground set elemeraind an elemenft € X

u.a.r.
(X\{fHu{e},

2.) If(X\{f})u{e} € B, then setX’
otherwise letX’ = X (stay at the current basis).



Next, we introduce two important operations on matroids.
For a ground set elemeatc S the matroidM \ e obtained

by deletinge has ground sef (M \ e) = S\ {e} and set of
base3(M \e) = {X € B | e ¢ X}. The matroidM /e
obtained bycontractinge has ground sef (M /e) = S\{e}
and set of baseB(M/e) = {X \ {e} | X e BAe € X}.
Any matroid obtained from\ by a series of contractions
and deletions is eninor of M.

Let X be a basis chosen uniformly at random (u.a.r.)
from B ande € S a ground set element. With abuse of no-
tation, lete denote the event € X ande the event ¢ X;
juxtaposition expresses the conjunction of events,djfe.
means ¢ X A f € X. A matroid isnegatively correlated
if the inequalityPrle f] < Pr[e]Pr[f] holds for all pairs of
distinct elementg, f € S. We say that a matroidM is
balancedf M and all its minors are negatively correlated.
All regular (and thus graphic) matroids are known to be bal-
anced. Feder and Mihail introduced the notion of balance
and showed that Algorithm 6.1 on balanced matroids has
mixing time polynomial in the rank and size of ground
setm, i.e., is rapidly mixing (cf. [7]).

6.1.1 Fractional matchings

In the same paper ([7]), Feder and Mihail discovered that
vertices of the bases—exchange grapi\) of every bal-
anced matroid have a natural bipartition intg A4, such
that the transitions betweeft and A support afractional
matching Let A and A be the natural isomorphic copies
of B(M \ e) and B(M/e) in M respectively for some
ground set element. A fractional matching is a func-
tiony : A x A — N assigning integer weights to the cutset
(the edges of: (M) spanningA and A) such that

VxEAzzw(x,y): |4
yeA

and

Vye A: Y (x,y) = Al

z€A

Note that ifr is uniform overA and A, then the probability
distribution

Y(z,y)
A4

Pw:<(x,y)»—> >:A><A—>[O,1]
on the cutset is a—matching.

6.2 Spectral gap and log—Sobolev constant of bal-
anced matroids

Let M = (B, P) be a bases—exchange walk with con-
stant transition probabilities, i.e?(z,y) = pif z # y

andz ~ y, i.e.z andy are connected by an edge, and
Pz,z) = 1-3 1, 1epPlz,y) > 0 (so that the chain

is aperiodic), on a matroid4(B) andG(M(B)) = (B, E)

the underlying bases—exchange graph. Note ais fi-

nite and irreducible; thus it has unique stationary distri-
bution 7. Since M fulfils the detailed balance condition
(i.e. is time-reversible) w.r.t. the uniform distribution 5,

the stationary distributiom must be the uniform distribu-
tion on B. Observe that ifM’ with basesB’ is a minor

of M(B), then the restriction chaiflp is time—reversible
with stationary distributionl/ |[B’|. Furthermore ifM is

a balanced matroid, then every fractional matching gives
rise to a‘—él—matching with weight$, (-, -). These obser-
vations show that the bases—exchange wdlk= (B, P)
with constant transition probabilities %‘—recursive on the

bases—exchange gr&ph

Corollary 6.2 Let M = (B, P) be a bases—exchange walk
with constant transition probabilities, i.eP(z,y) = p if

v #y v ~yandPz,z) =1-3 cpP@y >

0, on a balanced matroidM (B) with bases—exchange
graph G(M(B)) = (B, E). The spectral gap antbg—
Sobolev constant dff are lower bounded by:

Av >2p  and  ay 2]2)

Proof. Apply Theorems 4.4 and 5.4. O
We will give two example applications of Corollary 6.2:

Example 6.3 Random walk on a hypercube:

Consider thel-dimensional hypercube. The vertices can be
denoted byd-tuples from{0, 1}¢ and edges connect ver-
tices whose Hamming distance Iisi.e. tuples that differ

by exactly one entry. Consider the random walk with
transition probabilitiesP(z,y) = 1/(d + 1) wheneverz
andy are connected by an edge. This random process has
been studied quite extensively before (see [6] and the ref-
erences given therein) and has uniform stationary distribu
tion 7(x) = 1/2%. Itis already known that the walk on the
hypercube has spectral gap= 2/(d + 1) andlog—Sobolev
constanty = 1/(d + 1) (see [5] and [6] for a discussion).
There are several ways to see that this Markov chair-is
recursive. The easiest way is to split the hypercube into two
sub—cubes of dimensiah— 1. Since each vertex of a sub—
cube has only one neighbour in the other sub—cubegthe
matching is given byu(z,y) = 2/2%. Using Theorem 4.4
and Theorem 5.4 we obtain the bountls> 2/(d + 1)

