
JOURNAL OF ALGORITHMS 10,429~448 (1989)

Monte-Carlo Approximation Algorithms for
Enumeration Problems

RICHARD M. KARP*

Computer Science Division,
University of California, Berkeley, California 94720

MICHAEL LUBY+

Computer Science Department,

University of Toronto, Toronto, Ontario, Canada M5S lA4

AND

NEALMADRAS*

Department of Mathematics,
York University, North York, Ontario, Canada

Received August 4,1987; revised May 13,1988

We develop polynomial time Monte-Carlo algorithms which produce good ap-
proximate solutions to enumeration problems for which it is known that the
computation of the exact solution is very hard. We start by developing a Monte-Carlo
approximation algorithm for the DNF counting problem, which is the problem of
counting the number of satisfying truth assignments to a formula in disjunctive
normal form. The input to the algorithm is the formula and two parameters E and 8.
The algorithm produces an estimate which is between 1 - E and 1 + E times the
number of satisfying truth assignments with probability at least 1 - 6. The running
time of the algorithm is linear in the length of the formula times l,/~~ times ln(l/S).
On the other hand, the problem of computing the exact answer for the DNF
counting problem is known to be #P-complete, which implies that there is no
polynomial time algorithm for the exact solution if P + NP. This paper improves
and gives new applications of some of the work previously reported. Variants of an
E, S approximation algorithm for the DNF counting problem have been highly
tailored to be especially efficient for the network reliability problems to which they
are applied. In this paper the emphasis is on the development and analysis of a
much more efficient c, 6 approximation algorithm for the DNF counting problem.

*Reseamh partially supported by the International Computer Science Institute, Berkeley,
California, 94704 and NSF grant DCR-8411954.

tResearch partially supported by the International Computer Science Institute, Berkeley,
California, 94704 and NSERC of Canada grant A8092.

*Research partially supported by a NSERC of Canada grant.

429
Ol%-6774/89 $3.00

Copyright 0 1989 by Academic Press, Inc.
All tights of teproduction in any form r-served.

430 KARP, LUBY. AND MADRAS

The running time of the algorithm presented here substantially improves the
running time of versions of this algorithm given previously. We give a new
application of the algorithm to a problem which is relevant to physical chemistry

and statistical physics. The resulting E, 8 approximation algorithm is substantially
faster than the fastest known deterministic solution for the problem. c 1989 ACS

demic Press. Inc

1. INTRODUCTION

A classic example of an enumeration problem is the DNF counting
problem. The input is a propositional formula F, which is the disjunction of
m clauses C,, . . . , C,, where each clause is the conjunction of a subset of
literals defined with respect to n boolean variables X,, . . . , X,. The output
is the number of truth assignments over the n variables which satisfy the
formula F, this quantity is denoted by #F. The DNF counting problem is
a #P-complete problem [Va], which implies that if NP # P then there is no
polynomial time algorithm for the DNF counting problem.

We consider the problem of approximating #F. An E, 8 approximation
algorithm for the DNF problem is a Monte-Carlo algorithm which on every
input formula F, E > 0,6 > 0, outputs a number Y such that

Pr[(I - e)#F _< 2 I (1 + E)#F] 2 1 - S.

The goal is to design an approximation algorithm for the DNF counting
problem which runs in time polynomial in the length of F.

The first few algorithms we develop can be thought of as variants of the
following abstract Monte-Carlo algorithm. We have a finite set of known
size U and an efficient method for randomly choosing elements from U
such that each u E U is equally likely to be chosen. We have a function f
defined on U such that f(u) is either 0 or 1 at each u E U and we have an
efficient method for computing f(u) given u. Our goal is to estimate 1 GI,
where G is the subset of U at which the function f takes on the value 1.
One trial of the Monte-Carlo algorithm consists of randomly choosing
tl E U, computing f(u), and setting Y + 1 Ul . f(u). The Monte-Carlo
algorithm consists of running N trials, where q is the value of Y from the
ith trial. The output of the algorithm is 3: + CiN,,yI/N.

It is easy to verify that E[Y] = ICI, and consequently E[f] = ICI. The
question we address here is how large does N have to be to guarantee that
the Monte-Carlo algorithm is an E, S approximation algorithm. The follow-
ing theorem provides the answer.

ZERO-ONE ESTIMATOR THEOREM. Let p = 1 G(/I U(. Let E 5 2. If N 2
(l/p) . (4 ln(2/r3)/&2) then the Monte-Carlo algorithm described above is an
E, S approximation algorithm.

MONTE-CARLO ENUMERATION ALGORITHM 431

Proof. Follows using standard techniques from an inequality due to
Bernstein cited in Renyi [Re]. A proof is supplied in the Appendix. q

The theorem provides an upper bound on the number of trials sufficient
to guarantee an E, 6 approximation algorithm. It is not hard to prove that
this upper bound is within a constant multiplicative factor of the lower
bound on the number of trials necessary for the Monte-Carlo algorithm to
be an E, 6 approximation algorithm. To obtain an E, S approximation
algorithm for the DNF counting problem which runs in polynomial time it
is sufficient to design the trial of the Monte-Carlo algorithm to have the
following properties. The input to the algorithm is a DNF formula F.
Polynomial means polynomial in the length of F.

