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We compute tight lower bounds on thelog–Sobolev con-
stant of a class of inductively defined Markov chains, which
contains the bases–exchange walks for balanced matroids
studied by Feder and Mihail. As a corollary, we obtain im-
proved upper bounds for the mixing time of a variety of
Markov chains. An example: the “natural” random walk
on spanning trees of a graphG as proposed by Broder —
which has been studied by a number of authors — mixes in
timeO(mn log n), wheren is the number of vertices ofG
andm the number of edges. This beats the best previous
upper bound on this walk by a factorn2.

1 Introduction

The most successful approach in recent years to sam-
pling combinatorial structures (and hence estimating their
number) has been Markov chain simulation. This technique
is the basis of the so–called Markov chain Monte Carlo
method. In order to obtain useful performance guarantees,
it is important to have tight bounds on the convergence rates
of the Markov chains in question to equilibrium. Our inter-
est in this article is in a class of inductively defined Markov
chains, which we call “π–recursive”. This class will be de-
fined precisely in Section 3, but, roughly speaking, aπ–
recursive Markov chain is one that is either trivial or can
be decomposed into twoπ–recursive (sub-) Markov chains,
such that the transitions between the two chains support a
matching of a certain kind.

The paradigmatic example of aπ–recursive Markov
chain is the Boolean cube, but the class extends well beyond
this simple case to cover, for example, the “bases–exchange
walk” (Alg. 6.1) on balanced matroids studied by Feder and
Mihail [7]. The main results of this paper are lower bounds
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on the spectral gap (Theorem 4.4) andlog–Sobolev con-
stant (Theorem 5.4) ofπ–recursive Markov chains. Our
approach yields a tight bound on spectral gap for the ran-
dom walk on the Boolean cube (cf. Example 6.3). Further-
more, our bound onlog–Sobolev constant for the cube is
within a factor 4 of the spectral gap. Thus, owing to a result
by Rothaus [19], our bound on thelog–Sobolev constant is
tight up to a constant factor.

Both spectral gap andlog–Sobolev constant of the cube
were already known by other methods [5]; however, the ad-
vantage of our “hands–on” approach is that it is robust and
extends toπ–recursive Markov chains in general. Since
the log–Sobolev constant is more tightly related to mix-
ing time, as measured by convergence to stationary in total
variation distance, we obtain mixing times that are typically
aboutÕ(k) shorter than those currently known. Herek is
the roughly the “dimension” of the Markov chain, or the
depth of recursion defining it.

As a specific example, consider the “natural” ran-
dom walk on spanning trees of a graphG as defined by
Broder [3]: Suppose the current spanning tree (state) isT ;
choose an edgee ∈ E(G) and anotherf ∈ T uniformly
at random (u.a.r.); ifT ′ = T ∪ {e} \ {f} is a spanning
tree thenT ′ is the new state, otherwise we remain atT .
(This is a special case of the bases–exchange walk for ma-
troids mentioned earlier.) We show that the mixing time
of this random walk isO(mn log n), wheren is the num-
ber of vertices ofG andm the number of edges. As far
as we are aware, the best previously known bound1 was
O(mn3 logm), established by Feder and Mihail.

The rest of the paper is organised as follows. In Sec-
tion 2 we give definitions of spectral gap andlog–Sobolev
constants and how they result in bounds on mixing time.
Section 3 defines the above mentionedπ–recursive Markov
chains. In Section 4 lower bounds on the spectral gap of

1Note that this is the best result forgeneralm andn. For particular
m andn there exist better results, e.g. [18]. Also note that themodified
random walk by Feder and Mihail can mix faster.



such Markov chains are derived and in Section 5 lower
bounds on thelog–Sobolev constant. Section 6 contains
applications of the results found in Section 4 and 5.

2 Spectral gap, log–Sobolev constants and
mixing time

Unless stated otherwise, let throughout the paperM =
(X0, X1, X2, . . . ) be a time–reversible, irreducible and
aperiodic Markov chain on finite state spaceΩ with tran-
sition kernelP (x, y). SinceM is finite, irreducible and
aperiodic, it is also ergodic and has a unique stationary dis-
tributionπ. Furthermore,

P t(x, y) = Pr(Xt = y | X0 = x),

the probability that aftert steps the chainM is at statey
if it was initially at statex, converges toward the stationary
distribution, i.e.limt→∞ P t(x, y) → π(y) for all x, y ∈ Ω.
For the Markov chain Monte Carlo method to be of any
practical significance, the Markov chainM has to con-
verge quickly towards its stationary distribution. The earli-
est techniques for bounding the rate of convergence (or mix-
ing time) were coupling [1] and conductance [14]. Since
then, an abundance of work has been carried out and we re-
fer readers to survey articles such as [16] and [12] and the
references given therein. This might be particularly helpful
to readers unfamiliar with this area since here, we will only
mention concepts immediately relevant for this paper.

