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Abstract

In this paper we introduce a new approach for approximately counting in bounded
degree systems with higher-order constraints. Our main result is an algorithm to
approximately count the number of solutions to a CNF formula Φ with at least k
variables per clause and degree at most d when k is logarithmic in d. This closes an
exponential gap between the known upper and lower bounds.

Moreover our algorithm extends straightforwardly to approximate sampling, which
shows that under Lovász Local Lemma-like conditions it is not only possible to find
a satisfying assignment, it is also possible to generate one approximately uniformly
at random from the set of all satisfying assignments. Our approach is a significant
departure from earlier techniques in approximate counting, and is based on a framework
to bootstrap an oracle for computing marginal probabilities on individual variables.
Finally, we give an application of our results to show that it is algorithmically possible
to sample from the posterior distribution in an interesting class of graphical models.
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1 Introduction

1.1 Background

In this paper we introduce a new approach for approximately counting in bounded degree
systems with higher-order constraints. For example, if we are given a CNF formula Φ with
n variables and m clauses with the property that each clause contains at least k variables
and each variable belongs to at most d clauses we ask:

Question 1.1. How does k need to relate to d for there to be algorithms to estimate the
number of satisfying assignments to Φ within a (1± 1/nc) multiplicative factor?

In the case of a monotone CNF formula where no variable appears negated, the problem is
equivalent to the following: Suppose we are given a hypergraph on n nodes and m hyperedges
with the property that each hyperedge contains at least k nodes and each node belongs to
at most d hyper edges. How does k need to relate to d in order to be able to approximately
compute the number of independent sets. Here an independent set is a subset of nodes for
which there is no induced hyperedge. Bordewich, Dyer and Karpinski [5] gave an MCMC
algorithm for approximating the number of hypergraph independent sets (equivalently, the
number of satisfying assignments in a monotone CNF formula) that succeeds whenever k ≥
d+2. Bezakova et al. [4] gave a deterministic algorithm that succeeds whenever k ≥ d ≥ 200
and proved that when d ≥ 5 · 2k/2 it is NP -hard to approximate the number of hypergraph
independent sets even within an exponential factor.

More broadly, there is a rich literature on approximate counting problems. In a seminal
work, Weitz [26] gave an algorithm to approximately count in the hardcore model with
parameter λ in graphs of degree at most d whenever

λ ≤ (d− 1)d−1

(d− 2)d

And in another seminal work, Sly [24] showed a matching hardness result which was later
improved in various respects by Sly and Sun [25] and Galanis, S̆tefankovic̆ and Vigoda [10].
These results show that approximate counting is algorithmically possible if and only if there
is spatial mixing. Moreover, Weitz’s result can be thought of as a comparison theorem that
spatial mixing holds on a bounded degree graph if and only if it holds on an infinite tree with
the same degree bound. There have been a number of attempts to generalize these results
to hypergraphs, many of which follow the approach of defining analogues of the self-avoiding
walk trees used in Weitz’s algorithm [26]. However what makes hypergraph versions of these
problems more challenging is that spatial mixing fails, even on trees. And we can see that
there are exponential gaps between the upper and lower bounds, since the algorithms above
require k to be linear in d while the lower bounds only rule out k ≤ 2 log d−O(1).

We can take another vantage point to study these problems. Bounded degree CNF
formulae are also one of the principal objects of study in the Lovász Local Lemma [9] which
is a celebrated result in combinatorics that guarantees when k ≥ log d + O(1) that Φ has
at least one satisfying assignment. The original proof of the Lovász Local Lemma was non-
constructive and did not yield a polynomial time algorithm for finding such an assignment,
even though it was guaranteed to exist. Beck [3] gave an algorithm followed by a parallel
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version due to Alon [2] that can find a satisfying assignment whenever k ≥ 8 log d + O(1).
And in a celebrated recent result, Moser and Tardos [20] gave an algorithm matching exactly
the existential result. This was followed by a number of works giving constructive proofs
of various other settings and generalizations of the Lovász Local Lemma [13, 1, 15, 18].
However these works leave open the following question:

Question 1.2. Under the conditions of the Lovász Local Lemma (i.e. when k is logarith-
mic in d) is it possible to approximately sample from the uniform distribution on satisfying
assignments?

Approximate counting and approximate sampling problems are well-known to be related.
When the problem is self-reducible, they are in fact algorithmically equivalent [16, 22].
However in our setting the problem is not self-reducible because as we fix variables we could
violate the assumption that k is at least logarithmic in d. It is natural to hope that under the
conditions of the Lovász Local Lemma, that there is an algorithm for approximate sampling
that matches the limits of the existential and now algorithmic results. However the hardness
results of Bezákova et al. [4] imply that we need at least another factor of two, and that it
is NP -hard to approximately count when k ≤ 2 log d−O(1).

In fact, there is another connection between the Lovász Local Lemma and approximate
counting. Scott and Sokal [25] showed that given the dependency graph of events in the
local lemma, the best lower bound on the probability of an event guaranteed to exist by the
Lovász Local Lemma (i.e. the fraction of satisfying assignments) is exactly the solution to
some counting problem. Harvey, Srivastava and Vondrák [14] recently adapted techniques of
Weitz to complex polydisks and gave an algorithm for approximately computing this lower
bound. This yields a lower bound on the fraction of satisfying assignments, however the
actual number could be exponentially larger.

1.2 Our Results

Our main result is an algorithm to approximately count the number of solutions when k is
at least logarithmic in d. In what follows, let c, k and d be constants. We prove1:

Theorem 1.3 (informal). Suppose Φ is a CNF formula with at least k variables per clause
and at most d clauses containing any one variable. For any k ≥ 20 log d there is a deter-
ministic polynomial time algorithm for approximating the number of satisfying assignments
to Φ within a multiplicative (1 ± 1/nc) factor. Moreover there is a randomized polynomial
time algorithm to sample from a distribution that is 1/nc-close in total variation distance to
the uniform distribution on satisfying assignments.

This algorithm closes an exponential gap between the known upper [5, 4] and lower [4]
bounds. It also shows that under Lovász Local Lemma-like conditions not only is it possible
to efficiently find a satisfying assignment, it is possible to find a random one. Moreover our

1We have not made an attempt to optimize the constant in this theorem. It remains an interesting question
to improve the constant, in hopes of approaching or even finding a sharp phase transition corresponding to
where approximate counting is easy and where it is hard. For counting independent sets in hypergraphs,
this will necessarily be a different threshold than the threshold where the Gibbs measure is unique [4].
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approach is a significant departure from earlier techniques based either on path coupling [5]
or adapting Weitz’s approach to non-binary models and hypergraphs [11, 21, 23, 19, 4]. The
results above appear in Theorem 6.3 and Theorem 6.5.

Our approach starts from a thought experiment about what we could do if we had access
to a very powerful oracle that could answer questions about the marginal distributions of
individual variables under the uniform distribution on satisfying assignments. We use this
oracle and properties of the Lovász Local Lemma (namely, bounds it gives on the marginal
distribution of individual variables) to construct a coupling between two random satisfying
assignments so that both agree outside some logarithmic sized component. If we knew the
distribution on what logarithmic sized component this coupling procedure produces, we could
brute force and find the ratio of the number of satisfying assignments with x = T to the
number with x = F to compute marginals at x. However the distribution of what component
the coupling produces depends intimately on the powerful oracle we have assumed that we
have access to.