1. In polynomial time we can compute IV] and we can randomly
choose members from U with the uniform probability distribution.

2. The function f is computable in polynomial time.

3. We can compute in polynomial time an upper bound B on 1 U[/ (G(
such that the value of B is polynomial.

If we can achieve these goals, then the polynomial time E, 6 approximation
algorithm consists of computing B and running N = B * 41n(2/8)/e2
trials.

2. A NAIVE MONTE-CARLO ALGORITHM

In this section we present a simple but ineffective algorithm for estimat-
ing #F. The reason for presenting this algorithm is to further emphasize the
importance of designing the trial carefully. Let U be the set of all possible
truth assignments for the n variables. Let f be the function which evaluates
to 1 on the set of truth assignments which satisfy F. Thus, G is the set of
truth assignments which satisfy F and the quantity we are trying to estimate
is] G] . It is easy to verify that the first two properties described in the
previous section are true with this definition of U and f. The difficulty is
the third property, i.e., the polynomial time computation of an upper bound
B on] Ul /I G] such that the value of B is polynomial. The best upper
bound B that can be computed in general is exponentially large in the
length of F. The difficulty is not just in the computation of B, because there
are easy examples of DNF formulas F such that) VI/j GJ is exponentially
large in the length of F. This commmonly occurs, for instance, in network
reliability problems, which can be thought of as DNF counting problems
(see Section 6). Thus, the algorithm presented here is not only theoretically
an exponential time algorithm but also for typical problems encountered in

432 KARP, LUBY, AND MADRAS

practice it would have to be run for an exponential amount of time to
produce a good estimate.

3. THE COVERAGE ALGORITHM FOR THE UNION OF
SETS PROBLEM

The DNF counting problem can be thought of as a special case of the
union of sets problem described below, which we apply to other problems
later in the paper. The input to the union of sets problem is a description of
m sets, D,, . . . , 0,. The aim is to compute the cardinality of D = UzlDi.
Below we present an E, 8 approximation algorithm for estimating IDI,
which is the basis of a more efficient algorithm presented in Section 5. To
implement the algorithm, we make the following assumptions:

1. For all i between 1 and m, [DJ can be easily computed.

2. For all i between 1 and m, we can randomly choose an element
s E D; such that the probability of choosing each such s is I/ \ DJ .

3. Given any s E D and any i between 1 and m, it is easy to decide
whether or not s E Di.

The following is a description of one trial of the algorithm. Let U be the
direct sum of the Di, i.e., U = D, 63 . . . @ 0,. An element in U is repre-
sented by a pair (s, i), where i is between 1 and m and s E Di. Thus,
IV/ = Cim_l IDJ. F or each s E D, define the coverage set to be

cov(s) = {(s, i):(s, i) E U}.

There is one element in cov(s) for each set Di containing s. The coverage
sets define a partition on U, where the size of each coverage set is at most m
and the number of coverage sets is exactly 1 D 1. We define f(s, i) = 1 if i is
the smallest index such that s E Di and f(s, i) = 0 otherwise. Let G be the
subset of U for which f takes on the value of 1. Since, for each s E D, f
takes on the value 1 for exactly one element of cov(s), [Gl = IDI.

A trial proceeds as described in Section 1: choose (s, i) at random from
U (uniformly) and set Y + 1 U(* f(s, i). In more detail:

1. Randomly choose i E {l,..., m } such that i is chosen with proba-
bility lDi\/lUl.

2. Randomly choose s E Di such that s is chosen with probability
l/IDA*

Note. Steps 1 and 2 randomly choose (s, i) E U with probability l/l U(.

3. Compute f(s, i); Y t f(s, i) . IUl.

This completes the abstract description of one trial of the coverage algo-

MONTE-CARLO ENUMERATION ALGORITHM 433

rithm for the union of sets problem. In the next section we present an
implementation of this algorithm for the DNF counting problem. The
advantage of the coverage algorithm over the naive algorithm is that
171 2,1/a (where p = 1 G\ / 1 Ul), and thus, applying the Zero-One Estima-
tor Theorem, N = m * 4hr(2/S)/~~ trials suffice for an E, 8 approximation
algorithm.

4. IMPLEMENTATION OF THE COVERAGE ALGORITHM FOR THE
DNF COUNTING PROBLEM

In this section we present an E, S approximation algorithm for the DNF
counting problem based on the coverage algorithm for the union of sets
presented in Section 3. The running time of the algorithm is O[nm* .
ln(l/S)/e2]. In Section 6 we present a more efficient E, S approximation
algorithm for the DNF counting problem.

For i = l,..., m, let Oi be the set of truth assignments which satisfy
clause Ci. Let D = UTmlDi. It is easy to verify that #F = IDI. There is one
element in c&s) for each clause which s satisfies. To make the abstract
description more concrete, we provide the following example.

