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POLYNOMIAL-TIME APPROXIMATION ALGORITHMS
FOR THE ISING MODEL*

MARK JERRUMt AND ALISTAIR SINCLAIRt

Abstract. The paper presents a randomised algorithm which evaluates the partition function of an arbitrary
ferromagnetic Ising system to any specified degree of accuracy. The running time of the algorithm increases only
polynomially with the size of the system (i.e., the number of sites) and a parameter which controls the accuracy of
the result. Further approximation algorithms are presented for the mean energy and the mean magnetic moment of

ferromagnetic Ising systems.
The algorithms are based on Monte Carlo simulation of a suitably defined ergodic Markov chain. The states

of the chain are not, as is customary, Ising spin configurations, but spanning subgraphs of the interaction graph of
the system. It is shown that the expectations of simple operators on these configurations give numerical information
about the partition function and related quantities.

The performance guarantees for the algorithms are rigorously derived and rest on the fact that the Markov chain

in question is rapidly mixing, i.e., converges to its equilibrium distribution in a polynomial number of steps. This is

apparently the first time that rapid mixing has been demonstrated at all temperatures for a Markov chain related to

the Ising model.
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1. Summary. This paper is concerned with computational solutions to a classical com-
binatorial problem of statistical physics. Generally known as the Ising model, the problem
has been the focus of much attention in the physics and mathematics communities since it was
first introduced by Lenz [24] and Ising 14] in the early 1920s. We will not present a detailed
historical account here; a very readable survey is given by Cipra [6], while Welsh [30] sets the
Ising model in the context of other combinatorial problems in statistical physics.

The problem is easily stated. Consider a collection of sites [n] {0, n }, each
pair i, j of which has an associated interaction energy Vij. In most cases of physical interest,
the set E of pairs with nonzero interaction energies forms a regular lattice graph ([n], E). A
configuration is an assignment of positive (o" -t-1) and negative (o -1) spins to each
site E [n]. The energy of a configuration r (ri) is given by the Hamiltonian

{i,j}6E k6[n]

where B is an external field.
In the case where all interaction energies are nonnegative, such a system models the

behaviour of a ferromagnet; in fact, it was towards an understanding of spontaneous magne-
tization that the model was first conceived. However, the Ising model has since become a
powerful paradigm for the investigation of more general cooperative systems in which short-
range interactions between elements can give rise to long-range order.

The central problem is to compute the partitionfunction

Z Z(Vij B,/3) Z exp(-flH(cr)),
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guages and Programming," Warwick, United Kingdom, July 1990; published by Springer-Verlag as Lecture Notes in
Computer Science, Vol. 443.
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1088 MARK JERRUM AND ALISTAIR SINCLAIR

where/3 > 0 is related to the temperature and the sum is over all possible configurations
r. Almost all the physical properties of the system can be computed from knowledge of Z.
Essentially, Z is the normalising factor in the calculation of probabilities: according to the
fundamental theory of statistical mechanics, the probability that the system in equilibrium
is found in configuration cr is exp(-H(cr))/Z. Moreover, certain logarithmic derivatives
of Z correspond to quantities such as the mean energy and the mean magnetic moment.

Singularities in these derivatives generally correspond to phase transitions, when a small
change in a parameter has an observable effect on the macroscopic properties of the system.

The search for efficient computational solutions to these problems has proved extremely
hard and has generated a vast body of literature. A major breakthrough was achieved in the
early 1960s by Kasteleyn 19] and Fisher [11], who reduced the problem of computing Z
for any planar Ising system (i.e., one whose graph ([n], E) of nonzero interactions is planar)
to the evaluation of a certain determinant. This must rank as one of the highlights in the
field of combinatorial algorithms. It remains the state of the art as far as exact solutions are
concerned; in particular, it does not appear to generalise to nonplanar systems. On the other
hand, a huge amount of computational effort is poured into numerical solutions of the Ising
model for three-dimensional regular lattices and other nonplanar systems. The problem is that
the methods used here, while ingenious, generally lack a rigorous theoretical base and rely for
their validity largely on physical intuition.

In this paper, we exhibit what we believe to be the first provably efficient approximation
algorithm for the partition function of an arbitrary ferromagnetic Ising system. By "efficient"
here we mean that the algorithm is guaranteed to run in time polynomial in the number
of sites n. The algorithm is a fully polynomial randomised approximation scheme (fpras),
i.e., it will produce solutions which, with very high probability, fall within arbitrarily small
error bounds specified by the user, the price of greater accuracy being a modest increase in
runtime. We also show that such an algorithm is essentially the best one can hope for, in
the sense that the existence of an efficient exact algorithm for the problem, or even of an
efficient approximation algorithm for the nonferromagnetic case, would have devastating and
far-reaching consequences in the theory of computation.

From the point ofview of theoretical computer science, our result provides a new example
of a significant combinatorial enumeration problem which is #P-complete, and hence appar-
ently intractable in exact form, but for which an efficient approximation algorithm exists. This
is an intriguing class of problems, and includes the problems of computing the volume of a
convex body [9], the partition function of a monomer-dimer system [16], and the permanent
of a large class of 0-1 matrices [16]. Our algorithm is also of interest in its own right as a
further application of the general technique of simulating an ergodic stochastic process whose
rate of convergence can be analysed. This approach has recently attracted much attention, and
its full algorithmic potential is only now becoming apparent.

The idea is the following. In order to compute weighted combinatorial sums, such as the
Ising partition function, it is often enough to be able to sample configurations r at random with
probabilities proportional to their weights, in this case exp(-/H(a)). This can be achieved
by setting up an ergodic Markov chain whose states are configurations and whose transitions
correspond to small local perturbations. If the chain is designed so that the equilibrium
distribution to which it converges is the desired weighted distribution over configurations,
then we get a random sampling procedure by simulating the chain for some number of steps
and outputting the final state. For such a procedure to be efficient, the chain must be rapidly
mixing in the sense that it gets very close to equilibrium after a small (i.e., polynomial) number
of steps. This is a highly nontrivial requirement, since the number of states is exponentially
large. Recent developments have provided appropriate analytical tools for establishing the
rapid mixing property for chains of this kind [27], [29], [7], [28].
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1089

The Markov chain simulation approach to the Ising model is far from new" Under the
name of the Monte Carlo method, this technique has been applied extensively to a whole range
of problems in statistical physics (see, e.g., [4]). The problem with the approach, however, is
that it appears very difficult to define a Markov chain on Ising spin configurations cr which is
rapidly mixing; indeed, the chains which are frequently used in practical simulation studies
clearly do not have this property.