Instead, we abstract the coupling procedure as a random root-to-leaf path in a tree that
represents the state of the coupling. We show that at the leaves of this tree, there is a way to
fractionally charge assignments where x = T against assignments where x = F . Crucially,
doing so requires only brute-force search on a logarithmic sized component. Finally, we show
that there is a polynomial sized linear program to find a flow through the tree that produces
an approximately valid way to fractionally charge assignments with x = T against ones
with x = F , and that any such solution certifies the correct marginal distribution. From
these steps, we have thus bootstrapped an oracle for answering queries about the marginal
distribution. Our main results then follow from utilizing this oracle. In settings where
the problem is self-reducible [22] it is well-known how to go from knowing the marginal to
approximate counting and sampling. In our setting, the problem is not self-reducible because
setting variables could result in clauses becoming too small in which case k would not be
large enough as a function of d. We are able to get around this by using the Lovász Local
Lemma once more to find a safe ordering in which to set the variables.

1.3 Further Applications

Our algorithms have an interesting application in graphical models. Directed graphical
models are a rich language for describing distributions by the conditional relationships of their
variables. However very little is known algorithmically about learning them or performing
basic tasks such as inference [7, 8]. In most settings, these problems are computationally
hard. However we can study an interesting class of directed graphical models which we call
cause networks. See Figure 1.

Definition 1.4. In a cause network there is a collection of hidden variables x1, x2, ...xn that
are chosen independently to be T or F with equal probability. There is a collection of m
observed variables each of which is either an OR or an AND of several variables or their
negations.

Our goal is: Given a random sample x1, x2, ...xn from the model where we observe the
truth value of each of the m clauses, to sample from the posterior distribution on the hidden
variables. This generalizes graphical models such as the symptom-disease network where
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x1 x2 x3 xn

∨x1 x3 ∨ xn

…

…

x2 ∧ xn

Figure 1: An example cause network
with n hidden variables. A sample is
generated by choosing each hidden
variable to be T/F independently
with equal probability, and observ-
ing the truth values of each clause.

the hidden variables represent diseases that a patient may have, and the clauses represent
observed symptoms. We will require the following regularity condition on our observations:

Definition 1.5. A collection of observations is regular if for every observed variable, the
corresponding clause is adjacent to (i.e. shares a variable with) at most k/6 OR clauses that
are false and at most k/6 AND clauses that are true.

Now, as an immediate corollary we have:

Corollary 1.6. Given a cause network where each observed variable depends on at least k
hidden variables, each hidden variable affects at most d observed variables and k ≥ 30 log d,
there is a polynomial time algorithm for sampling from the posterior distribution for any
regular collection of observations.

This is a rare setting where there is an algorithm to solve an inference problem in graphical
models but (i) the underlying graph does not have bounded treewidth and (ii) correlation
decay fails. We believe that our techniques may eventually be applicable to settings where
the observed variables are noisy functions of the hidden variables and where the hidden
variables are not distributed uniformly.

2 Preliminaries

In this paper, we will be interested in approximately counting the number of satisfying
assignments to a CNF formula. For example, we could be given:

Φ = (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x8) ∧ ... ∧ (x4 ∨ x5 ∨ x9)

Let’s fix some parameters. We will assume that there are n variables and there are m clauses
each of which is an OR of at least k distinct variables. Finally, we will require a degree bound
that each variable appears in at most d clauses. We will be interested in the relationships
between k and d that allow us to approximately count the number of satisfying assignments
in polynomial time.

The celebrated Lovász Local Lemma tells us conditions on k and d where we are guar-
anteed that there is at least one satisfying assignment:

Theorem 2.1. [9] If e(d+ 1)2−k ≤ 1 then Φ has at least one satisfying assignment.
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Moser and Tardos [20] gave an algorithm to find a satisfying assignment under these same
conditions . However the assignment that their randomized algorithm finds is not uniform
from the set of all satisfying assignments. Our goal is to solve to be able to both approxi-
mately count and uniformly sample when k is logarithmic in d.

There are many more related results, but we will not review them all here. Instead we
state a version of the asymmetric local lemma given in [12] which gives us some control on
the uniform distribution on assignments. Let C be the collection of clauses in Φ. Let Pr[·]
denote the uniform distribution all assignments – i.e. uniform on {T, F}n. Finally, for a
clause b let Γ(b) denote all the clauses that intersect b. We can abuse notation and for any
event a that depends on some set of the variables, let Γ(a) denote all the clauses that contain
any of the variables on which a depends.

Theorem 2.2. Suppose there is an assignment x : C → (0, 1) such that for all c ∈ C we have

Pr[c is unsatisfied] ≤ x(c)
∏

b∈Γ(c)

(
1− x(b)

)
then there is at least one satisfying assignment. Moreover the uniform distribution D on
satisfying assignments satisfies that for any event a

PrD[a] ≤ Pr[a]
∏

b∈Γ(a)

(
1− x(b)

)−1

Notice that this inequality is one-sided, as it ought to be. After all if we take b to be
some clause, and a to be the event that b is not satisfied then we know that PrD[a] = 0
even though Pr[a] is nonzero. However what this theorem does tell us is that the marginal
distribution of D on any variable is close to uniform. We will establish a quantitative version
of this statement in the following corollary:

Corollary 2.3. Suppose that ed62−k ≤ 1. Then for every variable xi, we have

1

2
− 2

d5
≤ PrD[xi = T ] ≤ 1

2
+

2

d5

Proof. Set x(c) = 1
d6

for each clause c, and consider the event a that xi = T . Now invoking
Theorem 2.2 we calculate:

PrD[xi = T ] ≤ Pr[xi = T ]
∏

b∈Γ(a)

(
1− x(b)

)−1

≤
(1

2

)(
1− 1

d6

)−1

≤ 1

2
+

2

d5

where the last inequality follows because (1− 1
d6

)−d ≤ e
2
d5 ≤ 1 + 4

d5
. An identical calculation

works for the event xi = F . All that remains is to check that the condition in Theorem 2.2
holds, which is a standard calculation: If c is a clause then

Pr[c is unsatisfied] ≤
( 1

d6

)(
1− 1

d6

)d
The left hand side is at most 2−k because each clause has at least k distinct variables, and
the right hand side is at least ( 1

d6
)(1

e
). Rearranging completes the proof.
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Notice that k is still only logarithmic in d but with a larger constant, and by increasing
this constant we get some useful facts about the marginals of the uniform distribution on
satisfying assignments.

3 A Coupling Procedure

3.1 Marked Variables

Now we are almost ready to define a coupling procedure. The basic strategy that we will
employ is to start from either x = T and x = F , and then sample from the corresponding
marginal distribution on satisfying assignments. If we sample a variable y next, then Corol-
lary 2.3 tells us that regardless of whether x = T or x = F , each clause has at least k − 1
variables remaining and so the marginal distribution on y is still close to uniform.

Thus we will try to couple the conditional distributions, when starting from x = T or
x = F as well as we can, to show that the marginal distribution on variables that are all at
least some distance ∆ away must converge in total variation distance. There is, however, an
important catch that motivates the need for a fix. Imagine that we continue in this fashion,
sampling variables from the appropriate conditional distribution. We can reach a situation
where a clause c has all of its variables except y set and yet the clause is still unsatisfied.
The marginal distribution on y is no longer close to uniform. Hence, reaching small clauses
is problematic because then we cannot say much about the marginal distribution on the
remaining variables and it would be difficult to construct a good coupling.

Instead, our strategy is to use the Lovász Local Lemma once more, but to decide on a
set of variables in advance which we call marked.