EXAMPLEI. L~~F=C,VC,VC,,~~~~~C,=X,AX~,C~=~~~~~
C, = z3. Consider the following matrix. The rows of the matrix correspond
to the elements of D and the columns correspond to the m clauses. A box
in entry (s, i) in this matrix indicates that (s, i) E U. The set of boxes in
row s correspond to the elements in cov(s). For each (s, i) E U, if
f(s, i) = 1 then the corresponding box is filled in and if f(s, i) = 0 then
the corresponding box is left blank (Fig. 1).

To simplify the discussion of the implementation, we assume a simple
representation of the formula F which is not as compact as it could be. We

x2

0

0

1

X3

0

0

0

1
-

FIGURES

434 KARP, LUBY, AND MADRAS

leave it to the reader to derive a more compact representation when eat
clause contains a small number of the possible literals. F is represented b
an m by n matrix, where the i, j entry in the matrix is 1 if literal J
appears in clause i, 0 if literal fj appears in clause i, and empty otherwise

The preprocessing for the coverage algorithm consists of the following
For i = l,..., m, compute lDil = 2”-# literalsin c. Let A be an integer arra:
of length m + 1 such that A, = 0 and Aj = C),, IOil. Then IU(= A,
The total time for the preprocessing step is O(mn).

We run the algorithm for N = m . 41n(2/&)/a2 trials. A trial of thr
algorithm consists of the following steps:

1. Randomly choose i E {l,..., m} such that i is chosen with proba
bility lDJ/l U[. This is done by randomly choosing a number r between
1 and) VI and using binary search to find the entry in A such that A,-i <
r S Ai.

2. Randomly choose s E Di such that s is chosen with probability
l/l DJ. This is done by setting the truth assignments for the variables
which appear in C, to satisfy clause Ci and then choosing the truth values
for the variables that do not appear in Ci randomly to be “true” or “false”
each with probability $.

(Note. Steps 1 and 2 randomly choose (s, i) E U with probability
l/l v.1

3. Compute f(s, i). Let j = min{ I: s E Dl}. Checking whether s E D,
consists of checking whether s satisfies C,. The value of j is computed by
indexing sequentially through the clauses. Then, f(s, i) = 1 iff i = j.

4. Y=f(s,i)- IUl.

The total time for steps 1 and 2 of a trial is U(n). The bottleneck in terms
of time is step 3, the computation of f(s, i). For each clause C,, the time
to check if s satisfies C, is O(n). The total number of clauses which
are checked in the worst case is m. Thus, the total time for step 3 is
O(mn). The total time for preprocessing plus all trials of the algorithm is
0(nm2 - ln(l/8)/a2).

5. SELF-ADJUSTING COVERAGE ALGORITHM FOR THE UNION OF
SETS PROBLEM

The most costly step in terms of time for the coverage algorithm is the
computation of the function f. In this section we give a different way of
computing f which at first glance does not seem to improve the efficiency
of the algorithm, but together with another modification substantially
reduces the running time of the algorithm. In the description of the

MONTE-CARLO ENUMERATION ALGORITHM 435

coverage algorithm in Section 3, we note that E[Y] =]D (if f is any
function which satisfies, for each s E D,

c f(s, i) = 1.
(s, i)CCOV(S)

We first describe a variant of the coverage algorithm for the union of sets
problem, using random variables in place of f. For each s E D, f'(s) is a
random variable such that E[f’(s)] = l/]cov(s) 1. A trial consists of ran-
domly choosing (s, i) E U, choosing a random value for f’(s) and setting
the estimator Y to (U(* f’(s). It can be easily verified that E[Y] =] 01.

For each s E D, not only is f’(s) a random variable, but also the amount
of time to compute f’(s) is a random variable t(s). Given s E D, f'(s) is
computed as follows:

computing J’(s)

t(s) + 0
repeat

t(s) + t(s) + 1
randomly choose j E (1,. . , m } with probability l/m

until s E 4.

f’(s) + r(s)/m

At each iteration of the repeat loop, the probability that s E Dj is
]cov(s)]/m. Thus, t(s) is a geometric random variable and E[t(s)] =
m/]cov(s)]. Thus, E[f’(s)] = l/[cov(s)].

When we use this implementation of a trial of the coverage algorithm, the
time per trial is dominated by the time spent executing the repeat loop in
the computation of f’. In the rest of the discussion, one step is defined to
be a single iteration of this repeat loop. The total running time of the
algorithm is then the number of steps times the time it takes to execute a
step. An upper bound on the time to execute a step of the algorithm is the
time to randomly choose (s, i) E U (this is executed once for each trial of
the algorithm, but an upper bound on the number of trials is the total
number of steps) plus the time to randomly choose j E (1, . . . ,111) plus the
time to determine if s E Dj.

Let p=] D] /] UJ and let t be the random variable which is defined to be
the number of steps in a trial. Then,

m = c
Jw~)l m - PI Z----E

(S,i)EU IV JU(m-p-

An upper bound on E[t] is m. We can prove a theorem analogous to the
Zero-One Estimator Theorem which states that this variant of the coverage
algorithm is an E, S approximation algorithm when the number of trials is
O[m . ln(l/S)/~*]. However, this does not improve the total running time
of the algorithm since the upper bound on the expected number of steps per

436 KARP, LUBY, AND MADRAS

trial is m. For instance, if this variant of the coverage algorithm is used for
the DNF counting problem, the total running time of the entire algorithm is
O[nm* . ln(1/6)/&*], which is no better than the time for the original
coverage algorithm.