We overcome this obstacle by transforming the problem to an entirely new domain,
where the configurations are spanning subgraphs of the interaction graph ([n], E). Each
subgraph has an "energy" which is determined by weights attached to its edges and vertices.
Although there is no direct correspondence between configurations in the two domains, and
the subgraph configurations have no obvious physical significance, the two partition functions
are, remarkably, very closely related. Moreover, and crucially, there is a natural Markov chain
on the subgraphs with the appropriate equilibrium distribution which is rapidly mixing. Thus
the Markov chain approach can be made to work efficiently in the new domain.

The above transformation is a classical result [26], often known as the "high-temperature
expansion" of the Ising model partition function. However, the idea of viewing the graphs
in this expansion as a statistical mechanical system which forms the basis of a Monte Carlo
simulation appears to be new. To the best of our knowledge, our results represent the first
rigorous proof ofrapid mixing at all temperatures for a Markov chain related to the Ising model.
Moreover, this property is entirely independent of the interaction topology and relies on no
assumptions of any kind. We therefore believe that the chain deserves further investigation as
a potentially powerful experimental tool.

The mechanism by which we use sampling of subgraph configurations to compute
the partition function is perhaps of independent interest. This is achieved by subjecting an

Ising system with fixed interactions and at a fixed temperature to varying external fields. By
observing a small number of configurations, randomly selected at appropriately chosen values
of the field, we are able to get an accurate estimate of Z. It is significant that this idea is
motivated by combinatorial considerations and does not correspond to any obvious physical
intuition.

As mentioned earlier, it is often derivatives of the partition function, rather than the
function itself, which are of primary interest. For example, two important quantities are the
mean energy g -0(ln Z)/Ofl, and the mean magnetic moment A//=/-10(ln Z)/OB. Our
approximation algorithm for Z says nothing about our ability to compute these quantities
accurately. However, it turns out that both g and A//can be expressed in terms of expectations
of certain simple operators on configurations in the subgraphs domain. Thus estimates of
and A//can be read off from our configuration sampling algorithm, though again we may have
to vary the external field in order to maximise the accuracy of the statistical experiment. As
a result, we get a fpras for both and as well. We regard this as confirmation that our
approach to the Ising model is robust and computationally effective.

The remainder of the paper is organised as follows. In 2 we describe the transformation
of the Ising model to the new domain in which configurations are spanning subgraphs of
the interaction graph. Section 4 is devoted to a discussion of the Markov chain on these
configurations, and in particular to a proof that it is rapidly mixing. This fact is used in 3 to
construct a fpras for the partition function of an arbitrary ferromagnetic Ising system, and in

5 to construct efficient approximation algorithms for the mean energy and the mean magnetic
moment. Finally, in 6 we present strong evidence that our results are, in a precise theoretical
sense, best possible.

2. The spins world and subgraphs world. Recall that our primary aim is to construct
an algorithm for the following problem:
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1090 MARK JERRUM AND ALISTAIR SINCLAIR

INSTANCE: A real symmetric matrix (V/j i, j [n]) of interaction energies, a real number
B (the external field), and a positive real number ft.

OUTPUT: The ising partition function

(1) Z Z(Vij, B, fl) exp(-flH(tr)),
r6{-1,+l)

where the Hamiltonian H(r) is given by

{i,j}E k[n]

and E is the set of unordered pairs {i, j} with V/j 0.

Our algorithm will address theferromagnetic case of the Ising model, which is characterised
by the interaction energies g/j being nonnegative. Furthermore, rather than attempting to
evaluate the partition function exactly, we shall content ourselves with a close approximation.
The phrase "close approximation" will be given a precise meaning in the next section.

One strategy, which has been applied successfully to problems of this type and has, for
example, been used to estimate the partition function of a general monomer-dimer system [27],
16], involves the simulation of an appropriately defined Markov chain. A direct application of

this strategy to the Ising partition function would proceed as follows. View the configurations
of the Ising system, namely, the 2 possible spin vectors cr {-1, +1 }n, as the states of
a Markov chain. Choose transition probabilities between states so that the Markov chain
is ergodic and so that, in the stationary distribution, the probability of being in state cr is
Z-1 exp(-H(tr)). A reasonable way to achieve this, and one which is often used in practice,
is to allow transitions to occur between spin configurations which differ injust one component,
and to choose transition probabilities according to the Metropolis rule [20]. If the resulting
Markov chain is rapidly mixing, that is, if it converges rapidly to the stationary distribution
regardless of the choice of initial state, then it can be used effectively to sample configurations
cr from a distribution which is close to the stationary distribution. By collecting enough sample
configurations, using different values of B and/3, it should then be possible to estimate the
partition function Z with good accuracy.

Unfortunately, it transpires that the Markov chain described, and which we refer to as the
spins-worM process, is not rapidly mixing. It is well known that ferromagnetic Ising systems
typically exhibit a phase transition at a certain value of the parameter ; for values of/3 above
this criticat value, the system settles into a state in which there is a preponderance of spins of
one or other sign. Transitions between the majority + states and majority -1 states occur
very infrequently, simply because the stationary distribution assigns small total weight to the
configurations with balanced spins. (Informally, the state space has a constriction separating
the majority + states and the majority states.) Although it could be argued that the barrier
to rapid mixing just described is somewhat trivial, there exist other more subtle barriers that
apparently cannot be surmounted.