Lemma 3.1. Set c0 = e( 1
2

)( 1
6

)2. Suppose that 2e(d+ 1)c−k0 ≤ 1. Then there is an assignment

M : {xi}ni=1 → {marked, unmarked}

such that for every clause c, it has at least k
3

marked and at least k
3

unmarked variables.

Proof. We will choose each variable to be marked or unmarked with equal probability, and
independently. Consider the m bad events, one for each clause c, that c does not have enough
marked or enough unmarked variables. Then we have

Pr[c is bad] ≤ 2e−( 1
2

)( 1
6

)2k = 2c−k0

which follows from the Chernoff bound. Now we can appeal to the Lovász Local Lemma to
get the desired conclusion.

Only the variables that are marked will be allowed to be set to either T or F by the coupling
procedure. The above lemma guarantees that every clause c always has enough remaining
variables that can make it true that the marginal distribution on any marked variable always
is close to uniform.
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3.2 Factorizing Formulas

Now fix a variable x. We will build up two partial assignments, and will use the notation

A1(x) = T and A2(x) = F

to indicate that the first partial assignment sets x to T , and the second one sets x to F .
Furthermore we will refer to the conditional distribution that is uniform on all satisfying
assignments consistent with the decisions made so far in A1 and D1. Similarly we will refer
to the other conditional distribution as D2. Note that these distributions are updated as
more variables are set.

We can now state our goal. Suppose we have partial assignments A1 and A2. Then we
will want to write

ΦA1 = ΦI1 ∧ ΦO1

where ΦA1 is the subformula we get after making the assignments in A1 and simplifying –
i.e. removing variables that are F , and deleting clauses that already have a variable set to
T . Similarly we will want to write

ΦA2 = ΦI2 ∧ ΦO2

Finally, we want the following conditions to be met:

(1) ΦO1 = ΦO2(:= ΦO)

(2) ΦI1 and ΦO share no variables, and similarly for ΦI2 and ΦO

The crucial point is that if we can find partial assignments A1 and A2 where ΦA1 and ΦA2

meet the above conditions, then the conditional distribution on all variables in ΦO is exactly
the same. We will use the notation

D1

∣∣∣
vars(ΦO)

to denote the conditional distribution of D1 projected onto just the variables in ΦO. Then
we have:

Lemma 3.2. If the above factorization conditions are met, then

D1

∣∣∣
vars(ΦO)

= D2

∣∣∣
vars(ΦO)

Proof. From the assumption that ΦA1 = ΦI1∧ΦO and because ΦI1 and ΦO share no variables,
it means that there are no clauses that contain variables from both the subformulas ΦI1 and
ΦO. Any such clause would prevent us from writing the formula ΦA1 in such a factorized
form. Thus the distribution D1 is simply the cross product of the uniform distributions on
satisfying assignments to ΦI1 and ΦO. An identical statement holds for D1 which completes
the proof.

Note that meeting the factorization conditions does not mean that the number of satisfying
assignments to ΦA1 and ΦA2 are the same.
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3.3 Factorization via Coupling

Our goal in this subsection is to give a coupling procedure to generate partial assignments
A1 and A2 starting from x = T and x = F respectively, that result in a factorized formula.
In fact, we will set exactly the same set S of variables in both, although not all variables will
be set to the same value in the two partial assignments and this set S will also be random.

There are two important constraints that we will impose on how we construct the partial
assignments, that will make it somewhat more tricky. First, suppose we have only set the
variable x and next we choose to set the variable y in both A1 and A2. We will want that
the distribution on how we set y in the coupling procedure in A1 to match the conditional
distribution D1 and similarly for A2. Now suppose we terminate with some set S having
been set. We can continue sampling the variables in S̄ from D1, and we are now guaranteed
that the full assignment we generate is uniform from the set of assignments with x = T .
An identical statement holds when starting with x = F . Second, we will want that with
very high probability, the coupling procedure terminates with not too many variables in the
formula ΦI1 or ΦI2 . Finally, we will assume that we are given access to a powerful oracle:

Definition 3.3. We will call the following a conditional distribution oracle: Given a CNF
formula Φ, a partial assignment A and a variable y it can answer with the probability that
y = T in a uniformly random satisfying assignment that is also consistent with A

Such an oracle is obviously very powerful, and it is well known that if we had access to it we
could compute the number of satisfying assignments to Φ exactly with a polynomial number
of queries. However one should think of the coupling procedure as a though experiment,
which will be useful in an indirect way to build up towards our algorithm for approximate
counting.

Notice that a clause c can only trigger the WHILE loop at most once. If it ends up
in Case # 1 then it is deleted from the formula. If it ends up in Case # 2 then all its
variables are included in VI and once a variable is included in VI it is never removed. Thus
the procedure clearly terminates. Our first step is to show that when it does, the formula
factorizes. Let CI be the set of remaining clauses which have all of their variables in VI .
Similarly let CO be the set of remaining clauses which have all of their variables in VO. Then
set

Φ′I = ∧c∈CIc
and let ΦI1 and ΦI2 be the simplification of Φ′I with respect to the partial assignments A1

and A2. Similarly set
Φ′O = ∧c∈COc

and let ΦO1 and ΦO2 be the simplification of Φ′O with respect to the partial assignments A1

and A2.

Claim 3.4. All variables with different truth assignments in A1 and A2 are in VI .

Proof. A variable is set in response to it being contained in some clause c that triggers the
WHILE loop. Any such variable is moved into VI in both Case # 1 and Case # 2.

Now we have an immediate corollary that helps us towards proving that we have found
partial assignments for which Φ factorizes:
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Algorithm 1 Coupling Procedure,
Input: Monotone CNF Φ, variable x and conditional distribution oracle F

1. Using Lemma 3.1, label variables as marked or unmarked

2. Initialize A1(x) = T and A2(x) = F

3. Initialize VI = {x} and VO = {xi}ni=1 \ {x}
4. While there is a clause c with variables in both VI and VO

5. Sequentially sample its marked variables (if any) from D1 and D2, using F to construct
best coupling

6. Case # 1: c is satisfied by variables already set in both A1 and A2

7. Let S be the variables in c that have different truth values in A1 and A2.

8. Update VI ← VI ∪ S, VO ← VO \ S
9. Delete c

10. Case # 2: c is not satisfied by variables already set in either A1 or A2

11. Let S be all variables in c (marked or unmarked)

12. Update VI ← VI ∪ S, VO ← VO \ S
13. End

Corollary 3.5. ΦO1 = ΦO2

Proof. Recall that ΦO1 and ΦO2 come from simplifying Φ′O (which contains only variables
in VO) according to A1 and A2. From Claim 3.4, we know that A1 and A2 are the same
restricted to VO and thus we get the same formula in both cases.

Now that we know they are equal, we can define ΦO = ΦO1 = ΦO2 . What remains is to show
that the subformulas we have are actually factorizations of the original formula Φ:

Lemma 3.6. ΦA1 = ΦI1 ∧ ΦO and ΦA2 = ΦI2 ∧ ΦO

Proof. When the WHILE loop terminates, every clause c in the original formula Φ either
has all of its variables in VI or in VO, or was deleted because it already contains at least
one variable in both A1 and A2 that satisfies it (although it need not be the same variable).
Hence every clause in Φ that is not already satisfied in both A1 and A2 shows up in Φ′I ∧Φ′O.
Some clauses that are already satisfied in both may show up as well. In any case, this
completes the proof because the remaining operation just simplifies the formulas according
to the partial assignments.