Given two probability distributionsµ and ζ on state
spaceΩ their total variation distanceis

‖µ− ζ‖TV =
1

2

∑

x∈Ω

|µ(x) − ζ(x)| .

There are various definitions ofmixing timeτ . Here let it
be defined as

τ = max
x∈Ω

min
{
t > 0 : ‖P t(x, ·) − π‖TV ≤ e−1

}
.

Among the various techniques for bounding mixing time
are spectral gap and logarithmic–Sobolev constants. The
logarithmic Sobolev constant of a chainM is defined as

αM = inf
f

{
EM (f, f)

Lπ(f)
: Lπ(f) 6= 0

}
,

wheref : Ω → R,

EM (f, f) =
1

2

∑

x,y∈Ω

(f(x) − f(y))2π(x)P (x, y)

is the Dirichlet–form with respect to the Markov chainM
with transition kernelP and stationary distributionπ, and

Lπ(f) =
∑

x∈Ω

|f(x)|2π(x) log
|f(x)|2

‖f‖2
2,π

is an entropy like quantity, with

‖f‖2,π =

√∑

x∈Ω

|f(x)|2π(x).

Formally, thelog–Sobolev constant resembles the definition
of thespectral gap

λM = inf
f

{
EM (f, f)

Varπ(f)
: Varπ(f) 6= 0

}
,

f : Ω → R, of the chain, whereVarπ(f) is variance
with respect to (w.r.t.) probability distributionπ. But while
spectral gap can be regarded as the difference between the
first two largest eigenvalues of the transition kernelP (x, y),
there seems to be no analogous interpretation forlog–
Sobolev constants. The bounds on mixing time using spec-
tral gap andlog–Sobolev constants [5] are:

τ ≤
2 + log[1/π∗]

2λ

and

τ ≤
4 + log log[1/π∗]

4α
, (1)

whereπ∗ = minx∈Ω {π(x)} (we dropped the subscripts
of α andλ as they were inessential). Suppose thatn mea-
sures input size, then typically1/π∗ = 2O(n); thus using (1)
gains a factor ofn/ logn wheneverλ andα are of simi-
lar magnitude. It has been shown thatα ≤ λ/2 (see [19],
[5]). However, in contrast to spectral gap, log–Sobolev con-
stants are notoriously hard to compute. But in the few cases
where both spectral gap andlog–Sobolev constant are ex-
plicitly known the above bound has proven to be amazingly
tight: for the symmetric two–point space, the Ornstein–
Uhlenbeck process onR or the standard diffusion on then–
sphereα = λ/2 (see [2], [8], [9]). A diffusion whereα =
λ/4 is given in [15]. On the other hand, cases are known
whereα ≪ λ. Examples are random walks on generic
regularr–graphs (see [5]) or complete graphs (see [11]).
Very recent work [11] shows how quantities that are easier
to compute, e.g. spectral gap or conductance, can be used
to lower boundlog–Sobolev constants. Here, we will di-
rectly compute the spectral gap andlog–Sobolev constant
of π–recursive Markov chains and show that our bound on
the log–Sobolev constant is sometimes tight up to a con-
stant factor. This is achieved by splitting the chain up into
two sub–chains and applying induction to obtain the desired
result. Other work where decomposition yields bounds on
spectral gap andlog–Sobolev constant is [4] and [17].

3 π–recursive Markov chains

Let G = (V,E) be an undirected graph. The subgraph
GS of G induced by a subsetS ⊆ V has vertex setS and
edgesES = {{x, y} ∈ E | x, y ∈ S}.
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Let M = (Ω, P ) be a Markov chain. Recall that we
stipulated thatM be finite, time–reversible, irreducible and
aperiodic. Hence, it converges towards a unique stationary
distribution, sayπ. ForS ⊆ Ω the restriction chainof M
onS is the Markov chainMS = (S, PS) with

PS(x, y) =

{
P (x, y) if x, y ∈ S, x 6= y
1 −

∑
y∈S
y 6=x

P (x, y) if x = y.

Notice thatM = MΩ. SinceM is time–reversible, it fulfils
thedetailed balancecondition, which says that

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω.

This condition is extremely useful because if a probability
distributionµ meets detailed balance, thenµ is a stationary
distribution. Now observe that ifMS itself is irreducible,
then its unique stationary distribution isπS , whereπS(x) =
π(x)/π(S) for x ∈ S and π(S) =

∑
x∈S π(x); this is

becauseπS fulfils detailed balance (or equivalentlyMS is
time–reversible with respect toπS).