The problem caused by the absence of rapid mixing in the spins-world process can be cir-
cumvented by simulating a different Markov chain, which we refer to as the subgraphs-world
process. The two Markov chains are structurally very different; furthermore, the subgraphs-
world process has, as far as we are aware, no direct physical significance. However, the
subgraphs-world process has a close connection with the Ising partition function and, cru-
cially in the current application, is rapidly mixing. For the time being, we content outselves
with describing the subgraphs-world configurations and associated partition function. The
description of the subgraphs-world process itself is deferred to 4.
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1091

We say that a subgraph is spanning if it includes all the vertices of the parent graph. (Note
that spanning subgraphs are not, in general, connected.) The subgraphs-world configurations
are spanning subgraphs of the interaction graph ([n], E). In the sequel we shall drop the
adjective "spanning" where it seems safe to do so, and frequently identify a spanning subgraph
([n], X) with the set X of edges which define it. To simplify notation, let

(2) )ij tanh fl Y/j and /x tanh fiB

Each configuration X c E is assigned a weight according to the formula

(3) w(X) /.4
Idd(X)l H .ij,

{i,j}EX

where the notation odd(X) stands for the set of all odd-degree vertices in the graph X. The
subgraphs-world partition function is simply

(4) Z’-- , w(X).
XCE

The above sum is generally known as the "high-temperature expansion."
It is a surprising fact that the spins- and subgraphs-world partition functions Z and Z’ are

related in a simple way. Define

(5) A (2coshflB)n H cosh
{i,j}EE

and note that A is an easily computed function of the parameters that specify the Ising system.
The following classical result [26] relates the two partition functions.

THEOREM 1. Z AZ.
In recognition of the central role it plays in our algorithm, we present a full proof of this

result below.
Theorem prompts us to consider a statistical mechanical system whose configurations

are spanning subgraphs of ([n], E). We shall define a Markov chain whose states are these
configurations, and whose stationary distribution assigns probability rr(X) w(X)/Z’ to
configuration X. This subgraphs-world process will be analysed in detail in 4 and shown to
be rapidly mixing. Hence it will provide us with an efficient means of sampling subgraphs-
world configurations with probabilities roughly proportional to their weights. Since Z’ is
a weighted sum of the configurations, we might expect such a procedure to give us useful
information about Z’ itself, and hence about the original spins-world partition function Z.
The next section confirms that this is indeed the case.

Proof of Theorem 1. Taking (1) as a starting point, apply the identity e cosh x (1 4-
tanh x) to recast the partition function in the form

Z 2-hA H {1 + tanh(flVijaiaj)} H {1 + tanh(flBak)},
o-{-1,+1} {i,j}E k[n]

where A is defined in (5). Note that the spin variables ak disappear from the expression for A
because ak -4-1 for all k, and coshx is an even function. Similarly, since tanhx is an odd
function, the spin variables may be brought outside allowing Z to be rewritten as

Z 2-nA H / O" O’j tanh fl V/j} H {1 + ak tanh flB }.
{i,j}E kE[n]

D
ow

nl
oa

de
d 

05
/0

4/
17

 to
 1

28
.2

.1
13

.1
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1092 MARK JERRUM AND ALISTAIR SINCLAIR

Expanding the two products, and changing variables according to (2), we obtain

XC_E {i,j}X U[n]

which, on interchanging the order of summation, yields

(6) Z--2-nA W(U,X,a),
XE UZ[n]

where

w(g, X, or) H "Ok 1-I ijffiffJ"
kU {i,j}X

Now we claim that Y W(U, X, a) 0 unless X is a graph in which all vertices in U have
odd degree, and all vertices in In] U have even degree. To see this, fix U and X, and let
k 6 [n] be such that either k U and has even degree in X or k [n] U and has odd degree
in X. For any vector a 6 {-1, + }n, let a (k) denote the vector derived from a by inverting
the sign of the kth component. Then the terms W(U, X, a) and W(U, X, a (k)) are equal in
size but opposite in sign. Hence the terms of the sum -o W(U, X, a) cancel out in pairs.

Conversely, suppose that X is a graph in which all vertices in U have odd degree and all
vertices in [n] U have even degree. Then, for all a 6 {-1, + }n and k 6 [n], the terms
W(U, X, a) and W(U, X, ak)) are equal. Thus the value of W(U, X, a) is independent of a
and

Z W(U, X, a) 2n/z IUI H )ij 2nw(x)
{i,j}X

Finally, substituting for Y W(U, X, a) in (6) we obtain the identity Z A Yx_E w(X), as
required.

3. Estimating the partition function. The aim of this section is to present an efficient
approximation algorithm for computing the partition function Z of a ferromagnetic Ising
system. The section is structured as follows. First, we define precisely what we mean by an
efficient approximation algorithm. Then we state, without proof, the properties ofthe sampling
procedure for subgraphs-world configurations which plays a key role in our algorithm: the
construction and analysis of this procedure, based on a suitably defined Markov chain, is left
to the next section. Finally, we explain how to use samples produced by this procedure to
obtain a reliable approximation of Z.

Our definition of an efficient approximation algorithm is a very demanding one, following
Karp and Luby 18] and others. For nonnegative real numbers a, fi, , we say that fi approxi-
mates a within ratio + e if a (1 + e)- < fi < a (1 + e). Let f be any function from problem
instances to real numbers. (The Ising partition function is an example of such a function.) A
randomised approximation scheme for f is a probabilistic algorithm which, when presented
with an instance x and a real number 6 (0, ], outputs a number which, with high probability,
approximates f(x) within ratio (1 + ). We shall take the phrase "with high probability" to
mean with probability at least 3/4. This is because a failure probability of 1/4 can be reduced
to any desired value 6 > 0 by performing only O(log 6-1) trials and taking the median of
the results [17]. (This claim is also justified in the following proof of Lemma 3.) Of course,
it is not enough just to obtain an accurate result with high reliability; the result must also be
obtained efficiently. Accordingly, we call an approximation schemefully polynomial if it runs
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1093

in time polynomial in -1 and the size of the problem instance x. The reader will appreciate
that a fully polynomial randomised approximation scheme, orfpras, embodies a strong notion
of efficient approximation.