3.4 How Quickly Does the Coupling Procedure Terminate?

What remains is to bound the probability that the number of variables included in VI is at
most t. First we need an elementary definition:
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Definition 3.7. When a variable xi is given different truth assignments in A1 and A2, we
call it a type 1 error. When a clause c has all of its marked variables set in both A1 and A2,
but in at least one of them is not yet satisfied, we call it a type 2 error.

Note that it is possible for a variable to participate in both a type 1 and type 2 error. In
any case, these are the only reasons that a variable is included in VI in an execution of the
coupling procedure:

Observation 1. All variables in VI are included either due to a type 1 error or a type 2
error, or both.

Now our approach to showing that VI contains not too many variables with high proba-
bility is to show that if it did, there would be a large collection of disjoint errors. First we
construct a useful graph underlying the process:

Definition 3.8. Let G be the graph on vertices VI where we connect variables if and only
if they appear in the same clause together (any clause from the original formula Φ).

The crucial property is that it is connected:

Observation 2. G is connected

Proof. This property holds by induction. Assume that at the start of the WHILE loop, the
property holds. Then at the end of the loop, any variable xi added to VI must have been
contained in a clause c that at the outset had one of its variables in VI . This completes the
proof.

Now by Observation 1, for every variable in VI we can blame it on either a type 1 or a
type 2 error. Both of these types of errors are unlikely. But for each variable, charging it
to an error is problematic because of overlaps in the events. In particular, suppose we have
two variables xi and xj that are both included in VI . It could be that both variables are in
the same clause c which resulted in a type 2 error, in which case we could only charge one
of the variables to it. This turns out not to be a major issue.

The more challenging type of overlap is when two clauses c and c′ both experience type 2
errors and overlap. In isolation, each clause would be unlikely to experience a type 2 error.
But it could be that c and c′ share all but one of their marked variables, in which case once
we know that c experiences a type 2 error, then c′ has a reasonable chance of experiencing
one as well. We will get around this issue by building what we call a 3-tree. This approach
is inspired by Noga Alon’s parallel algorithmic local lemma [2] where he uses a 2, 3-tree.

Definition 3.9. We call a graph T on subset of VI a 3-tree if each vertex is distance at least
3 from all the others, and when we add edges between vertices at distance exactly 3 the tree
is connected.

Next we show that G contains a large 3-tree:

Lemma 3.10. Any maximal 3-tree contains at least |VI |
(d+1)dk

vertices.
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Proof. Consider a maximal 3-tree T . We claim that every vertex xi ∈ VI must be distance
at most 2 from some xj in T . If not, then we could take the shortest path from xi to T and
move along it, and at some point we would encounter a vertex that is also not in T whose
distance from T is exactly 3, at which point we could add it, contradicting T ’s maximality.
Now for every xi in T , we remove from consideration at most (d + 1)dk other variables (all
those at distance at most 2 from xi in G). This completes the proof.

Now we can indeed charge every variable in T to a disjoint error:

Claim 3.11. If two variables xi and xj in T are the result of type 2 errors for c and c′, then

vars(ci) ∩ vars(cj) = ∅

Proof. For the sake of contradiction, suppose that vars(ci)∩vars(cj) 6= ∅. Then since c and c′

experience type 2 errors, all of their variables are included in VI . This gives a length 2 path
from xi to xj in G, which if they were both included in T , would contradict the assumption
that T is a 3-tree.

We are now ready to prove the main theorem of this section:

Theorem 3.12. Suppose that d ≥ k ≥ 20 log d. Then

Pr[|VI | ≥ (d+ 1)dkt] ≤
(3

d

)t
Proof. Suppose that |VI | ≥ (d+ 1)dkt. Then by Lemma 3.10 we can find a 3-tree T with at
least t vertices. The probability of any particular 3-tree on t vertices can be bounded by:( 2

d5
+ d
(3

7

)k/3)t
This is because by Observation 1 each vertex is caused by either a type 1 or type 2 error
(or both). Moreover by Claim 3.11 the clauses that cause the type 2 errors for each vertex
in T are disjoint. Now the first term in the expression above is the probability of a type
1 error, which follows from Corollary 2.3. The second term follows from the fact that each
variable is contained in at most d clauses each of which could cause a type 2 error, from
Lemma 3.1 which implies that each clause has at least k/3 marked variables, and again from
Corollary 2.3 which implies that for any variable xi, the minimum of the probability it is
set to T or to T in either A1 or A2 is conservatively at least 3/7 (because we chose the best
coupling).

Now it is well-known (see [17, 2]) that the number of trees of size t in a graph of degree
at most D is at most (eD)t. Moreover if we connect pairs of vertices in G that are distance
exactly 3 from each other, then we get a new graph H whose maximum degree is at most
D = d3k. Thus putting it all together we have that the probability that |VI | > (d + 1)dkt
can be bounded by (2k

d2
+ d4k

(3

7

)k/3)t
≤
(3

d

)t
where the last inequality follows from the constraint d ≥ k ≥ 20 log d.
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Thus we can conclude that with high probability, the number of variables in VI is at
most logarithmic. We can now brute-force search over all assignments to count the number
of satisfying assignments to either ΦI1 or ΦI2 . The trouble is that we do not have access to
the marginal probabilities, so we cannot actually execute the coupling procedure. We will
need to circumvent this issue next.

4 Implications of the Coupling Procedure

In this section, we give an abstraction that allows us to think about the coupling procedure as
a randomly chosen root-to-leaf path in a certain tree whose nodes represent states. First, we
make an elementary observation that will be useful in discussing how this tree is constructed.
Recall that the coupling procedure chooses any clause that contains variables in both VI and
VO and then samples all marked variables in it. We will assume without loss of generality
that the choices it makes are done in lexicographic order. So if the clauses in Φ are ordered
arbitrarily as c1, c2, ...., cm and the variables are ordered as x1, x2, ..., xn when executing the
WHILE loop, if it has a choice of more than one clause it chooses among them the clause
ci with the lowest subscript i. Similarly, given a choice of which marked variable to sample
next, it chooses among them the xj with the lowest subscript j.

The important point is that now we can think of a state associated with the coupling
procedure, which we will denote by σ.

Definition 4.1. The state σ of the coupling procedure specifies the following:

1. The set of remaining clauses C ′ – i.e. that have not yet been deleted

2. The partition of the variables into VI and VO

3. The set S of variables whose values have been set, along with their values in both A1

and A2

4. The current clause c∗ being operated on in the while loop, if any

We will assume that the set M of marked variables is fixed once and for all. Now the
transition rules are that if c∗ has any marked variables that are unset, it chooses the lex-
icographically first and sets it. And when c∗ has no remaining marked variables to set, it
updates C ′, VI and VO according to whether it falls into Case # 1 or Case #2 and sets the
current clause to empty. Finally, if the current clause is empty then it chooses the lexico-
graphically first clause from C ′ which has at least one variable in each of VI and VO to be
c∗.

Finally, we can define the next variable operation:

Definition 4.2. Let R : Σ → {xi}ni=1 ∪ {∅} × Σ be the function that takes in a state σ,
transitions to the next state σ′ that sets some variable y and outputs (y, σ′).

Note that some states σ do not immediately set a variable – e.g. if the next operation is
to choose the next clause, or update C ′, VI and VO. These latter transitions are deterministic,
so we let σ′ be the end resulting state and y be the variable that it sets. Now we can define
the stochastic decision tree underlying the coupling procedure:

12



Algorithm 2 Decision Tree Sampling,
Input: Monotone CNF Φ, stochastic decision tree S

1. Choose a random root-to-leaf path in S

2. Choose a uniformly random assignment A1 consistent with A1

3. Choose a uniformly random assignment A2 consistent with A2

4. Output A1 with probability q = PrD[x = T ], and otherwise output A2

Definition 4.3. Given a conditional distribution oracle F , the function R and a stopping
threshold s, the associated stochastic decision tree is the following:

(1) The root node corresponds to the state where only x is set, A1(x) = T , A2(x) = F ,
VI = {x} and VO = {xi}ni=1 \ {x}.