There is a nice tradeoff which we could take advantage of if we could
compute p. Let c be a constant and let

c. ln(1/6)
N/4= /&J .

For the coverage algorithm we showed that N(p) trials are sufficient to
guarantee an E, 6 approximation algorithm for a small value of c. Let T(p)
be the random variable which is the total number of steps completed by the
variant of the coverage algorithm when we execute N(p) trials. Then,

and thus the expected number of steps for this algorithm is m times less
than the upper bound on the number of steps for the variant of the
coverage algorithm described above. The problem is that we cannot imple-
ment this algorithm because it requires the computation of p which is the
quantity we are trying to estimate.

We overcome our inability to implement the algorithm which depends on
the computation of p by the following trick. Let T = cm ln(2/6)/&*, where
c is a constant to be specified later. We run the algorithm for T steps and
let the number of trials completed during these T steps be a random
variable NT. Let TOTAL I T be the total number of steps completed in
the first ,NT trials. The average value of the estimates from the NT trials is
exactly Y = (TOTAL +) Ul)/(
IDI is p = (T *

m * NT). Another very similar estimator of
IU()/(m . NT). In the Appendix we prove that for an

appropriate ch_oice of c the algorithm is an E, 8 approximation algorithm
when using Y or p as the estimator. It turns out that the proof
for r’l is cleaner and simpler than the proof for f. The intuition for why
the algorithm is an E, 6 approximation algorithm when using estimator
f follows. The expected value of NT is approximately T/E[t] =
c WVWw * = N(p). Thus, the intuition is that by fixing T, the number
of trials completed by the algorithm self-adjusts so that with high probabil-
ity enough trials are run to guarantee an E, 6 approximation algorithm.

SELF-ADJUSTING COVERAGE ALGORITHM THEOREM 1. when E < 1 and
T = (8 * (1 + E) * m ln(2/S))/&*, the self-adjusting coverage algorithm is an
E, S approximation algorithm when estimator p is used.

Proof: In the Appendix. ~7

MONTE-CARLO ENuMERATiON ALGORITHM 437

SELF-ADJUSTING COVERAGE ALGORITHM THEOREM II. when E < 1 and
T = (8 . (1 + E) * m ln(3/@)/(1 - e2/8)e2, the selfudjurting couerage algo-
rithm is an E, S approximation algorithm when estimator f is used.

Proof. In the Appendix. 0

A related but weaker theorem is stated in [KLl, Lull. The theorem stated
here substantially improves the theorem stated there; here the running time
is proportional to In(l/S) whereas there the running time is proportional to
l/6. The estimators P and P are not necessarily unbiased estimators of] D]
because of the stopping rule.

SELF-ADJUSTING COVERAGE ALGORITHM.

grime + 0 (grime counts the global number of steps executed}
TOTAL-0
NT - 0
T is set as specified in Theorem I or Theorem II
trial:

randomly choose (s, i) E U with probability l/l (I({as before]
f(S) + 0
step:

t(s) + t(s) + 1
giime + gtime i 1
I f grime > T then go to finish

randomly choose j E (1, _ . _ , m} with probability l/m
If not s E D, then go to step

TOTAL + grime
NT + NT + 1
f’(s) + t(s)/m
Y + IUI .f’(s)
c2to trial

finish:
p + E:,“rl y/NT
(Equivalently, I’+ (TOTAL. IUl)/(m. NT))
P * T, [U\/m-NT

6. APPLICATIONS TO DNF COUNTING AND
RELIABILITY PROBLEMS

The implementation details and timing analysis of the self-adjusting
coverage algorithm applied to the DNF counting problem are as follows.
The preprocessing is exactly the same as for the coverage algorithm pre-
sented in Section 4. The time per step is dominated by the time to
determine if truth assignment s satisfies clause Ci; this can be executed in
O(n) time. Thus, the total running time of the self-adjusting coverage
algorithm for the DNF counting problem is O[nm * ln(2/6)/~*].

An important generalization of the DNF counting problem is the DNF
probability problem. The input for the DNF probability problem is the

438 KARP, LUBY, AND MADRAS

same as for the DNF counting problem together with a set of probabilities
{ Pl, . . . > pn}. We define a probability distribution on the set of 2” truth
assignments for the variables as follows. For i = 1,. . . , n, the value of
variable X, is “true” with probability p, and “false” with probability 1 - pi
independently of the values of the other variables. We are interested in
computing Pr] Fj, which is the probability that a truth assignment randomly
chosen according to the probability distribution satisfies the formula F.
The DNF counting problem is the special case of the DNF probability
problem when all the variable probabilities are i, in which case Pr[F] =
#F/2”. Both the coverage algorithm and the self-adjusting coverage algo-
rithm for the DNF counting problem can be easily modified for the DNF
probability problem such that the resulting algorithms are E, S approxima-
tion algorithms. The number of steps sufficient to produce an E, 6 approxi-
mation algorithm using estimators Y and ? remains unchanged from
before. The running time of the self-adjusting coverage algorithm for the
DNF probability problem is linear in the size of the input times ln(l/8)/c2.
A brief description of these algorithms for the DNF probability problem is
given in [KLl, Lull.