With an eye to simplicity of presentation, we shall not concern ourselves with the errors
which arise through the inexact nature of computer arithmetic. Instead, we shall assume a
computational model in which real arithmetic is performed with perfect accuracy, and in which
arithmetic operations and standard functions, such as exp, are charged at unit cost. After all,
we are aiming only at an approximate evaluation of the partition function, and it will become
apparent that our technique does not rely on intermediate computations being carried out to
untoward accuracy. Again with simplicity in mind, we will take n, the number of sites, as the
size of the problem instance, even though the number of parameters to the model would be a
more reasonable measure from an information-theoretic point of view.

As we already mentioned, our approximation algorithm for Z is based on a sampling
procedure for subgraphs-world configurations. We must now be more precise about the prop-
erties of the sampling procedure. For a ferromagnetic Ising system (l,ij [Z), with i.ij and/z as
defined in (2) of the previous section, let S2 denote the set of subgraphs-world configurations,
i.e., the set of spanning subgraphs of the interaction graph ([n], E), and define the probabil-
ity distribution 7r over f2 by a’(X) w(X)/Yx, w(X’) w(X)/Z’, where w is the weight
function defined in (3). (Note that, since the system is ferromagnetic, w(X) > 0 for all X
so zr is a probability distribution.) We wish to formalise the notion of an algorithm which,
given a ferromagnetic system, selects a configuration from a distribution which is "close to"
r. A generator for subgraphs-world configurations is a probabilistic algorithm which takes
as input a ferromagnetic Ising system in the form (ij, l.l), plus a positive real tolerance 6, and
outputs an element of f2 drawn from a distribution p satisfying

IIp-yrll ,
Here II" denotes variation distance, i.e.,

lip rll Ip(X) yr(X)l max Ip(A) yr(A)l.
AC__

X6f2

It turns out to be possible to construct an efficient generator for subgraphs-world config-
urations, as the following theorem states.

THEOREM 2. There exists a generator for subgraphs-world configurations which, on
inputs (ij ) and 6, runs in time boundedby apolynomial in n, lz

-1 andlog 6-1 Specifically,
the runtime of the generator is O(mZ/z-g(log 3-1 + m)), where m IEI is the number of
nonzero interactions.

Remarks. (i) The presence of/z- in the time bound implies that the generator is inefficient
for systems with a very small external field. This dependence on the field is inessential and
can be removed with a little extra work (see Theorem 10 of 5).

(ii) Efficient generators for combinatorial structures, of which the above is a particular
example, are discussed in a general framework in [27], [29].

The construction of a generator with the above properties, based on simulation of a
suitably defined Markov chain, is described and justified in detail in the next section. For
the moment we will simply assume Theorem 2 and concentrate on showing how samples
produced by the generator can be used to obtain an efficient approximation algorithm for the
partition function Z (V/j, B, fl). Our approach, which we now describe, is an instance of a
computational technique which will be employed repeatedly in this paper.

Suppose we want to estimate the value of some physical quantity associated with a ferro-
magnetic Ising system. The first step is to express the quantity as the expectation of a suitably
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1094 MARK JERRUM AND ALISTAIR SINCLAIR

defined random variable over configurations in the subgraphs world. Then we can estimate
the quantity by sampling configurations at random, with the aid of the generator of Theorem
2, and by computing the sample mean.

More precisely, let f be a nonnegative real-valued function defined on the set S2 of
subgraphs-world configurations of a ferromagnetic Ising system. Viewing S2 as. a sample
space with probability distribution Jr(X) w(X)/Z’, the function f becomes a random
variable with expectation

E(f)= ; Z w(X)f(X).

It is a simple matter to get an estimate of I=(f) using the generator of Theorem 2: Con-
struct an independent sample {Xi of configurations, of size s, and compute the sample mean
S-1 i f(Xi). Provided the tolerance input to the generator is small, this will be an almost
unbiased estimator of ]if(f). By making the sample size s large enough, we can achieve any
desired degree of accuracy with reasonable confidence. Moreover, we may drastically reduce
the probability that the estimator falls outside the acceptable range of accuracy by repeating
the entire process times and taking the median of the results.

The efficiency of such an experiment depends on how large the numbers s and must be
in order to achieve a specified accuracy with specified confidence. This in turn depends on the
variance of the random variable f, or more precisely on the quantity max(f)/Iz(f), where
max(f) denotes the maximum value of f on S2. The next lemma quantifies these effects; the
proof is straightforward and is left until the end of the section.

LEMMA 3. Let f be a nonnegative real-valued random variable defined on the set f2 of
subgraphs-world configurations ofaferromagnetic Ising system, and let , be real numbers
with 0 < <_ 1 and 0 < < 1/2. Then there is an experiment of the form described above
which uses a total of504-2[lg r/-lq max(f)/F_(f) samples from the generator, each with
input ()ij, I) and tolerance 6 l=(f)/8 max(f), and produces an output Y satisfying

Pr(Y approximates E(f) within ratio 1 +

Lemma 3 makes it clear that, whenever we employ the above technique, we will need
to ensure that the ratio max(f)/F.(f) is not too large for the random variable f under con-
sideration. In particular, our criterion for efficiency demands that the ratio be bounded by a
polynomial function of n, the size of the system.

We turn now to an explanation ofhow the technique can be applied to compute the partition
function Z(Vij, B, fl). Recall from Theorem of the previous section that Z AZ’, where
A is simple to evaluate directly. We therefore concentrate on computing Z’. Our first step is
to write Z’ explicitly as a function of # as follows:

Ln/2J

XE {i,j}6X k=O

Note that only even powers of/ need be included in the sum since the number of odd-degree
vertices in a subgraph X is necessarily even. We are thus viewing Z’ as a polynomial in
with coefficients

(8) Ck Z H )ij
X:lodd(X)l-2k {i,j}6S
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1095

In the ferromagnetic case all the Ck are positive, so Z’ (/z) is an increasing function of
Clearly the coefficients Ck actually depend on the )ij, and hence on the interactions V/j of

the system and on the parameter ft. However, in what follows we will regard these quantities,
and therefore also the coefficients, as fixed, and consider what happens when/z is varied. In
spins-world terminology, this corresponds to subjecting a system with fixed interactions and
at a fixed temperature to a varying external field. Our task is to evaluate the partition function
at a specified external field value B. By the above discussion, this is reduced to evaluating the
polynomial Z’ (/z) Y2 Cklz2k at the point/x tanh fl B.