Observe thatM is equivalent to a random walk on an
undirected graphG = (V,E) with V = Ω andE =
{{x, y} | P (x, y) > 0} where for current vertexx the sub-
sequent vertexy is chosen with probabilityP (x, y). CallG
theunderlying graph ofM . LetA 6= ∅, Ā 6= ∅ be a bipar-
tition of Ω. The set ofcrossedgesC(A, Ā) ⊆ E is the set
of edges with one endpoint inA and the other inĀ. Any
assignmentw : C(A, Ā) → R+ satisfying

∑

y∈Ā

w(x, y) = πA(x) and
∑

x∈A

w(x, y) = πĀ(y)

is a π–matching. The graphG is calledπ–matchableif
there exists a bipartitionA, Ā that allows aπ–matching.
The breaking up ofG into the disjoint subgraphsGA
andGĀ such thatA, Ā allows aπ–matching is referred
to as asplit (ofG) (or alternatively we say thatG is split
intoGA andGĀ). By aseries of splitswe mean a sequence
G = GS1

, GS2
, . . . , GSl

= GS , l ∈ N, where eachGSi
,

i = 2 . . . l, is obtained by splittingGSi−1
andGS is said

to be obtainedby a series of splits. A Markov chainM
is π–recursive onG if:

1. Ω is of size1, or

2. G is π–matchable and ifG is split into, sayGA and
GĀ, thenMA is πA–recursive onGA andMĀ is πĀ–
recursive onGĀ.

A prototypical example is the random walk on the Boolean
cube.

4 Spectral gap ofπ–recursive Markov chains

Our ultimate goal is to establish a lower bound on the
log–Sobolev constant. However our approach is more eas-
ily understood in the context of spectral gap. So we con-
sider this parameter first, on the one hand as a warm up
exercise, on the other as a benchmark for our bound on the
log–Sobolev constant.

Suppose thatM = (Ω, P ) is π–recursive on an under-
lying graphG = (Ω, E). The main result of this sec-
tion is a lower bound on the spectral gap ofM (Theo-
rem 4.4). The idea of the proof is to find a valueλ̂M
s.t. EM (f, f) ≥ λ̂MVarπ(f) for all f : Ω → R. Then,
from the definition of spectral gap,λM ≥ λ̂M is an im-
mediate consequence. We will find such a valueλ̂M by
decomposition/induction.

The first ingredient is the observation that variance and
Dirichlet form can be split up w.r.t. a partition of the state
space:

Lemma 4.1 Let A, Ā be a partition ofΩ, f : Ω → R
andπ a probability distribution onΩ, then

Varπ(f) = π(A)VarπA
(f) + π(Ā)VarπĀ

(f) + ctVarπ
(f),

where

ctVarπ
(f) = π(A)π(Ā)(EπA

[f ] − EπĀ
[f ])2

is aweighted crossterm,

EπA
[f ] =

∑

x∈A

πA(x)f(x),

VarπA
(f) =

∑

x∈A

πA(x) (f(x) − EπA
[f ])2

are expectation and variance w.r.t.πA, and similarly for
EπĀ

[f ] andVarπĀ
(f).

Proof. Despite the fact that the lemma is standard knowl-
edge now, we will include a proof for the sake of complete-
ness. A proof of

Varπ(f) = π(A)VarπA
(f) + π(Ā)VarπĀ

(f)

+ π(A)(EπA
[f ] − Eπ[f ])2

+ π(Ā)(EπĀ
[f ] − Eπ[f ])2
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can be found in [13]. Now, observe that

π(A)(EπA
[f ] − Eπ[f ])2 + π(Ā)(EπĀ

[f ] − Eπ[f ])2

= π(A)(EπA
[f ] − π(A)EπA

[f ] − π(Ā)EπĀ
[f ])2

+ π(Ā)(EπĀ
[f ] − π(A)EπA

[f ] − π(Ā)EπĀ
[f ])2

= π(A)(π(Ā)EπA
[f ] − π(Ā)EπĀ

[f ])2

+ π(Ā)(π(A)EπĀ
[f ] − π(A)EπA

[f ])2

= π(A)π(Ā)2(EπA
[f ] − EπĀ

[f ])2

+ π(Ā)π(A)2(EπĀ
[f ] − EπA

[f ])2

= π(Ā)π(A)(EπĀ
[f ] − EπA

[f ])2. �
Similarly,

Lemma 4.2 For a partitionA, Ā of Ω, f : Ω → R and a
probability distributionπ onΩ

EM (f, f) = π(A)EMA
(f, f) + π(Ā)EMĀ

(f, f) + ctEM
(f),

wherectEM
(f) =

∑
x∈A
y∈Ā

(f(x) − f(y))2π(x)P (x, y).

Proof. As before, the lemma is standard and the proof in-
cluded for the sake of completeness. Observe that given a
partitionA andĀ the Dirichlet form can be rewritten as

EM (f, f) =
1

2

∑

x,y∈A

(f(x) − f(y))2π(x)P (x, y)

+
1

2

∑

x,y∈Ā

(f(x) − f(y))2π(x)P (x, y)

+
∑

x∈A

y∈Ā

(f(x) − f(y))2π(x)P (x, y).

Since

π(A)EMA
(f, f) =

1

2

∑

x,y∈A

(f(x) − f(y))2π(x)P (x, y)

and

π(Ā)EMĀ
(f, f) =

1

2

∑

x,y∈Ā

(f(x) − f(y))2π(x)P (x, y),

the lemma holds. �
The following lemma is the main stepping stone for the

induction in Theorem 4.4.