Many network reliability problems can be expressed as instances of the
DNF probability problem. For example, the 2-terminal reliability problem
can be reduced to the DNF probability problem by listing all the cut sets in
the graph [KL2, Lu2]. This reduction can take exponential time in the size
of the input, because m is the number of cut sets in the graph and can be
exponential in the size of the input graph. In [KL2, Lu2], E, S approxima-
tion algorithms for the 2-terminal reliability problem (and the multi-termi-
nal reliability problem, which is a generalization of the 2-terminal reliability
problem) are developed when the input graph G is planar. These algorithms
avoid listing the cut sets. The algorithms are shown to run in polynomial
time when the probabilities of the edges are sufficiently small, which is the
hard case for the naive Monte-Carlo algorithm. [Va, PB] give evidence that
there is no polynomial time algorithm for computing the exact value of p
even in this case.

7. AN APPLICATION TO COUNTING THE NUMBER
OF DISTINCT TRANSLATES

Let a = {a,,..., a,} be a set of m distinct points with integer coordi-
nates in the plane. For i = 1,. . . , m let (a,(x), a,(y)) be the (x, Y)
coordinates of a,. Similarly, let b be a set of m distinct points in the plane
with integer coordinates (this can easily be modified to the case when b is a
set of n points, where n + m; it can also easily be modified to dimensions
greater than two). A translate a’ = { a[, . . . , a&} of a is a set of m points
in the plane such that for some pair of integers (Ax, Ay), for all i =

MONTE-CARLO ENUMERATION ALGORITHM 439

b-coor b-son

a' () 7
a' = g(2,3) cov(a’) = j&4), ~2.3)~ w1

FIGURE 2

1 Y-*-T m, a;(x) = a,(x) + Ax and a;(y) = ai + Ay. We can represent
a translate in two different but equivalent ways; either as the vector points
a’ just described or by the pair of integers (Ax, Ay) just described.

Let D be the set of distinct translates u’ of a such that a’ and b have at
least one coincident point. We are interested in computing 1 D) when m is
large. For simplicity, we assume that each integer coordinate can be stored
in one word of memory. The best deterministic algorithm which we know
for computing 1 D 1 is described below and has running time 0(m2 log m).
In this section we show how to apply the self-adjusting coverage algorithm
to obtain an E, S approximation algorithm to estimate) DI which has
running time O[m 9 log m . ln(l/S)/e2]. Let

U= {(i,j):i=l,..., mandj=l,..., m}.

We define g:U --, D such that for all (i, j) E U, g(i, j) is the translate (in
(Ax, Ay) representation) a’ E D of a such that a; and bj coincide, i.e.,

g(i, j) = (b,(X) - u,(X), b,(Y) - ai(

Let Di= {g(i,j):j=l,..., m }. For each i between 1 and m, Di is a set
of m distinct translates and D = lJymlDi. Thus, m <-) D) < m2.

The input to the problem consists of two arrays a-coor, b-coor each of
length m, where the ith entry contains the x and y coordinates of point
ui, bi, respectively. 1 Dl can be computed in O(m2 log m) time by first
computing g(i, j) for all (i, j) E U and then sorting these values to
remove duplicates.

EXAMPLE 2. The (x, y) coordinates of a and b are stored in arrays
u-coor and b-coor as shown in Fig. 2, respectively. The figure shows
translate a’ of a, where a’ is the translate represented by g(2,3); g(2,3) is
in sets D,, D, and D,. Also shown is an auxiliary array b-sort, which
contains the coordinates of the points in b sorted first by x coordinate and
then by y coordinate.

440 KARP, LUBY, AND MADRAS

The preprocessing for the self-adjusting coverage algorithm for estimat-
ing (D] consists of forming a new array b-sort of length m, which is
exactly the same as b-coor except that the points are sorted first by x
coordinate and then by y coordinate. The time for the preprocessing is
O(m . log m). Figure 2 shows the b-sort array for a particular a and b.

The body of the self-adjusting coverage algorithm to estimate 1 D(is
essentially the same as the self-adjusting coverage algorithm presented in
Section 5, with the following implementation:

1. Randomly choose (i, j) E U with probability l/m2. Then,
g(j, i) E D.

2. Randomly choose k E { 1,. . . , m } with probability l/m.

3. Determine if g(i, j) E D,. Let a’ be the translate g(i, j) of a. We
first compute the coordinates of a;,

a;(x) = dx) + (6,(x) - a;(x))

arid

a&(Y) = a/c(Y) + (b,(Y) - a,(Y)),

using the u-coor and b-coor arrays, and then search for a; in the b-sort
array using binary search. In Example 2, if i = 2, j = 3, k = 5,

and

u;(x) = 1 + (1 - 1) = 1

a;(y) = -1 + (1 - 0) = 0

In this case, a; f b and thus g(2,3) E 4.