(2) Each node has either zero or four descendants. If the current node corresponds to state
σ, let (y, σ′) = R(σ). Then if y = ∅ or if |VI | = s there are no descendants and the
current node is a leaf corresponding to the termination of the coupling procedure or
|VI | being to large. Otherwise the four descendants correspond to the four choices for
how to set y in A1 and A2, and are marked with the state σ′′ which incorporates their
respective choices into σ′.

(3) Moreover the probability on an edge from a state σ′ to a state σ′′ where y has been set
as A1(y) = T and A2(y) = T is equal to

min(D1(y),D2(y))

and the transition to the state where A1(y) = F and A2(y) = F has probability

min(1−D1(y), 1−D2(y))

Finally if D1(y) > D2(y) then the transition to A1(y) = T and A2(y) = F is non-zero
and is assigned all the remaining probability. Otherwise the transition to A1(y) = F
and A2(y) = T is non-zero and is assigned all the remaining probability.

Now we can use the stochastic decision tree to give an alternative procedure to sample a
uniformly random satisfying assignment of Φ. We will refer to the process of starting from
the root, and choosing a descendant with the corresponding transition probability, until a
leaf node is reached as “choosing a random root-to-leaf path”.

Claim 4.4. The decision tree sampling procedure outputs a uniformly random satisfying
assignment of Φ.

Proof. We could alternatively think of the decision tree sampling procedure as deciding on
A1 or A2 with probability q vs. 1− q at the outset. Then if we choose A1, and we only keep
track of the choices made for A1, marginally these correspond to sequentially sampling the
assignment of variables from D1. And when we reach a leaf node in S we can interpret the
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remaining choices to A1 as sampling all unset variables from D1. Thus the output in this
case is a uniformly random satisfying assignment with x = T . An identical statement holds
for when we choose A2, and because we decided between them at the outset with the correct
probability, this completes the proof of the claim.

Now let σ be the state of a leaf node u and let A1 and A2 be the resulting partial
assignments. Let p1 be the product of certain probabilities along the root-to-leaf path. In
particular, suppose along the path there is a transition with y being set. Let q1 be the
probability of the transition to (A1(y),A2(y)) – i.e. along the branch that it actually went
down. And let q2 be the probability of the transition to (A1(y),A2(y)) – i.e. where y is set
the same in A1 but is set to the opposite value as it was in A2. We let p1 be the product of
all q1

q1+q2
over all such decision on the root-to-leaf path.

Lemma 4.5. Let A be an assignment that agrees with A1. Then for the Decision Tree
Sampling procedure

Pr
[
terminates at leaf u

∣∣∣outputs assignment A
]

= p1

Proof. The idea behind this proof is to think of the random choice of which of the four
descendants to transition to as being broken down into two separate random choices where
we first choose A1(y) and then we choose A2(y). See Figure 2. Now we can make the random
choices in the Decision Tree Sampling procedure in an entirely different order. Instead
of choosing the transition in the first layer, then the second layer and so on, we instead
make all of the choices in the odd layers. Moreover at each leaf, we choose which assignment
consistent with A1 we would output. This is the first phase. Next we choose whether to
output the assignment consistent with A1 or with A2. Finally, we make all the choices in the
even layers which fixes the root-to-leaf path and then we choose an assignment consistent
with A2. This is the second phase.

The key point is that once the output A is fixed, all of the choices in the first phase
are determined, because every time a variable y is set it must agree with its setting in A.
Moreover each leaf node must choose A for its assignment consistent with A1. And finally, we
know that the sampling procedure must output the assignment consistent with A1 because
A agrees with A1 and not A2 (because they differ on how they set x). Thus conditioned on
outputting A the only random choices left are those in the second phase. Now the lemma
follows because the probability of reaching leaf node u is exactly the probability along the
path of all of the even layer choices, which is how we defined p1.

We can define p2 in an analogous way to how we defined p1 (i.e. as the product of certain
probabilities along the root-to-leaf path), and the lemma above shows that p2 is exactly the
probability of all the decisions made along the root-to-leaf path conditioned on the output
being A where A agrees with A2.

The key lemma is the following:

Lemma 4.6. Let N1 be the number of satisfying assignments consistent with A1 and let N2

be the number of satisfying assignments consistent with A2. Then

p1N1

p2N2

=
q

1− q
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r1 + r2 r3 + r4

y=T/? y=F/?
r1/(r1 + r2)

y=T/T y=T/F

…
r2/(r1 + r2)

Figure 2: A transformation on the stochastic decision tree that makes it easier to understand what
happens when we condition on the assignment A that is output by Decision Tree Sampling.

Proof. Let u be a leaf node. Consider a random variable Zu that when we run the decision
tree sampling procedure is non-zero if and only if we end at u. Moreover let Zu = (1− q) if
an assignment with x = T is output, and Zu = −q if an assignment with x = F is output.
Then clearly E[Zu] = 0. Now alternatively we can write:

E[Zu] = E
A

[E[Zu|A is output]]

where A is a uniformly random satisfying assignment of Φ, precisely because of Lemma 4.4.
Let N be the total number of such assignments. Then

E
A

[E[Zu|A]] =
(N1

N

)
(p1)(1− q) +

(N2

N

)
(p2)(−q)

This follows because the only assignments A that can be output at u must be consistent
with either A1 or A2. Note that these are disjoint events because in one of them x = T
while in the other x = F . Then once we know that A is consistent with A1 (which happens
with probability N1

N
) the probability for the decisions made in A2 being such that we reach

u is exactly p1, as this was how it was defined. The final term in the product of three terms
is just the value of Zu. An identical argument justifies the second term. Now using the fact
that the above expression evaluates to zero and rearranging completes the proof.

5 Certifying the Marginal Distribution

5.1 One-Sided Stochastic Decision Trees

The stochastic decision tree that we defined in the previous section is a natural representation
of the trajectory of the coupling procedure. However it has an important drawback that we
will remedy here. Its crucial property is captured in Lemma 4.6 which gives a relation
between

(1) pi – the conditional probability of an assignment consistent with Ai reaching u and
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(2) Ni – the number of assignments consistent with Ai

for i = 1, 2. However p1 is the product of various ratios of probabilities along the root-to-leaf
path. This means that if we think of the transition probabilities as variables, the constraint
imposed by Lemma 4.6 is far from linear2.

In this section, we will transform a stochastic decision tree into two separate trees, that
we call one-sided stochastic decision trees. These will have the property that the constraint
imposed by Lemma 4.6 will be linear in the unknown probabilities that we think of as
variables. Ultimately we will show that any such pair can (1) certify that a given value q is
within an additive inverse polynomial factor of PrD[x = T ] and (2) can be constructed in
polynomial time through linear programming. First we explain the transformation from a
stochastic decision tree to a one-sided stochastic decision tree. We will then formally define
its properties and what we require of it.

Now suppose we are given a stochastic decision tree S. Let’s construct the one-sided
stochastic decision tree S1 that represents the trajectory of the partial assignment A1. When
we start from the starting state σ (see Definition 4.1), the four descendants of it in S will
now be four grand-children. It’s immediate descendants will be two nodes u and u′, one
representing the choice A1(y) = T and one representing A1(y) = F , where y is the next
variable set (see Definition 4.2). The two children of σ in S that correspond to A1(y) = T
will now be the children of u and the other two children will now be the children of u′. We
will continue in this way so that alternate layers represent nodes present in S and new nodes.