Our starting point is the observation that the value of Z (/z) at/z 1 can be computed
directly. To see this, note from (7) and (8) that

[n/2J

k--0 X_E {i,j}X {i,j}E

We are now going to relate the desired value Z’(tanh fiB) to Z’(!) using the values of Z’(/z)
at certain intermediate points tanh fl B </x < 1.

The mechanism for relating the values of Z at two points/x /z0 and/z /x l, with
> #0 > //1 >-- O, is the following. Consider the random variable f(X) (/1//0) Idd(X)l

over configurations of the system at # =/x0. The expectation of f is given by

F-" (f) Z’(#o) cklzk lZ2 Zt

=0 /z0 Z’ (/x0)

(Here and in the sequel we will use notation such as ,0 (f) to indicate that the expectation
is taken with respect to a particular value of , in this case 0). Hence we can estimate the
quantity Z’()/Z’(0) using the sampling technique discussed earlier. By Lemma 3, this
process will be efficient provided the ratio max(f)/0 (f) is not too large. Clearly, this cannot
be guaranteed for arbitrary values of N0 and . However, if the values are reasonably close
together, then the ratio is bounded rather tightly, as we now show. First, note that certainly
max(f) 1. It is therefore enough to obtain a lower bound on the expectation ,0 (f). Such
a bound is provided by the next lemma, whose proof we defer to the end of the section.

LEMMA 4. Let o and be arbitrary real numbers in the range [0, 1] satising l <

o + n-1. Then the ratio Z’()/Z’(o) is bounded below by 1/10.
Lemma 4 suggests that we should be able to bootstrap the known value Z’ (1) to the desired

value Z (tanh fl B) by performing statistical experiments at a sequence of intermediate values
of N which are a distance n- apart. Specifically, let r < n be the natural number satisfying

n-r n-r-1
(10) > tanhflB

and define the sequence () for 0 k r + by

] (n-k)/n for 0kr;
(11) k / tanhflB for k=r+l.

Note that k [0, 1] and #k+l < k k+l + n-1. Hence by the above discussion we may
estimate the ratio Zt(k+l)/Zt(k) efficiently for each k. This is enough to yield an estimate
of Z’(tanh fl B), since we have

’(+)
(12) Z’(tanhflS) Z’(1) x

Z’(Nk)k=0
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1096 MARK JERRUM AND ALISTAIR SINCLAIR

We are now in a position to give our approximation algorithm for the partition function Z.
We assume that the input consists of a ferromagnetic Ising system in the form V/j, B, fl), and a
positive real e (0, which specifies the desired accuracy. As usual, we set ij tanh fl V/j.

Step 1. Compute A (2coshflB)n 1--[{i,j}ECOSh[Vij, and Z’(1) I-I{i,jjeE(1 + ij).
Step 2. Define the sequence (/zk) for 0 < k < r + as in (10) and (11) above. For each

k 0, r in turn, do the following:

Let f(X) (lZk+l/lZk) Idd(x)l for each subgraphs-world configuration X, so
that i=,k (f) Z’(IZk+l)/Z’(lz). Using the technique of Lemma 3 applied to
the system at/z =/zg, with e/2n and r/ 1/4n, compute a quantity Y
satisfying

Pr(Y approximates Z’(lZk+l)/Z’(lz) within ratio + e/2n) >_ 1- 1/4n.

Step 3. Output the product

A x Z’(1) x I Yk.
k=0

THEOREM 5. The above algorithm is an fprasfor the partitionfunction Z ofaferromag-
netic Ising system.

Proof. The output of the algorithm is the product of the quantities A and Z’ (1), computed
exactly in Step 1, together with r + < n random variables Y arising from experiments in
Step 2. From (12) and the property of the Yk expressed in Step 2, it is immediate that the
product approximates Z(Vij, B, fl) within ratio (1 + :/2n)n < + e with probability at least
(1 1/4n) >_ 3/4. It remains only to show that the runtime of the algorithm is bounded by
a polynomial in n and -.

Steps 1 and 3 can clearly be executed in time O(n2). Now consider the operation of
Step 2 for a particular value of k. Appealing to Lemmas 3 and 4, we see that the process
of computing the estimate Y requires N 20160-2n [lg 4n] calls to the generator of
Theorem 2. Moreover, the tolerance supplied on each call is 6 /160n, and the value of
/z is never less than n- It follows from Theorem 2 that the runtime of each call is bounded
by q(n, -) for some polynomial q(., .). The total execution time of Step 2 is therefore
O(nNq(n, -)), which is a polynomial function of n and -1. The algorithm therefore
satisfies all the requirements of an fpras. [q

Remarks. (i) The statement of Theorem 2 actually gives an upper bound on the polyno-
mial q appearing at the end of the above proof. From this, it is easily seen that the overall
runtime ofthe fpras ofTheorem 5 is O(e-2m2n 11 log n(log(e-ln)+m)). Now wemay assume,
without loss of generality, that e > 2-m, since otherwise we can evaluate Z exactly by brute
force in time O(me -1). Hence the expression for the runtime simplifies to O (e-2m3nll log n).
(See also the remark following the proof of Theorem 7 at the end of the next section.)

(ii) Closer analysis reveals that the sequence of coefficients (c) of the polynomial ex-
pression (7) for Z’ is log-concave, i.e.,

Ck+lCk-1 C for k 1, 2 Ln/2J 1.