The total time for steps l-3 per execution is O(log m). The analysis for the
number of steps sufficient to guarantee an E, S approximation algorithm is
exactly the same as the analysis for the self-adjusting coverage algorithm for
the union of sets problem. The running time of the algorithm per step is
O(log m) and the total running time of the entire algorithm is
O[m log m ln(l/8)/s2]. Thus, the running time of the algorithm is linear in
the size of the input times log m times ln(l/Q/e’. This algorithm can be
easily generalized to the case of sets of points in a space of dimension
greater than two, such that the running time of the algorithm remains linear
in the size of the input times log m times ln(l/S)/c2.

An application of the algorithm for estimating the number of distinct
translates occurs in the literature of “self-avoiding walks.” A self-avoiding
walk a = {a,,..., a,,,} is a sequence of m distinct points with integer
coordinates in the plane such that for i = 1,. . . , m - 1, u,+i is at distance
one from a,. In Fig. 2, both u and b are self-avoiding walks with 7 points
along each walk. Self-avoiding walks in higher dimensions are defined in an

MONTE-CARLO ENUMERATION ALGORITHM 441

analogous way. The statistical properties of self-avoiding walks are of
interest in physical chemistry (as models of long-chain poIymer molecules)
and in statistical physics (as a simple model of critical phenomena).

Two interesting quantities are c,, the number of self-avoiding walks with
n points which start at the origin, and c,, n, the number of pairs (a, b) of
self-avoiding walks such that b is a walk with n points which starts at the
origin and a is a walk with m points which starts anywhere such that at
least one point in b coincides with some point in a. Also of interest is the
ratio c, Jc, . c,, which can be estimated by a Monte-Carlo algorithm,
where one trial of the algorithm consists of the following:

1. Choose a random self-avoiding walk a of length m and a random
self-avoiding walk b of length n such that both a and b start at the origin.

2. Compute 101, which is the number of distinct translates of a which
intersect b in at least one point. The estimate of the ratio is Y +] D (.

Step 1 is difficult to perform quickly, especially if it is required that all
self-avoiding walks are chosen independently; no polynomial time algo-
rithm is known which does this. However, in practice there is a way of
generating the next a and b in time O(m + n) and the new walks have the
property that they are “approximately” independent of the previous a and
b [MS]. The best known algorithm for step 2, computing 1 D 1, is 0(m* log m)
when m = n, as described above. We advocate instead using the above E, S
approximation algorithm to estimate] D I in step 2, which has running time
O[m e log m - In(l/6)/&*].

8. OTHER APPLICATIONS AND SUMMARY

This paper substantially improves the analysis given in [KLl, Lull for
the self-adjusting coverage algorithm for DNF counting. We also provide a
new application to a problem of interest in physical chemistry and statisti-
cal physics. We imagine that many other applications of these techniques
will be found to other problems in the future.

In this paper, E, 6 approximation algorithms are presented for the DNF
counting problem. We know that unless RP = NP that there is no 0, S
approximation algorithm for DNF counting which runs in time polynomial
in l/6 times the length of the formula. However, it is not out of the
question that there is a E,O approximation algorithm for DNF counting
which runs in time polynomial in l/& times the length of the formula. In
fact, [AW] provide an E, 0 algorithm for the DNF counting problem when
the number of literals per clause is constant. The question is open when the
number of literals per clause is not restricted.

442 KARP, LUBY, AND MADRAS

APPENDIX: PROOF OF THEOREMS

We prove the Zero-One Estimator Theorem stated in Section 1 and the
Self-adjusting Coverage Algorithm Theorem stated in Section 5. We first
state some lemmas needed for the proof of both theorems.

LEMMA 1. ht 2, z,, z,,... be independently and identically distributed
random variables and let c and d be constants. Then,

EL’
d(Z,+ -Z,)-c] = E[edZ]k. e-c.

LEMMA 2. For any random variable Z and any constant d 2 0,

Pr[Z 2 0] I E[edz].

Proof Define the random variable Z’ to be one if Z 2 0 and zero
otherwise. Then, Z’ I edZ and thus E[Z’] I E[edZ]. The lemma follows
because E[Z’] = Pr[Z 2 01. 0

The next few lemmas and corollaries are used in the proof of the
Zero-One Estimator theorem. Let Y, Y,, Y2,. . . be independently and iden-
tically distributed zero-one valued random variables such that E[Y] = EL.

LEMMA 3. L.et d < 1 be a constant. Then,

E[edY] 5 e’d(‘+d).

Proof. E[edY] = ped + (1 - IL) I 1 - p + ~(1 + d + d*) = 1 +
@(l + d) I e”d(‘+d). 0

COROLLARY 4. For E I 2,

N

Pr C q > (1 + .s)pN I e-pe2N’4.
i=l 1

Proof: From Lemmas 1 and 2,

Pr
[

f yi > (1 + E)@/ I E[ed(Y-(l+“)p)]N.
i-l I

From Lemma 1,

E[e4Y-(l+4d] = ,qedY] . e-4(l+d.