This alone does not change much the semantics of the trajectory. All we are doing
is breaking up the decision of which of the four children to proceed to, into two separate
decisions. The first decision is based on just A1 and the second is based on A2. However
we will change the semantics of what probabilities we associate with different transitions.
For starters, we will work with total probabilities. So the total probability incoming into
the starting node is 1. Let’s see how this works inductively. Let’s now suppose that σ
represents the state of some node in S (not necessarily the starting state) and u and u′ are
its descendants in S1. Then if the total probability into σ in S1 is z, we place z along both
the edges to u and to u′. This is because the decision tree is now from the perspective of A1,
who perhaps has already chosen his assignment uniformly at random from those with x = T
but has not set all of those values in A1. Hence his decision is not a random variable, since
given the option of transition to u or u′ he must go to whichever one is consistent with his
hidden values.

However from this perspective, the choices corresponding to A2 are random because he
has no knowledge of the assignment that the other player is working with. If we have z total
probability coming into u, then the total probability into its two descendants will be ( q1

q1+q2
)z

and ( q2
q1+q2

)z respectively, where q1 and q2 were the probabilities on the transitions in S into

the two corresponding descendants. In particular, if q1 is the probability of setting A1(y) = T
and A2(y) = T and q2 is the probability of setting A1(y) = T and A2(y) = F then ( q1

q1+q2
)z

is the total probability on the transition from u to the descendant where A2(y) = T and
( q2
q1+q2

)z is the total probability on the transition from u to the descendant where A2(y) = F .

2What’s worse is that the contribution of a particular decision to p1 and p2 is a multiplication by one of
two ratios of probabilities, which have different denominators. For reasons that we will not digress into, this
makes it challenging to encode the total probability p1 as a flow in a tree.
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Note that from Corollary 2.3 we have that( q2

q1 + q2

)
z ≤

( 6

d5

)
z

This is an important property that we will make crucial use of later. Notice that it is a
linear constraint in the total probability. Now we are ready to define a one-sided stochastic
decision tree, which closely mirrors Definition 4.3.

Definition 5.1. Given the function R and a stopping threshold s, the associated one-sided
stochastic decision tree for A1 is the following:

(1) The root node corresponds to the state where only x is set, A1(x) = T , A2(x) = F ,
VI = {x} and VO = {xi}ni=1 \ {x}.

(2) Each node has either two descendants and four grand-descendants or zero descendants.
If the current node a corresponds to state σ, let (y, σ′) = R(σ). Then if y = ∅ or
if |VI | = s there are no descendants and the current node is a leaf corresponding
to the termination of the coupling procedure or |VI | being to large. Otherwise the
two descendants correspond to the two choices for how to set y in A1. Each of their
two descendants correspond to the two choices for how to set y in A2. Each grand-
descendant is marked with the state σ′ which incorporates their respective choices.

(3) Let z be the total probability into a. Then the total probability into each descendant is
z. Moreover let the total probability into the grand-descendants with states A1(y) = T
and A2(y) = T and A1(y) = T and A2(y) = F be z1 and z2 respectively. Then z1 and
z2 are nonnegative, sum to z and satisfy z2 ≤ ( 6

d5
)z. Similarly, let the total probability

into the grand-descendants with states A1(y) = F and A2(y) = F and A1(y) = F and
A2(y) = T be z3 and z4 respectively. Then z3 and z4 are nonnegative, sum to z and
satisfy z4 ≤ ( 6

d5
)z.

The one-sided stochastic decision tree for A2 is defined analogously, in the obvious way.
Finally we record an elementary fact:

Claim 5.2. There is a perfect matching between the root-to-leaf paths in S1 and S2, so that
any pair of assignments A1 and A2 that takes a root-to-leaf path p in S1, must also take the
root-to-leaf path in S2 to which p is matched.

Proof. Recall that the odd levels in S1 and S2 correspond to the nodes in S. Therefore from
a root-to-leaf path p in S1 we can construct the root-to-leaf path in S, which in turn uniquely
defines a root-to-leaf path in S2 (because it specifies which nodes are visited in odd layers,
and all paths end on a node in an odd layer).

5.2 An Algorithm for Finding a Valid S1 and S2

We are now ready to prove one of the two main theorems of this section:
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Theorem 5.3. Let q = PrD[x = T ] and q′ ≤ q ≤ q′′. Then there are two one-sided stochastic
decision trees S1 and S2 that for any pair of matched root-to-leaf paths terminating in u and
u′ respectively satisfy ( q′

1− q′
)
p2N2 ≤ p1N1 ≤

( q′′

1− q′′
)
p2N2

where N1 and N2 are number of satisfying assignments consistent with A1 and A2 respec-
tively, and p1 and p2 are the total probability into u and u′ respectively.

Moreover given q′ and q′′ that satisfy q′ ≤ q ≤ q′′ there is an algorithm to construct two
one-sided stochastic decision trees S1 and S2 that satisfy the above condition on all matched
leaf nodes corresponding to a termination of the coupling procedure, which runs in time
polynomial in m and 4s where s is the stopping size.

Proof. The first part of the theorem follows from the transformation we gave from a stochas-
tic decision tree to two one-sided stochastic decision trees. Then Claim 5.2 combined with
Lemma 4.6 implies q

1−q = p1N1

p2N2
, which then necessarily satisfies q′

1−q′ ≤
p1N1

p2N2
≤ q′′

1−q′′ . Rear-
ranging completes the proof of the first part.

To prove the second part of the theorem, notice that if s is the stopping size, then the
number of leaf nodes in S1 and in S2 is bounded by 4s. At each leaf node that corresponds
to a termination of the coupling procedure, from Lemma 3.6 we can compute the ratio of N1

to N2 as the ratio of the number of satisfying assignments to ΦI1 to the number of satisfying
assignments to ΦI2 . This can be done in polynomial in m and 2s time by brute-force. Finally,
the constraints in Definition 5.1 are all linear in the variables that represent total probability
(if we treat 6

d5
, q′

1−q′ ,
q′′

1−q′′ and all ratios N1

N2
as given constants). Thus we can find a valid

choice of the total probability variables by linear programming. This completes the proof of
the second part.

Recall that we will be able to choose s = O(d2k log n) and Theorem 3.12 will imply that at
most an inverse polynomial fraction of the distribution fails to couple. Thus the algorithm
above runs in polynomial time for any constants d and k. What remains is to show that any
valid choice of total probabilities certifies that q′ ≤ PrD[x = T ] ≤ q′′.

5.3 A Fractional Matching to Certify q

We are now ready to prove the second main theorem of this section. We will show that
having any two one-sided stochastic decision trees that meet the constraints on the leaves
imposed by Theorem 5.3 is enough to certify that PrD[x = T ] is approximately between q′

and q′′. This result will rest on two facts. Fix any assignment A. Then either

(1) The assignment has too many clauses that restricted to marked variables are all F or

(2) The total probability of A reaching a leaf node u where the coupling procedure failed
to terminate before reaching size s is at most O( 1

nc ).