(The proof makes use of the ideas introduced in the proof of Theorem 7 of the next section.)
This is a surprising result in its own right, since naturally occurring log-concave sequences are
quite rare in combinatorics. It also suggests an alternative method for approximating Z: By
log concavity, for each k it is possible to choose a value of/z which assigns to configurations
with precisely k pairs of odd-degree vertices the largest aggregated weight. This in turn means
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1097

that we can read off all significant coefficients ck by sampling at appropriate values of/z, again
using Z’(1) as a reference value. (An analogous approach was used in [27], [16] to obtain
the coefficients of a polynomial related to matchings, or monomer-dimer configurations, in
a graph.) This method is both more complex and rather less efficient than the one presented
in Theorem 5. However, it does supply more detailed information about Z, in the form of
the coefficients of Z’. We have been unable to determine whether these quantities have any
inherent physical significance, so we will not present the alternative algorithm in detail here.

We close the section by providing the missing proofs of Lemmas 3 and 4.
ProofofLemma 3. Let Var(f) denote the variance of f, i.e., Var(f) I=(f2) I::(f)2.

The generator of Theorem 2 selects elements of f2 from a distribution p which is slightly dif-
ferent from 7r. Accordingly, define the mean and variance of f with respect to this distribution
by

F..’(f) E p(X)f(X);

Var’ (f) E p(X)f(X)2 E (f)2.
X6f2

Since the variation distance satisfies lip zr < 3, we have

(13)
II=(f) I=’(f)l _< max(f) (f)/8;

IVar(f) Var’(f)l < 33 max(f)2 3l=(f) max(f)/8.

Now let {X be an independent sample of size s produced by the generator, and let Y0
S-1 Ei f(Xi) be the sample mean. Clearly Y0 has expectation I::’ (f) and variance s-lVar (f).
Therefore, by Chebyshev’s inequality we have

(14)
9 Var’(f)

Pr (]Y0 I::’(f)] > l::’(f)) < 2 si::’(f)2"

But if ]Y0 P’(f)l < l::’(f) then, from (13),

IYo E(f)l _< IY0 E’(f)l + IE’(f) E(f)l

(15)
< E’ (f) + E(f)

Note that this in turn implies that Y0 approximates I=(f) within ratio +. Moreover, applying
(13) again we have

Var’(f) Var(f) + P(f) max(f) P(f) max(f) 2max(f)
(16) < < <

7 E(f))2 E(f)7 E(f))2 (E’(f)2 (
where in the second inequality we have used the distribution-independent bound Var(f) <

E(f) max(f), valid for any nonnegative random variable f. Combining (15) and (16) with
(14), and choosing sample size s 72-2 max(f)/E(f), gives

18 max(f)
(17) Pr(Yo approximates E(f) within ratio + ) <

2S E(f)
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1098 MARK JERRUM AND ALISTAIR SINCLAIR

Now consider performing the above experiment an odd number times, independently, and
let Y denote the median of the resulting values of Y0. In view of (17), the probability that Y
fails to approximate I::(f) within ratio / is at most

i=(t+l)/2 i=(t+l)/2 Ik" "-] "
Taking 6[lg 0-1] + 1, this probability is bounded above by r/3 lg(4/3) < 1. The random
variable Y therefore satisfies the requirement of the lemma. The total number of samples
required from the generator is st, which is bounded above by 504 -2 [lg r/-l max(f)/F..(f)
as claimed.

ProofofLemma 4. We split the argument into two cases.
Case I./z0 > 3/4. In this case, we have

/Xl 4
-->1 >1
#0 n/z0 3n

-,[n/2J Ckl,l2k and all coefficients ck are positive,Therefore, since Z’(/z) z..,k=0

Z’(#I)
> (#___.1)

2Ln/2]

z’(tz0) tz0
> 1- _--- > -,

3n 9

assuming as we may that n >_ 2. (The problem is trivial otherwise.)
Case II./z0 < 3/4. This case is handled by appealing to the original spins-world expansion

of Z. First note from the definition (4) of Z’ that

Z’(/Zl) Z(Vij, BI, ) (2coshflBo) >
Z(Vij, BI, fl)

(18)
Z’(#o) Z(Vij, Bo,/3)

x
2coshflB1 Z(Vij, Bo, fl)’

where fl > 0 is arbitrary and Bo, B1 are defined by /i tanh flBi. Note that B0 >
Moreover, the upper bound/0 -/Zl _< n-1 translates to a bound on B0 B1 via the inequality
tanh x tanh y > (x y)sech2x, valid for x > y > 0. We get

(19) fl(Bo- B1) < (Izo- lzl)/sechZflBo < 16/7n,

where we used the fact that tanh flBo --/z0 < 3/4 and sech2x tanh2 x. But from the
definition (1) of the partition function Z we have

Z(Vij, BI, fl)
> minexp (/3(B- Bo) o’)>exp(-nfl(Bo-B1))Z(Vij Bo ,6)- k[n]

which by (19) is bounded below by e-16/7 and hence by 1/10. Together with (18) this yields
the desired bound on Z’(lzl)/Z’(lzo).

4. An analysis of the subgraphs-world process. We shall assume that the reader is
familiar with the elementary theory of finite Markov chains in discrete time: An introduction
can be found, for example, in [10, Chap. XV].

Assume/ > 0. Taking our cue from the form of (4), we define the subgraphs-world
process, .JClsing, as follows. The state space, f2, of the Markov chain JCIsing is the set of all
spanning subgraphs X _c E; note that 121 2m, where m EI is the number of unordered
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1099

pairs {i, j with )ij O. For X, X’ 6 with X X’, the transition probability from X to
X’ is given by

1/2m if IXX’I- and

p(X,X’) w(X’)/2mw(X) if IX@X’I and

0 otherwise,

w(X’) >_ w(x);

w(X’) < w(X);

where X @ X’ denotes the symmetric difference of X and X’. The self-loop probabilities
p(X, X) are defined implicitly by complementation, so that p(X, X) Y.x,#x p(X, X’).
Thus, transitions in JClsing are perturbations in which a single edge is added to, or deleted
from a subgraph. Note that exactly m transitions are available from any state, and all transition
probabilities are bounded above by 1/2m. Hence the transition probabilities are well defined,
and the self-loop probabilities p(X, X) for each state X are bounded below by 1/2.