Lemma 4.3 Assume thatM = (Ω, P ) is a finite, time–
reversible, irreducible and aperiodic Markov chain with
stationary distributionπ on a π–matchable graphG =
(Ω, E). Then

ctEM
(f) ≥ 2 min

{x,y}∈E
{P (x, y)} ctVarπ

(f).

Proof. SinceG allows aπ–matching, there exists a bipar-
tition A, Ā and an assignmentw such thatπ(x)/π(A) =∑
y∈Ā w(x, y) and thusEπA

[f ] =
∑

x∈A
y∈Ā

w(x, y)f(x);

similarly for EπĀ
[f ]. Thus:

ctVarπ
(f)

= π(A)π(Ā)
(∑

x∈A
y∈Ā

√
w(x, y)(f(x) − f(y))

√
w(x, y)

)2

.

Observe that
∑

x∈A

y∈Ā

w(x, y) = 1. Applying the Cauchy–

Schwarz inequality yields:

ctVarπ
(f) ≤ π(A)π(Ā)

∑

x∈A
y∈Ā

w(x, y)(f(x) − f(y))2.

Thus, to complete the proof it suffices to find a factorη such
that

η π(A)π(Ā)
∑

x∈A

y∈Ā

w(x, y)(f(x) − f(y))2

≤
∑

x∈A

y∈Ā

π(x)P (x, y)(f(x) − f(y))2.

Observe that sinceM is time–reversible, we can always
chooseA such thatπ(Ā) ≤ π(A). Furthermore,w(x, y) ≤∑
y∈Ā w(x, y) = π(x)

π(A) . Thus

π(A)π(Ā)w(x, y) ≤ π(A)π(Ā)
π(x)

π(A)

≤
1

2
π(x) ≤

π(x)P (x, y)

2 min{x,y}∈E{P (x, y)}
.

This shows that our claim is valid forη =
2 min{x,y}∈E{P (x, y)}. �

The significance of Lemma 4.3 is that
2 min{x,y}∈E{P (x, y)} is exactly the valueλ̂M we

were looking for, i.e. it satisfiesEM (f, f) ≥ λ̂MVarπ(f)
for all f : Ω → R. This is made rigorous next.

Theorem 4.4 Given a finite, time–reversible, irreducible
and aperiodic Markov chainM = (Ω, P ) with stationary
distributionπ on a graphG = (Ω, E) such thatM is π–
recursive onG. The spectral gap ofM is lower bounded by
twice the minimum transition probability ofM, i.e.:

λM ≥ 2 min
{x,y}∈E

{P (x, y)}.

Proof. It suffices to show that for anyf : Ω → R
and for all S ⊆ Ω where GS is obtained by a se-
ries of splits ofG the following holds: EMS

(f, f) ≥
2 min{x,y}∈E{P (x, y)}VarπS

(f). The proof is by in-
duction on the size of the state space of the restriction
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chainMS = (S, PS). For|S| = 1 the varianceVarπS
(f) =

1
2

∑
x,y∈S(f(x) − f(y))2πS(x)πS(y) = 0 and the induc-

tion hypothesis is trivially true.
Assume that|S| > 1 andMS has stationary distribu-

tionπS . SinceM isπ–recursive onG, the chainMS isπS–
recursive onGS . Thus there is a split ofGS into, sayGA,
GĀ. By Lemma 4.2:EMS

(f, f) = πS(A)EMA
(f, f) +

πS(Ā)EMĀ
(f, f) + ctEMS

(f) which is by induc-
tion hypothesis greater than2 min{x,y}{P (x, y)}×(
πS(A)VarπA

(f) + πS(Ā)VarπĀ
(f)
)

+ ctEMS
(f). By

Lemma 4.3: ctEMS
(f) ≥ 2 min{x,y}∈E{P (x, y)}×

ctVarπS
(f). Thus, applying Lemma 4.1 we obtain:

EMS
(f, f) ≥ 2 min{x,y}∈E{P (x, y)}VarπS

(f). �
Remark: An unnatural feature of Theorem 4.4 (and

later Theorem 5.4) is that the existence of one single low-
probability transition is enough to degrade the bound. What
we mean is the following: letM = (Ω, P ) be a Markov
chain whose transition probabilities are similar in size
(i.e. differ by at most a small constant factor). We define
a “perturbed chain”M † = (Ω, P †) whose transition proba-
bilities agree withM except between a pair of distinguished
statesx andy. For this pairx, y, we arrange thatP (x, y) =
P (y, x) = 0 while 0 < P †(x, y), P †(y, x) < δ, whereδ
is some small value much less thanmin{x,y}∈E{P (x, y)}.
(The stationary distributionπ may be retained by choosing
P †(x, y) andP †(y, x) to satisfy detailed balance.) Then
our bound forλM† is much smaller than that forλM , even
though the spectral gap ofM † is actually slightly larger
than that ofM . This is counter–intuitive since the addition
of a tiny extra edge should not have such a huge impact.
This paradox can be resolved by a closer look at the proof
of Lemma 4.3 and Theorem 4.4. Both continue to hold if
2 min{x,y}∈E{P (x, y)} is replaced by

min
{x,y}∈C(A,Ā)