Theorem 5.4. Suppose that d ≥ k ≥ 20 log d. Then any two one-sided stochastic decision
trees S1 and S2 that meet the constraints on the leaves imposed by Theorem 5.3 and satisfy
s = 10cd2k log n imply that

q′ −O
( 1

nc

)
≤ PrD[x = T ] ≤ q′′ +O

( 1

nc

)
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The proof of this theorem will use many of the same tools that appeared in the proof of
Theorem 3.12, since in essence we are performing a one-sided charging argument.

Proof. The proof will proceed by constructing a complete bipartite graph H = (U, V,E) and
finding a fractional approximate matching as follows. The nodes in U represent the satisfying
assignments of Φ with x = T . The nodes in V represent the satisfying assignments of Φ
with x = F . Moreover all but a O( 1

nc ) fraction of the nodes on the left will send between
1 − q′′ − O( 1

nc ) and 1 − q′ + O( 1
nc ) flow along their outgoing edges. Finally all but a O( 1

nc )
fraction of the nodes on the right will receive between q′ −O( 1

nc ) and q′′ +O( 1
nc ) flow along

their incoming edges.
First notice that any assignment A (say with x = T ) is mapped by S1 to a distribution

over leaf nodes, some of which correspond to a coupling and some of which correspond to a
failure to couple before reaching size s. Now consider matched pairs of leaf nodes (according
to Claim 5.2) that correspond to a coupling. Let p1 and p2 be the total probability of the
leaf nodes in S1 and S2 respectively. Let N1 and N2 be the total number of assignments that
are consistent with A1 and A2, and let N1 and N2 be the corresponding sets of assignments.
From the assumption that( q′

1− q′
)
p2N2 ≤ p1N1 ≤

( q′′

1− q′′
)
p2N2

and the intermediate value theorem it follows that there is a q′ ≤ q∗ ≤ q′′ which satisfies( q′∗

1− q∗
)
p2N2 = p1N1

Hence there is a flow that sends exactly (1− q∗)p1 units of flow out of each node in N1 and
which each node in N2 receives exactly q∗p2 units of flow.

If every leaf node corresponding to a coupling, we would indeed have the fractional
matching we are looking for, just by summing these flows over all leaf nodes. What remains
is to handle the leaf nodes that do not correspond to the coupling terminating before size
s. Consider any such leaf node u in S1 and the corresponding leaf node v in S2. From
Lemma 3.10 we have that there is a 3-tree T of size at least 10c log n. For each node in T ,
from Claim 3.11 we have there are at least 10c log n disjoint type 1 or type 2 errors.

Case # 1: Suppose that there are at least 5c log n disjoint type 1 errors. Fix the 3-tree
T , and look at all root-to-leaf paths that are consistent with just the type 1 errors. Then
the sum of their total probabilities is at most( 6

d12

)5c logn

This follows because the constraint that z2 ≤ ( 6
d12

)z (and similarly for z4) in Definition 5.1
implies that for each path we can factor out the above term corresponding to just the decisions
where there are type 1 errors. The remaining probabilities are conditional distributions on
the paths (after having taken into account the type 1 errors) and sum to at most one. Finally
the total number of 3-trees of size 10c log n is at most (ed3k)10c logn. Thus for any assignment
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A, if we ignore what happens to it when it ends up at a leaf node which did not couple and
which has at least 5c log n disjoint type 1 errors, in total we have ignored at most(6e

d

)5c logn

≤ 1/nc

of its probability.
Case # 2: Suppose that there are at least 5c log n disjoint type 2 errors. Each type 2

error can be blamed on either A1 or A2 or both (e.g. it could be that the clause c might
only have all of its marked variables set to F in A1). Let’s suppose that the assignment A
contributes at least 5/2c log n disjoint type 2 errors. In this case we will completely ignore
A in the constraints imposed by our flow. How many such assignments can there be? The
probability of getting any such assignment is bounded by(

ed3k
)10c logn((3

7

)k/3)5/2c logn

≤ 1/nc

Thus if we ignore the flow constraints for all such assignments, we will be ignoring at most
a 1/nc fraction of the nodes in U and the nodes in V . The only remaining case is when the
assignment A ends up at a leaf node u that has at least 5c log n disjoint type 2 errors, but
it contributes less than 5/2c log n itself. For each type 2 error that it does not contribute
to, it contributes to another type 1 error. The only minor complication is that the node
responsible might not be in the 3-tree T . However it is distance at most 1 from the 3-tree
because it is contained in a clause that results in type 2 error that does contain a node in
T . Now by an analogous reasoning as in Case #1 above, if we fix the pattern of these type
1 errors – i.e. we fix the 3-tree and the extra nodes at distance 1 from it that contribute the
missing type 1 errors – the sum of the total probability of all consistent root-to-leaf paths is
at most ( 6

d12

)5c logn

Now the number of patterns can be bounded by (ed4k)10c logn, which accounts for the inclusion
of extra nodes that are not in T . Once again, for such an assignment A if we ignore what
happens to it when it ends up at a leaf node which did not couple and which has at least
5c log n disjoint type 2 but it contributes less than 5/2c log n itself, in total we have ignored
at most (6e

d

)5c logn

≤ 1/nc

of its probability.
Now returning to the beginning of the proof and letting N1 and N2 be the total number

of satisfying assignments with x = T and x = F respectively. We have that the flow in the
bipartite graph implies

(1− q′′)N1 −O
( 1

nc

)
≤ flowoutU = flowinV ≤ q′′N2 +O

( 1

nc

)
and the further condition

q′N2 −O
( 1

nc

)
≤ flowinV = flowoutU ≤ (1− q′)N1 +O

( 1

nc

)
which gives q′

1−q′−O( 1
nc ) ≤ q

1−q ≤
q′′

1−q′′ +O( 1
nc ) which completes the proof of the theorem.
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6 Applications

Here we show how to use our algorithm for computing marginal probabilities when k is
logarithmic in d for approximate counting and sampling from the uniform distribution on
satisfying assignments.

6.1 Approximate Counting

First, we show how to use an algorithm for computing marginal probabilities to do approxi-
mate counting in a monotone CNF, where no variable is negated. This approach is standard,
and appears in [4].

Corollary 6.1. Suppose we are given a monotone CNF formula Φ on n variables with at
least k variables per clause and at most d clauses containing any one variable with d ≥ k ≥
20 log d. Let OPT be the number of satisfying assignments. Then there is an algorithm that
outputs a quantity count that satisfies(

1− 1

nc

)
OPT ≤ count ≤ (1 +

1

nc

)
OPT

and runs in time polynomial in m and ncd2k.

Proof. First, we fix an ordering of the variables x1, x2, ...xn and a sequence of formulas
Φ1,Φ2, ...Φn. Let Φ1 = Φ and let Φi be the subformula we get when substituting x1 =
T, x2 = T, ...xi−1 = T into Φ and simplifying. Notice that each such formula is a monotone
CNF and inherits the properties we need from Φ. In particular, each clause has at least k
variables because the only clauses left in Φi (i.e. not already satisfied) are the ones which
have all of their variables unset. Also, each variable belongs to at most d clauses because we
have only removed variables and clauses.

Thus we can appeal to Theorem 5.3 and Theorem 5.4 to compute for each variable xi the
quantity pi , PrDi

[xi = T ] to within an additive 1/2nc+1 where Di is the uniform distribution
on satisfying assignments to Φi. Let our estimate be qi. Since pi ≥ 1/2 we have that qi and
pi are also multiplicatively close, with (1±1/nc+1). Now if we take the product of the pi’s we
get a telescoping product which computes the ratio of the number of satisfying assignments
with all variables set to T divided by the number of satisfying assignments to Φ. Moreover
each pi ≥ 1/2. Thus we conclude

count ,
n∏

i=1

( 1

qi

)
=
(

1± 1

nc

)
OPT

which completes the proof.