We pause to observe that the above chain is very easy to simulate. Suppose the current
state of the chain is X 6 fa. Then the transitions from X can be selected according to the
following model:

1. With probability 1/2 set X’ X, otherwise
2. select an edge e 6 E uniformly at random, and let Y X {e} (the symmetric

difference of X and e});
3. if w(Y) >_ w(X) then set X’ Y; if w(Y) < w(X) then with probability w(Y)/w(X)

set X’ Y, otherwise set X’ X.
It will be seen that this procedure correctly models the transition probabilities specified

earlier. It is worth remarking that there is no need to compute the weight functions w(X)
and w(Y) from scratch at each iteration; since Y and X differ by a single edge, the quotient
w(Y)/w(X) can be computed using just two multiplications.

The Markov chain .JClsing is irreducible (all states communicate via the empty state
0) and aperiodic (the self-loop probabilities are nonzero). Thus there-is a well-defined sta-
tionary distribution on f2 which is independent of the initial state. Define re f2 --+ I by
re(X) w(X)/Yx, w(X’) w(X)/Z’. We shall see presently that re is indeed the station-
ary distribution on f2. For X, X’ 6 f2 define q(X, X’) re(X)p(X, X’). We claim that q is
symmetric in its two arguments. If X X’ then there is nothing to prove. If IX @ X’[ > 1,
then p(X, X’) 0 and hence q(X, X’) 0. Finally, it is straightforward to verify from the
definition of the transition probability p(X, X’) that

(20) q(X, X’) (2m) -1 min{re(X), re(X’)}, if IX @ X’I 1.

Since q is symmetric, the so-called detailed balance condition holds:

(21) re(X)p(X, X’) q(X, X’) zr(X’)p(X’, X).

Suppose, as is the case here, that the function p(., .) describes the transition probabilities of
an ergodic Markov chain. It is a fact [16, Lem. 2.1] that if there is any function re
IR satisfying detailed balance together with the normalisation conditionxre(X) 1,
then the Markov chain is (time-) reversible, and re is its stationary distribution. Thus the
stationary distribution of the Markov chain JClsing is indeed given by re(X) w(X)/Z’, as
claimed above, and we can use the chain to sample configurations X 6 f2 with probabilities
approximately proportional to w(X).

As explained informally earlier, if the Markov chain JClsing is to be the basis of an
efficient sampling procedure for configurations then it must be rapidly mixing, in the sense
that, if it is allowed to evolve from a suitable initial state, the distribution of its final state will
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1100 MARK JERRUM AND ALISTAIR SINCLAIR

be very close to the stationary distribution after only polynomially many steps. Note that this
is a highly nontrivial requirement: since the number of states in the chain is exponentially
large, we are demanding that it converge after visiting only a tiny fraction of its state space.
Our argument that the chain is rapidly mixing is in two parts: First, in Theorem 6, we state
a general characterisation of the rapid mixing property in terms of a measure known as the
conductance; then, in Theorem 7, we estimate the conductance of JClsing.

For an ergodic reversible Markov chain, the conductance [27], [29] is defined by

x’ s

where the minimisation is over all subsets S of states with 0 < xes re(X) < 1/2. (Note that
0 < * < 1.) The conductance in some sense measures the rate at which the process can flow
around the state space: specifically, it provides a lower bound on the conditional probability
that the stationary process escapes from a small subset S of the state space in a single step,
given that it is initially in S. Thus a chain with large conductance is unlikely to "get stuck" in
any small region of the state space, so we might expect it to converge fast. This intuition is
captured in the following theorem.

THEOREM 6. Let be the conductance of an ergodic, reversible Markov chain with
stationary distribution yr and minx p(X, X) > 1/2. Let p(t) denote the distribution of the
state at time given that the initial state is Xo. Then the variation distance p(t) 7r satisfies

(1
r(x0)

(The requirement that minx p(X, X) > 1/2, i.e., that every state has a self-loop probability
of at least 1/2, is a technical device which removes periodicity; note that ./Clsing satisfies this

requirement by construction.)
Proof. The theorem is essentially a restatement of Theorem 3.4 of [29], to which the

interested reader is referred for details; we mention here only the necessary modifications.
The main difference stems from the fact that in the former result we used the stronger relative
pointwise distance (r.p.d.), rather than the variation distance, as a measure of deviation from
the stationary distribution. In similar fashion to the r.p.d., the variation distance at time may
be related, by elementary linear algebra, to the second eigenvalue )1 of the Markov chain: we
get

(22) lipt r
zr(X0)

(See, for example, Proposition 2 of [7], which presents a marginally stronger result, with

2/r(X0) replacing zr (X0) in the denominator. Note that the presence ofa self-loop probability
of 1/2 on every state ensures that all eigenvalues are nonnegative.) The bound in (22) differs
from that on the r.p.d, in Lemma 3.1 of [29] only in that rr (X0) replaces minx rr (X).

Now the main result of 3 of [29], Lemma 3.3, relates )1 to the conductance via the bound
.1 < 2/2, valid for an arbitrary reversible chain. It is easily seen from the proof of the
lemma that the marginally stronger bound

(23) ,k < 1- (I2
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1101

holds for chains in which all self-loop probabilities are at least 1/2. Putting (22) and (23)
together establishes the theorem. [3

Remarks. (i) The heart of the above proof is the eigenvalue bound (23). This is a discrete
analogue of Cheeger’s inequality for Riemannian manifolds [5]. Related bounds have been
observed by several authors; see, e.g., [8], 1], [23], [25].

(ii) Theorem 6 has a converse, which says that if a Markov chain is rapidly mixing then
its conductance cannot be too small; see, e.g., [23], [27], [28]. Thus the conductance provides
a characterisation of the rapid mixing property.

Theorem 6 allows us to investigate the rate of convergence of a reversible chain by
examining its transition structure, as reflected in the conductance. In particular, if we wish to
ensure a variation distance of at most then it is clear that -2(ln-1 + In zr(X0)-1) steps
suffice. Thus the rapid mixing property will generally follow from an inverse polynomial
lower bound on the conductance. Such a bound is available for the chain -/Clsing defined
above. Specifically, we have the following theorem.