Using Lemma 3 and letting d = ~/2,

E[e dU--(l+4q I e-~a2/4.

The corollary follows. 0

MONTE-CARL.0 ENUMERATION ALGORITHM 443

LEMMA 5. Let d I 1 be a constant. Then,

E[~-~Y] -< ,-wW-d/2).

Proof. E[eedY] = pesd + (1 - ~1) I 1 - p + ~(1 - d + d2/2) = 1 -
pd(1 - d/2) I e-pd(1-d/2). 0

COROLLARY 6. For E I 2,

N

Pr C yi < (1 - E)~LN 5 e-peZN/4.

i=l I

Proof: From Lemmas 1 and 2,

Pr
[

c yi < (1 - E)pN < E[ed((l-r)fipY)]N.
i-=1 I

From Lemma 1,

E[ed(W9wY)] = Ele-dY] . ,C(l--E).

using Lemma 5 and letting d = E/2,

E[e
W-e)fi- Y’] I ,-d/4.

The corollary follows. q

ZERO-ONE ESTIMATOR THEOREM. When E I 2 and N= 4/(e2p).
ln(2/S) then

Pr (1 - E)P I ; Y,/N I (1 + E)F 2 1 - 6.
i-l I

Proof. It is sufficient to show

Pr (1 - E)P > f x/N + Pr 2 K/N > (1 - E)P I S.
[i=l I [i=l I

This follows using Corollaries 4 and 6 substituting in the value for N. •I

We now introduce some notation and prove some lemmas and corolkuies
which are used in the proof of the Self-adjusting Coverage Algorithm
Theorem. For k = 1, . . . , m, let

R, = {s E D: Icov(s)I = k)

and let rk = IRkI. Then, CFwlrk =]Dl and Z:ltsl krk =) VI. The probabil-
ity that in a trial the element of D chosen is in R, is kriJ) UJ. For all
s E R,, the distribution of the random variable t(s) depends only on k. We

444 KARP, LUBY, AND MADRAS

define a random variable 7k such that for all s E R,, 7k has the same
distribution as t(s). The random variable rk has a geometric distribution
with mean m/k,

Pr[7k =j] =
k(1 - k/rn)j-’

m

Let d = X/m for some constant X I :. Then,

E[ed'k] = g edjk(l -,""'

j-l

j-1

= m(l _ (leTk,m)ed) I

The series converges because (1 - k/m)ed -C 1 for d I 1/2m. Recall that
random variable t is the number of steps in a trial of the self-adjusting
coverage algorithm. As before, let ~1 = 1 Dl/l Ul . As shown in Section 5,
E[t] = mp. In the remainder of the Appendix, t,, t,, . . . are independent
and identically distributed random variables with the same distribution as t,
where ti is the number of steps in trial i. Let S, = Cf=t ti be the step at
which the Ith trial is completed and let iVi be the number of trials
completed by time step i. Then Ni -C I if and only if S, > i.

LEMMA 7. Let 0 s X 5 i and let d = X/m. Then

E[edf] I e (h+2h2)p = e(md+2(md)2)pe

Prooj:

m kr,E[ed’k] 1 m
E[ed’] I c

k2rked

k-l I VI = E kFl m(l - (1 - k/m)ed)

From 1 - d -< eWd we obtain k/m - d I e-d - 1 + k/m. Using these
two facts in sequence,

k d d

m(eTd - l+k/m) ‘I+ eed-l+k/m ‘Ii- k/m - d’

Thus,

E[ed’] I 1 + -!- 5
krkd

lul k-1 k/m - d’

MONTE-CARLO ENUMERATION ALGORITHM 445

Because d = A/m and k 2 1, k/m - d 2 k(1 - X)/m. Using these facts,

rkx
E[ed’] _< 1 + & f -

k-1 1 - A’

Using l/(1 - A) s 1 + 2X, we obtain

E[ed’] I 1 +
JDlh(l + 2X)

IV
= 1 + p(X + 2X2) 5 f?@+2~*)@. Cl

COROLLARY 8. Let E I; 2. Then

Pr[S, > (1 + E)mpl

Proof. Let t’ = t - (1 + &)mp and
Lemmas 1 and 2,

let t! = ti - (1 + E)mp. Using

Using Lemma 1,

Using Lemma 7,

Thus,

E[ed”] = E[ed’] . e-(l+4mlrdm

E[edl] I e W+2Wd)2)~e

E [edt’] 5 ew42md-4e

Letting d = &/4m yields

E[ed”]’ s e-Pe21/8. 0

LEMMA 9. Let 0 I A I $ and let d = X/m. Then

Ete-d’] I ,-O-A2)r = e-(md-(m42kD

ProofI (similar to the proof of Lemma 7).

EIe-d’] 5 1 - d- g krkd
(VI k-1 k/m + d’

Because d = h/m and k 2 1, k/m + d 5 k(1 + X)/m. Using these facts,

E[eed’] I 1 -
$k:ls*

446 KARP, LUBY, AND MADRAS

Using l/(1 + A) 2 1 - A, we obtain

E[Cd’] I1 -
Iww - A)

IV
= 1 - p(X - p) 2 e-(X-A2)P. I-J

COROLLARY 10. Let E I 2. Then

Pr[S, < (1 - ~)mpI] I CpLEz”‘.