π(x)P (x, y)

π(A)π(Ā)w(x, y)
. (2)

Thus, the tiny transition probability can be compensated
for as long as theπ–matching does not assign it significant
weight. In general, this will apply whenever a vertex is inci-
dent to more than one edge of the cut. Thus, an alternative
formulation of Lemma 4.3 and Theorem 4.4 involving (2)
will be closer to the truth. However, later on we will only
be dealing with Markov chains whose transition probabil-
ities are uniform, i.e. all non–zero transition probabilities
are identical, and for those chains the current versions of
Lemma 4.3 and Theorem 4.4 are sufficiently well suited.

5 log–Sobolev constant of π–recursive
Markov chains

A similar inductive proof can be used to obtain a lower
bound on thelog–Sobolev constant ofπ–recursive Markov

chains. As before, we assume thatM = (Ω, P ) is π–
recursive on the underlying graphG = (Ω, E) (Theo-
rem 5.4). Again, we will identify a valuêαM such that
if GS is obtained by a series of splits:EMS

(f, f) ≥
α̂MLπS

(f) for all f : Ω → R. The approach is along the
same lines as the proof of Theorem 4.4. Similar to variance
and Dirichlet–form, the entropy–like quantityLπ(f) can be
split up with respect to a bipartitionA, Ā of Ω.

Lemma 5.1

Lπ(f) = π(A)LπA
(f) + π(Ā)LπĀ

(f) + ctLπ,(f),

where

ctLπ
(f) = π(A) ‖f‖2

2,πA
log

‖f‖2
2,πA

‖f‖2
2,π

+ π(Ā) ‖f‖2
2,πĀ

log
‖f‖2

2,πĀ

‖f‖2
2,π

is aweighted crossterm,

‖f‖2,πA
=

√∑

x∈A

|f(x)|2 πA(x)

and

LπA
(f) =

∑

x∈A

|f(x)|2 πA(x) log
|f(x)|2

‖f‖2
2,πA

and accordingly for‖f‖2,πĀ
andLπĀ

(f).

Proof. Again, the proof is standard and included merely for
the sake of completeness. Recall that

Lπ(f) =
∑

x∈Ω

|f(x)|2 π(x) log
|f(x)|2

‖f‖2
2,π

. (3)

Splitting up (3) with respect toA, Ā yields

Lπ(f) =
∑

x∈A

|f(x)|2 π(x) log |f(x)|2

+
∑

x∈Ā

|f(x)|2 π(x) log |f(x)|2

− ‖f‖2
2,π log ‖f‖2

2,π .

Notice that‖f‖2
2,π = π(A) ‖f‖2

2,πA
+ π(Ā) ‖f‖2

2,πĀ
and

∑

x∈A

|f(x)|2π(x) log |f(x)|2

= π(A)LπA
(f) + π(A) ‖f‖2

2,πA
log ‖f‖2

2,πA
.
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Then

Lπ(f) = π(A)LπA
(f) + π(Ā)LπĀ

(f)

+ π(A) ‖f‖2
2,πA

log ‖f‖2
2,πA

+ π(Ā) ‖f‖2
2,πĀ

log ‖f‖2
2,πĀ

− log ‖f‖2
2,π

(
π(A) ‖f‖2

2,πA
+ π(Ā) ‖f‖2

2,πĀ

)

and observe that this is merely an alternative formulation of
the claim. �

Section 4 related the crossterms of Dirichlet form to vari-
ance. Now, we have to relate the crossterms of Dirichlet
form andLπ(f).

Lemma 5.2 Assume thatM = (Ω, P ) is a finite, time–
reversible, irreducible and aperiodic Markov chain with
stationary distributionπ on a π–matchable graphG =
(Ω, E). Then

ctEM
(f) ≥

1

2
min

{x,y}∈E
{P (x, y)} ctLπ

(f).

Proof. Let A, Ā be a split ofG. Using lnx ≤ x − 1 we
obtain

ctLπ
(f) ≤ π(A) ‖f‖2

2,πA

‖f‖2
2,πA

− ‖f‖2
2,π

‖f‖2
2,π

+ π(Ā) ‖f‖2
2,πĀ

‖f‖2
2,πĀ

− ‖f‖2
2,π

‖f‖2
2,π

.

Since‖f‖2
2,π = π(A) ‖f‖2

2,πA
+ π(Ā) ‖f‖2

2,πĀ
we see that

the right–hand side of the above inequality is equal to

π(A)π(Ā)
(‖f‖2

2,πA
− ‖f‖2

2,πĀ
)2

‖f‖2
2,π

.