The above approach heavily used monotonicity to ensure that no clause becomes too
small (i.e. contains few variables, but is still unsatisfied). This is a similarly issue to what
happened with the coupling procedure, which necessitating using marked and unmarked
variables, the latter being variables that are never set and are used to make sure no clause
becomes too small. We can take a similar approach here. In what follows we will no longer
assume Φ is monotone.
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Lemma 6.2. Set c0 = max(e( 1
2

)( 1
6

)2 , 3/4). Suppose that e(d + 1)c−k0 ≤ 1. Then there is a
partial assignment A so that every clause is satisfied and each clause has at least k/3 unset
variables. Moreover there is a randomized algorithm to find such a partial assignment that
runs in time polynomial in m, n, k and d. Alternatively there is a deterministic algorithm
that runs in time polynomial in m and nO(d2).

Proof. We will choose independent for each variable to set it to T with probability 1/4, to
set it to F with probability 1/4 and to leave it unset with probability 1/2. Now consider
the m bad events, one for each clause c, that c is either unsatisfied or has not enough unset
variables (or both). Then we have

Pr[c is bad] ≤ e−( 1
2

)( 1
6

)2k +
(3

4

)k
≤ 2c−k0

where the first term follows from the Chernoff bound and represents the probability that
there are not enough unset variables, and the second term is the probability that the clause
is unsatisfied. Once again we can appeal to the Lovász Local Lemma to show the existence.
Finally we can use the algorithm of Moser and Tardos [20] to find such a partial assignment
in randomized polynomial time. Moreover Moser and Tardos [20] also give a deterministic
algorithm that runs in time polynomial in m and nO(d2).

Theorem 6.3. Suppose we are given a CNF formula Φ on n variables with at least k variables
per clause and at most d clauses containing any one variable with d ≥ k ≥ 20 log d. Let OPT
be the number of satisfying assignments. Then there is a deterministic algorithm that outputs
a quantity count that satisfies(

1− 1

nc

)
OPT ≤ count ≤ (1 +

1

nc

)
OPT

and runs in time polynomial in m and ncd2k.

Proof. Our proof follows the same basic outline as in Corollary 6.1. First we (determinis-
tically) find a partial assignment that meets Lemma 6.2 and let x1, x2, ....xt be an ordering
of the set variables. We define Φ1,Φ2, ...Φt in the same way as the subformula we get by
substituting in the assignments for x1, x2, ...xi−1 and simplifying to get Φi. Again let qi be
our estimate for the marginal probabilities.

The key point is that Φt+1 would be empty, because all clauses are satisfied. Moreover
each clause that appears in any formula Φi for 1 ≤ i ≤ t has at least k/3 variables because
it has at least that many unset variables in the partial assignment. Moreover we can now
output

count , 2n−t
n∏

i=1

( 1

qi

)
=
(

1± 1

nc

)
OPT

because Φt+1 has exactly 2n−t satisfying assignments (every choice of the unset variables)
and we have used the same telescoping product, but now to compute the ratio of the number
of satisfying assignments to Φt+1 divided by the number of satisfying assignments to Φ.
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Algorithm 3 Sampling Procedure,
Input: CNF Φ, oracle F for approximating marginals of variables

1. Using Lemma 3.1, label variables as marked or unmarked

2. While there is a marked variable x that is unset

3. Sample x using F

4. Initialize VI = {x} and VO to be all unset variables (x is already set)

5. While there is a clause c with variables in both VI and VO

6. Sequentially sample its marked variables (if any) using F

7. Case # 1: c is satisfied

8. Delete c

9. Case # 2: c is unsatisfied

10. Let S be all variables in c (marked or unmarked)

11. Update VI ← VI ∪ S, VO ← VO \ S
12. End

13. End

14. For each connected component of the remaining clauses

15. Enumerate and uniformly choose a satisfying assignment of the unset variables

16. End

6.2 Approximate Sampling

Here we give an algorithm to generate an assignment approximately uniformly from the set
of all satisfying assignments. Again, the complication is that our oracle for approximating
the marginals works only if k is at least logarithmic in d so we need some care in the order
we choose to sample variables. First we give the algorithm:

First, we prove that the output is close to uniform.

Lemma 6.4. If the oracle F outputs a marginal probability that is 1/nc+1 close to the true
marginal distribution for each variable queried, then the output of the Sampling Proce-
dure is a random assignment whose distribution is 1/nc-close in total variation distance to
the uniform distribution on all satisfying assignments.

Proof. The proof of this lemma is in two parts. First, imagine we were instead given access
to an oracle G that answered each query for a marginal distribution with the exact value.
Then each variable set using the oracle is chosen from the correct marginal distribution.
And in the last step, the set of satisfying assignments is a cross-product of the satisfying
assignments for each component. Thus the procedure would output a uniformly random
assignment from the set of all satisfying assignments. Second, since at most n variables are
queried, we have that with probability at least 1 − 1/nc all of the random decision of the
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procedure would be the same if we had given it answers from G instead of from F . This now
completes the proof.

The key step in the analysis of this algorithm rests on showing that with high probability
each connected component is of logarithmic size.

Theorem 6.5. Suppose we are given a CNF formula Φ on n variables with at least k variables
per clause and at most d clauses containing any one variable with d ≤ k ≤ 20 log d. There
is an algorithm that outputs a random assignment whose distribution is 1/nc-close in total
variation distance to the uniform distribution on all satisfying assignments. Moreover the
algorithm runs in time polynomial in m and ncd2k.

Proof. The proof of this theorem uses many ideas from the coupling procedure as analyzed
in Section 3. Let Φ′ be the formula at the start of some iteration of the inner WHILE loop.
Then at the end of the inner WHILE loop, using Lemma 3.6 we can write:

Φ′ = Φ′I ∧ Φ′O

where Φ′I is a formula on the variables in VI and Φ′O is a formula on the variables in VO. In
particular, no clause has variables in both because the inner WHILE loop terminated. Now
we can appeal to the analysis in Theorem 3.12 which gives a with high probability bound
on the size of VI . The analysis presented in its proof is nominally for a different procedure,
the Coupling Procedure, but the inner WHILE loop of the Sampling Procedure is
identical except for the fact that there are no type 1 errors because we are building up just
one assignment. Thus

Pr[|VI | ≥ (d+ 1)dkt] ≤
(3

d

)t
The inner WHILE loop is run at most n times and so if we choose t ≥ c log n we get that
with probability at least 1− 1/nc no component has size larger than (d + 1)dkc log n. Now
the brute force search in the last step can be implemented in time polynomial in m and
ncd2k, which combined with Lemma 6.4 completes the proof.

We can also now prove Corollary 1.6.

Proof. Recall, we are given a cause network and the truth assignment of each observed vari-
able. First we do some preprocessing. If an observed variable is an OR of several hidden
variables or their negation, and the observed variable is set to F we know the assignment of
each hidden variable on which it depends. Similarly, if an observed variable is an AND and
it is set to T again we know the assignment of each of its variables. For all the remaining
observed variables, we know there is exactly one configuration of its variables that is prohib-
ited so each yields a clause in a CNF formula Φ. Moreover each clause depends on at least
2k/3 variables whose truth value has not been set because the collection of observations is
regular. Finally each variable is contained in at most d clauses. The posterior distribution
on the remaining hidden variables (whose value has not already been set) is uniform on the
set of satisfying assignments to Φ and thus we can appeal to Theorem 6.5 to complete the
proof.
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