Proof. Let t’ = -t + (1 - &)mp and let t; = -t, + (1 - e)mp. Using
Lemmas 1 and 2,

Using Lemma 1,

E[ed”] = EIe-“‘] . e(l-+wde

Using Lemma 9,

E[e-df] I e-(md-(md)2)pa

Thus,

,t?[ed”] _< ew4md-4.

Letting d = &/4m yields

E[ed”]’ < e-“~2V8~ q

SELF-ADJUSTING COVERAGE ALGORITHM THEOREM I. when E < 1 and
T = 8(1 + e)m ln(2/8)/e2 then the self-adjusting coverage algorithm for the
union of sets problem is an E, 6 approximation algorithm when estimator
Y = p ’ is wed to estimate IDI.

Proof: Let

and let

k, =
8(1 + E)ln(2/6)

#u&2(1 + E)

k
2

= 80 + 4w/~)
/iLE2(l - E) .

MONTE-CARLO ENUMERATION ALGORITHM 441

Thus, T = k,mp(l + E) and T = k,mp(l - E). If k, I NT I k, then

T T T

k,%yk,

and thus

T. IUI < y< T* 14
mk, - - mk,

and consequently

JDJ ’ (1 - E) I Y zz (D(’ (1+ E).

Thus, it is sufficient to show that

Pr[N, > k2] + Pr[N, < k,] < 6.

From Corollary 8,

Pr[N, < k,] = Pr[S,, > T] = Pr[Skl > k,mp(l + E)] 5 6/2.

From Corollary 10,

Pr[N,> k2] I Pr[iV,> k2] = Pr[Sk, 5 T]

= Pr[S,, 2 k,mp(l - E)] I S/2. q

SELF-ADJUSTING COVERAGE ALGORITHM THEOREM II. When E < 1 and
T = 8(1 + e)m ln(3/S)/(l - .~~/8) ~~ then the self-adjusting coverage algo-
rithm for the union of sets problem is an E, S approximation algorithm when
estimator Y = p is used to estimate (D I.

Proof. The proof is similar to the proof of Theorem I. Let gap =
m ln(3/S) and let T’ = T - gap. Since gap I (e2/S) . T, T’ 2 (1 - e2/8)T.
Proceedings as in Theorem I, let

T
k, =

41 + 4

and let

k
2

= T(l - ~~/8)

w(l - 4

If T’ < SN, 2 T and k, I NT I k, then

T’ S, T
--s--s-
k, NT k,

448

and consequently

KARP, LUBY, AND MADRAS

ID(. (1 - &) 5 Y 5 ID] . (1 + E).

Certainly S,r I T. Thus, it is sufficient to show that

Pr[SN, 5 T’] + Pr[N, > k,] + Pr[N, < k,] 5 S.

Corollaries 8 and 10 can be used similarly to the way they were used in the
proof of Theorem I to show that Pr[N, > k,] I &/3 and that Pr[Nr < k,]
5 6/3. To bound Pr[&, I 7”] above, we note that SN, I T’ can occur
only if the trial in progress at step T’ does not complete by step T. In the
worst case, the number of steps to complete the trial in progress at time T’
has the same distribution as or. Thus,

Pr[SNr I T’] s Pr[rr > gap] 5
m (1 - l/+-l
C

j-gap+1
m

= (1 - l/m)g”P 5 e-gaPlm = f . 0

REFERENCES

[Awl

W-11

W-21

WJll

u-w

IMSI

WI

Ml
WA1

M. A~TAI AND A. WIGDERSON, Deterministic simulation of probabilistic constant
depth circuits, in “Proceedings 26th IEEE Symposium on Foundations of Computer
Science, 1985, pp. 11-19.
R. M. KARP AND M. G. LUBY, Monte-Carlo algorithms for enumeration and reliability
problems, in “Proceedings 24th IEEE Foundations of Computer Science Symposium,
1983, pp. 56-64.
R. M. KARP AND M. G. LUIIY, Monte-Carlo algorithms for planar multiterminal
network reliability problems, J. Comp!exiry 1 (1985) 45-64.
M. G. LUBY, “Monte-Carlo Methods for Estimating System Reliability,” Report
UCB/CSD 84/168, Computer Science Division, University of California, Berkeley,
1983.
M. G. LUBY, “Monte-Carlo Algorithms for Planar Multiterminal Network Reliability
Problems, Ph.D. thesis, Computer Science Division, University of California, Berkeley,
1983.
N. MADRAS AND A. SOKAL, Highly efficient Monte-Carlo algorithm for the self-avoid-
ing walk, working paper, 1987.
J. S. PROVAN AND M. 0. BALL, The complexity of counting cuts and of computing the
probability that a graph is connected, working paper, 1981.
A. MNYI, “Probability Theory, North-Holland, Amsterdam, 1970.
L. VALIANT, The complexity of enumeration and reliability problems, SIAM J.
Comput. 8 (1979), 410-421.