It is then enough to show that

ctEM
(f) ≥

1

2
min

{x,y}∈E
{P (x, y)}

× π(A)π(Ā)
(‖f‖2

2,πA
− ‖f‖2

2,πĀ
)2

‖f‖2
2,π

.

This can be done with the help of two intermediate inequal-
ities. The first is
∑

x∈A

y∈Ā

(f(x) − f(y))2π(x)P (x, y)

≥
1

2
min

{x,y}∈E
{P (x, y)}

∑

x∈A
y∈Ā

(f(x) − f(y))2w(x, y),

and the second one
∑

x∈A

y∈Ā

(f(x) − f(y))2w(x, y)

≥ π(A)π(Ā)
(‖f‖2

2,πA
− ‖f‖2

2,πĀ
)2

‖f‖2
2,π

. (4)

As regards the first inequality, observe the following. Since
M is time–reversible w.r.t.π, we can chooseA such that
π(Ā) ≤ π(A) without affecting the very first inequality
which upper boundsctLπ

(f) and remember thatM al-
lows aπ–matching betweenA andĀ such thatw(x, y) ≤∑
y∈Ā w(x, y) = π(x)

π(A) . Thus,

w(x, y) ≤
π(x)

π(A)
≤ 2 π(x) ≤

2 π(x)P (x, y)

min{x,y}∈E{P (x, y)}
.

This establishes the first inequality. To finish the proof
we must show that the second inequality (4) is valid. Set
FA =

∑
x∈A |f(x)|2π(x) andFĀ analogously, then the

RHS turns intoπ(A)π(Ā)
(FA+FĀ)

(
FA

π(A)
− FĀ

π(Ā)

)2

. Observe that

∑

x∈A
y∈Ā

(f(x) − f(y))2w(x, y)

=
FA
π(A)

− 2
∑

x∈A
y∈Ā

f(x)f(y)w(x, y) +
FĀ
π(Ā)

.

According to the Cauchy–Schwarz inequality

∑

x∈A
y∈Ā

f(x)
√
w(x, y)f(y)

√
w(x, y) ≤

√
FAFĀ

π(A)π(Ā)

and so

∑

x∈A
y∈Ā

(f(x) − f(y))2w(x, y) ≥

(√
FA
π(A)

−

√
FĀ
π(Ā)

)2

.

It therefore suffices to show that
(√

FA
π(A)

−

√
FĀ
π(Ā)

)2

≥
π(A)π(Ā)

(FA + FĀ)

(
FA
π(A)

−
FĀ
π(Ā)

)2

which is equivalent to

(√
FA
π(A)

−

√
FĀ
π(Ā)

)2

≥ π(A)π(Ā)

(
FA
π(A)

−
FĀ
π(Ā)

)2

,

whereFA + FĀ has been normalised to1. Below, in
Lemma 5.3 we will show that the last inequality is valid,
which concludes the proof of Lemma 5.2. �
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Lemma 5.3 Letx, y ∈ (0, 1). Then

(√
x

y
−

√
1 − x

1 − y

)2

− y(1 − y)

(
x

y
−

1 − x

1 − y

)2

≥ 0.

Proof. The claimed inequality is equivalent to

1 −
y(1 − y)

(
x
y − 1−x

1−y

)2
(√

x
y −

√
1−x
1−y

)2 ≥ 0

and hence to

y(1 − y)

(√
x

y
+

√
1 − x

1 − y

)2

≤ 1. (5)

Sincex, y ∈ (0, 1), inequality (5) is equivalent to

√
x(1 − y) +

√
y(1 − x) ≤ 1.

Then usex = cos2 a andy = sin2 b for a, b ∈ R to con-
clude the proof. �

We can now formulate the main result

Theorem 5.4 Given a finite, time–reversible, irreducible
and aperiodic Markov chainM = (Ω, P ) with stationary
distributionπ on a graphG = (Ω, E) such thatM is π–
recursive onG. The logarithmic Sobolev constant ofM is
lower bounded by half the minimum transition probability
ofM, i.e.:

αM ≥
1

2
min

{x,y}∈E
{P (x, y)}.

Proof. The proof is of a similar flavour as the proof of The-
orem 4.4. It is carried out by induction on the size of state
spaces of restriction chains ofM . LetMS = (S, PS) with
stationary distributionπS be a restriction chain on underly-
ing graphGS = (S,ES) obtained by a series of splits ofG.