20bserve that some minors of a matroid are empty. This canempp
if the minor is obtained by contracting an element that is enbasis or
by deleting an element that is in every basis. In this casertiners do
not constitute a split. However, unless a matroid has onéy/lmasis, there
will always exist non-empty minors and thus a split of thedsasxchange
graph.




anda > 1/2(d + 1). While our bound on spectral gap  [3] A. Broder. Generating random spanning treesPceed-

is identical to the aforementioned result, our boundagn- ings of the 30th Annual Symposium on Foundations of Com-
Sobolev constant is off by the factor 2. However, for the ran- puter Sciencepages 442-447. |EEE, 1989.
dom walk on hypercubes it can be shown that Lemma 5.2 [4] P. Caputo and F. Martinelli. Asymmetric diffusion and
; the energy gap above the 111 ground state of the quantum
and Theorem 5.4 hold fat¢,, (f) > ctz, (f)/p, whichre- S : :
covers the result given in [5] by Diaconis and Saloff—Coste. 2)20&%2;;%7(5:02'“0"8;”'(:6‘“0“5 in Mathematical Physics
The next example is more interesting. [5] P. Diaconis and L. Saloff-Coste. Logarithmic sobolev in

equalities for finite markov chains.Ann. Appl. Probah.
6(3):695-750, 1996.

[6] P. Diaconis and D. Stroock. Geometric bounds for eigen-
values of markov chainsAnn. Appl. Probah.1(1):36-61,

Example 6.4 Balanced matroids:

Let M be a matroid of rankn on a ground setS of

sizem. Assume that transitions are done as specified in 1991.

Algorithm 6.1. For the sake of simplicity add self-loops  [7] T. Feder and M. Mihail. Balanced matroids. Proceedings
with probability at least /2 and reduce all other transition of the 24th Annual ACM Symposium on Theory of Comput-
probabilities by1/2, i.e. P(z,y) = 1/2mn forz ~ y ing, pages 26-38. ACM Press, 1992,

andP(z,z) = 1 — E{m e P(xz,y) > 1/2, this will [8] L. Gross. Logarithmic sobolev inequalitie8merican Jour-
ensure tha\/ is irreducible, aperiodic and time—-reversible nal of Mathematics97:1061-1083, 1976.

[9] L. Gross.Logarithmic Sobolev inequalities and contractivity

w.r.t. the uniform distribution om8. If M is balanced, then ; : . .
properties of semigroupdNumber 1563 in Lecture Notes in

appthlll‘llg Tge%relm 5.4 ylfldf tge IoweLbOltmdz Sl/énﬂin Mathematics. Springer, Berlin, 1993.
on thelog—sobolev constant. kemember M,g,_ 0 ,0 ev [10] I. Heller. On linear systems with integral valued sajas.
constants can be used to upper bound mixing time thus Pacific Journal of Mathematicg:1351-1364, 1957.

by (1) we obtain: < O(mn(logn + loglogm)). This [11] C. Houdré. Mixed and isoperimetric estimates on lifye-

greatly improves on the mixing time for this walk given sobolev constants of graphs and markov chai@embina-
in [18]: 7 < O(m32n?(logn + loglogm)). Using a torica, 21(4):489-513, 2001.

result by Heller [10] which says that faimple regular [12] M. Jerrum. Mathematical foundations of the markov
matroids, i.e. regular matroids with no parallel elements, chain monte carlo method. In M. Habib, C. McDiarmid,
m < n(n + 1) we can infer that for regular matroids with J. Ramirez-Alfonsin, and B. Reed, editoirobabilistic

Methods for Algorithmic Discrete Mathematigsmges 116—

only a constant number of parallel elements= O(n?). 159. Springer Verlag, Berlin Heidelberg, 1998

Thus er such ”.‘3”0"?'5 our bognd on ﬂa;g—SoboIev co.n- [13] M. Jerrum. Counting, sampling and integrating. Atgo-

;tantylelds amixing time ad(n 1og T.L) forthls walk_. This rithms and ComplexityBirkhauser, Basel, 2002.

is at present the best bound on mixing time for this random [14] M. Jerrum and A. Sinclair. Approximating the permament

walk on the bases—exchange graph of regular matroids with SIAM Journal on Computingl8:1149-1178, 1989.

constant number of parallel elemehts [15] A. Korzeniowski and D. Stroock. An example in the theory
of hypercontractive semigroup&roceedings of the Ameri-
can Mathematical Societ®4:87-90, 1985.

[16] L. Lovasz. Random walks on graphs: a survey. In
Paul Erdos is Eighty (Volume 2humber 2 in Combina-
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3However, if the size of the groundset is larger, say= Q(n?), then
Feder and Mihail'smodifiedrandom walk on balanced matroids (see [7],
Theorem 5.2) withr < O(n* log m) converges faster.