If |S| = 1, then πS(x) = 1 for x ∈ S, in
which case12

∑
x,y∈S(f(x)−f(y))2πS(x)PS(x, y) ≥ 1

2 ×

min{x,y}∈E{P (x, y)}
∑
x∈S |f(x)|2 πS(x) log |f(x)|2

‖f‖2

2,πS

=

0 is trivially true.
Inductive step: AsMS is πS–recursive, the underly-

ing graphGS can be split into two non–empty setsA
and Ā such that: EMS

(f, f) = πS(A)EMA
(f, f) +

πS(Ā)EMĀ
(f, f)+ctEMS

(f). By induction hypothesis this
is greater than1

2 min{x,y}∈E{P (x, y)}
(
πS(A)LπA

(f) +

πS(Ā)LπĀ
(f)
)

+ ctEMS
(f). By Lemma 5.2 this in turn

is greater than1
2 min{x,y}∈E{P (x, y)}

(
πS(A)LπA

(f) +

πS(Ā)LπĀ
(f) + ctLπS

(f)
)

and finally using Lemma 5.1:
EMS

(f, f) ≥ 1
2 min{x,y}∈E{P (x, y)}LπS

(f). �
Remark: The bound on thelog–Sobolev constant we

state here is nearly tight in that any significant improvement,

specifically by a factor greater than2, would implicitly lead
to an improvement in the bound onλ stated in Theorem 4.4.
(This follows from the known inequalityα ≤ λ/2 [19],
[5]). But the bound in Theorem 4.4 is tight, e.g in the case
of the hypercube.

6 Application

In this section we will discuss some applications of The-
orem 4.4 and Theorem 5.4. The applications we have in
mind are random walks on bases–exchange walks on bal-
anced matroids.

6.1 Balanced matroids

Matroids are algebraic structures that capture the concept
of linear independence. Formally, a pairM = (S, I) with
a finite ground setS and independent setsI ⊆ 2S forms a
matroid if

1. ∅ ∈ I,

2. if A ∈ I andB ⊆ A thenB ∈ I, and

3. if A,B ∈ I and|B| = |A| + 1 then there existse ∈
B \A such thatA ∪ {e} ∈ I.

A matroid can be entirely defined by its set of maximal
independent sets orbasesB ⊆ 2S (sometimes we will
useB(M) to denote the bases of a matroidM or con-
verselyM(B) to denote the matroid with basesB). Bases
possess the following two properties:

1. all bases are of the same size, namely therank of M
and

2. for every pair of basesX,Y ∈ B and every ele-
ment e ∈ X there exists an elementf ∈ Y s.t.
(X \ {e}) ∪ {f} ∈ B.

The properties of matroid bases suggest a very natu-
ral random walk onB. Define the bases–exchange
graphG(M) = (B, E) as the undirected graph with ver-
tex setB and two verticesX,Y ∈ G(M) are connected by
an edge if|X ⊕ Y | = 2, i.e. only one element ofX is not
in Y and vice versa. In future, we will call every random
walk on the bases–exchange graph abases–exchange walk.
As an example take the following random walk:

Algorithm 6.1 LetX be the current basis. We move on to
basisX ′ according to the rule

1.) Choose a ground set elemente and an elementf ∈ X
u.a.r.

2.) If (X\{f})∪{e} ∈ B, then setX ′ = (X\{f})∪{e},
otherwise letX ′ = X (stay at the current basis).
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Next, we introduce two important operations on matroids.
For a ground set elemente ∈ S the matroidM\ e obtained
by deletinge has ground setS(M\ e) = S \ {e} and set of
basesB(M\ e) = {X ∈ B | e /∈ X}. The matroidM/e
obtained bycontractinge has ground setS(M/e) = S\{e}
and set of basesB(M/e) = {X \ {e} | X ∈ B ∧ e ∈ X}.
Any matroid obtained fromM by a series of contractions
and deletions is aminor of M.

Let X be a basis chosen uniformly at random (u.a.r.)
from B ande ∈ S a ground set element. With abuse of no-
tation, lete denote the evente ∈ X andē the evente /∈ X ;
juxtaposition expresses the conjunction of events, i.e.ēf
meanse /∈ X ∧ f ∈ X . A matroid isnegatively correlated
if the inequalityPr[ef ] ≤ Pr[e]Pr[f ] holds for all pairs of
distinct elementse, f ∈ S. We say that a matroidM is
balancedif M and all its minors are negatively correlated.
All regular (and thus graphic) matroids are known to be bal-
anced. Feder and Mihail introduced the notion of balance
and showed that Algorithm 6.1 on balanced matroids has
mixing time polynomial in the rankn and size of ground
setm, i.e., is rapidly mixing (cf. [7]).

6.1.1 Fractional matchings

In the same paper ([7]), Feder and Mihail discovered that
vertices of the bases–exchange graphG(M) of every bal-
anced matroid have a natural bipartition intoA, Ā, such
that the transitions betweenA and Ā support afractional
matching. Let A and Ā be the natural isomorphic copies
of B(M \ e) andB(M/e) in M respectively for some
ground set elemente. A fractional matching is a func-
tionψ : A× Ā→ N assigning integer weights to the cutset
(the edges ofG(M) spanningA andĀ) such that

∀x ∈ A :
∑

y∈Ā

ψ(x, y) =
∣∣Ā
∣∣

and

∀y ∈ Ā :
∑

x∈A

ψ(x, y) = |A| .

Note that ifπ is uniform overA andĀ, then the probability
distribution

Pψ =

(
(x, y) 7→

ψ(x, y)

|A| |Ā|

)
: A× Ā→ [0, 1]

on the cutset is aπ–matching.

6.2 Spectral gap and log–Sobolev constant of bal-
anced matroids

Let M = (B, P ) be a bases–exchange walk with con-
stant transition probabilities, i.e.P (x, y) = p if x 6= y

andx ∼ y, i.e. x and y are connected by an edge, and
P (x, x) = 1 −

∑
{x,y}∈E P (x, y) > 0 (so that the chain

is aperiodic), on a matroidM(B) andG(M(B)) = (B, E)
the underlying bases–exchange graph. Note thatM is fi-
nite and irreducible; thus it has unique stationary distri-
bution π. SinceM fulfils the detailed balance condition
(i.e. is time–reversible) w.r.t. the uniform distributiononB,
the stationary distributionπ must be the uniform distribu-
tion on B. Observe that ifM′ with basesB′ is a minor
of M(B), then the restriction chainMB′ is time–reversible
with stationary distribution1/ |B′|. Furthermore ifM is
a balanced matroid, then every fractional matching gives
rise to a 1

|B|–matching with weightsPψ(·, ·). These obser-
vations show that the bases–exchange walkM = (B, P )
with constant transition probabilities is1|B|–recursive on the

bases–exchange graph2.

Corollary 6.2 LetM = (B, P ) be a bases–exchange walk
with constant transition probabilities, i.e.P (x, y) = p if
x 6= y, x ∼ y andP (x, x) = 1 −

∑
{x,y}∈E P (x, y) >

0, on a balanced matroidM(B) with bases–exchange
graphG(M(B)) = (B, E). The spectral gap andlog–
Sobolev constant ofM are lower bounded by:

λM ≥ 2p and αM ≥
p

2
.

Proof. Apply Theorems 4.4 and 5.4. �
We will give two example applications of Corollary 6.2:

Example 6.3 Random walk on a hypercube:

Consider thed–dimensional hypercube. The vertices can be
denoted byd–tuples from{0, 1}d and edges connect ver-
tices whose Hamming distance is1, i.e. tuples that differ
by exactly one entry. Consider the random walkM with
transition probabilitiesP (x, y) = 1/(d + 1) wheneverx
andy are connected by an edge. This random process has
been studied quite extensively before (see [6] and the ref-
erences given therein) and has uniform stationary distribu-
tion π(x) = 1/2d. It is already known that the walk on the
hypercube has spectral gapλ = 2/(d+1) andlog–Sobolev
constantα = 1/(d + 1) (see [5] and [6] for a discussion).
There are several ways to see that this Markov chain isπ–
recursive. The easiest way is to split the hypercube into two
sub–cubes of dimensiond− 1. Since each vertex of a sub–
cube has only one neighbour in the other sub–cube, theπ–
matching is given byw(x, y) = 2/2d. Using Theorem 4.4
and Theorem 5.4 we obtain the boundsλ ≥ 2/(d + 1)

2Observe that some minors of a matroid are empty. This can happen
if the minor is obtained by contracting an element that is in no basis or
by deleting an element that is in every basis. In this case theminors do
not constitute a split. However, unless a matroid has only one basis, there
will always exist non-empty minors and thus a split of the bases-exchange
graph.
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andα ≥ 1/2(d + 1). While our bound on spectral gap
is identical to the aforementioned result, our bound onlog–
Sobolev constant is off by the factor 2. However, for the ran-
dom walk on hypercubes it can be shown that Lemma 5.2
and Theorem 5.4 hold forctEM

(f) ≥ ctLπ
(f)/p , which re-

covers the result given in [5] by Diaconis and Saloff–Coste.
The next example is more interesting.

Example 6.4 Balanced matroids:

Let M be a matroid of rankn on a ground setS of
sizem. Assume that transitions are done as specified in
Algorithm 6.1. For the sake of simplicity add self–loops
with probability at least1/2 and reduce all other transition
probabilities by1/2, i.e. P (x, y) = 1/2mn for x ∼ y
andP (x, x) = 1 −

∑
{x,y}∈E P (x, y) ≥ 1/2, this will

ensure thatM is irreducible, aperiodic and time–reversible
w.r.t. the uniform distribution onB. If M is balanced, then
applying Theorem 5.4 yields the lower boundα ≥ 1/4mn
on thelog–Sobolev constant. Remember thatlog–Sobolev
constants can be used to upper bound mixing time thus
by (1) we obtain:τ ≤ O(mn(log n + log logm)). This
greatly improves on the mixing time for this walk given
in [18]: τ ≤ O(m3/2n2(logn + log logm)). Using a
result by Heller [10] which says that forsimple regular
matroids, i.e. regular matroids with no parallel elements,
m < n(n + 1) we can infer that for regular matroids with
only a constant number of parallel elementsm = O(n2).
Thus for such matroids our bound on thelog–Sobolev con-
stant yields a mixing time ofO(n3 logn) for this walk. This
is at present the best bound on mixing time for this random
walk on the bases–exchange graph of regular matroids with
constant number of parallel elements3.
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