THEOREM 7. The conductance ofthe Markov chain JClsing is bounded below by lza/4m.
The proof of Theorem 7 is the main content of this section. Before proceeding with it,

however, let us first use the result to verify our claim in Theorem 2 of the previous section
that an efficient generator for subgraphs-world configurations exists. This will complete the
validation of our approximation algorithm for the partition function.

ProofofTheorem 2. The generator operates as follows. Given as input a ferromagnetic
Ising system in the form ()ij, //), with 0 < /z < 1, and a tolerance 6 6 (0, 1], simulate the
associated Markov chain ./Clsing for 16m2/x-8(ln6- + m) steps, starting in state Xo 0
(i.e., the empty graph on vertex set [n]). Since ij < for all i, j, and z < 1, it is clear that
w(Xo) > w(X)for all configurations X. Hence zr(X0) > 2-m. Appealing to Theorem 6, we
conclude that the specified number of simulation steps is enough to ensure a variation distance
of at most 3. The theorem is therefore established. [3

Proof of Theorem 7. The proof rests on a path counting argument, similar to those em-
ployed in previous applications [27], 16] of the conductance bound. We present a preliminary
sketch map of the proof technique before considering the technical details which arise when
applying the path counting argument to the particular chain under consideration.

For each pair of states I, F 6 2, a canonical path from I (the initial state) to F (the final
state) is specified. The canonical path proceeds via a number of intermediate states using only
valid transitions of the Markov chain. Each canonical path is assigned a weight wtlich is the
product of the stationary probabilities at the initial and final states; thus the weight of the path
from I toF is r(l)rr(F), independent of the intermediate states in the path. A careful choice
of canonical paths is essential to secure a good bound on conductance.

Suppose it can be shown that, for each transition T Tt, the aggregated weight of
canonical paths which use transition T T’ is bounded above by bq(T, T’), where q is as in
(21). Consider any partition ofthe state space into two sets S and with Y-xs 7r(X) < 1/2.
Then, on the one hand, the total weight of canonical paths which cross the cut defined by S and

is at least YlS-F rr(l)r(F) rr(S)rr() > zr (S)/2. On the other hand, summing over
transitions T -- T’ with T 6 S and T’ 6 , we have that the total weight of canonical paths
which cross the cut is bounded above by b -s r’rs q(T, T’). Since S and represent
a general partition of the state space 2, it follows immediately that the conductance of the
Markov chain is bounded below by 1/2b.

It will be perceived that the principal barrier to applying the above idea is likely to lie
in obtaining a good value for the bound b. This is achieved using a combinatorial encoding
technique, as follows. For each transition T --+ T’, let cp(T, T’) denote the set of all pairs
(I, F) 6 S22 such that the canonical path from I to F includes the transition T --+ T. Fix
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1102 MARK JERRUM AND ALISTAIR SINCLAIR

any particular transition T -+ T’. Then it turns out that we can define an injective map from
cp(T, T’) to the state space f2. Since the map is injective, any state U E f2 picks out at most
one canonical path, from I to F, say, which uses the transition T T’; the state U can be
thought of as an encoding of the canonical path. Moreover, the injective map can be chosen so
that the weight of the canonical path, namely, rc(I)rr(F), is roughly proportional to 7r(U), the
probability assigned to the encoding U by the stationary distribution. Since 7r is a probability
distribution, the sum of 7r (U) over all encodings U is at most one; this upper bound translates
to an upper bound on the total weight of paths using T T, and hence to a value for b.

All the above must now be specialised to the Markov chain .JCIsing. The first task is
to specify a canonical path for each pair I, F f2. View I and F as graphs with vertex set
[n]. Let A I @ F be the symmetric difference of I and F, and suppose that the graph A
has 2k vertices of odd degree. (The number of odd-degree vertices in a graph is necessarily
even.) Cover A with a collection C1, C2 Cr of assorted trails and circuits which are
pairwise edge disjoint, imposing the condition that the first k objects, C1, C2 Ck, are all
open trails (walks with no repeated edges) while the remainder, Ck+, C+2 Cr, are all
circuits (closed trails).

That this can be done with so few (open) trails follows from a simple induction on k. When
k 0, every vertex of A is of even degree, so each connected component of A is Eulerian and
can be covered by a single circuit. Now suppose k > 0 and is a vertex in A of odd degree.
The connected component of A containing must contain at least one other odd-degree vertex,
say, j. Connect and j by a trail, letting this be one of the trails in the required decomposition
of A. Deleting this trail from A yields a graph with 2(k 1) odd-degree vertices, which can
be covered by k trails (together with some number of circuits) by the induction hypothesis.

The covering of A by trails and circuits is not in general unique, and we assume that some
rule is employed to pick out a particular choice of C, C2,..., Cr. We further assume that
this rule also specifies a distinguished initial vertex for each trail or circuit, and a direction
for each circuit. In the case of a trail the initial vertex must be an endpoint of the trail; in
the case of a circuit the initial vertex may be arbitrary. The canonical path from I to F is
now obtained by unwinding the trails and circuits C, C2 Cr in sequence. Unwinding
Ci involves processing each edge of Ci in sequence, starting at the initial vertex and, in the
case of a circuit, following the assigned direction. Each processed edge, e, generates a single
transition on the path from I to F. If e is in F (and hence not in I) the transition involves
adding the edge e to the current state; if e is in I (and hence not in F) the transition involves
deleting the edge e from the current state. It is clear that this process defines a canonical path
of legal transitions from state I to state F.

The next task is to define the injective map (encoding) from the set of canonical paths
using a given transition to f2. Recall that cp(T, T’) denotes the set of all pairs (I, F) f22

such that the canonical path from I to F employs the transition T -- T’. Define the map
T--+T’ cp(T, T’) -- f2 by 17T_..T,(I F) I @ F @ (T t3 T’) for all (I, F) cp(T, T’).
The intention here is that the encoding should agree with I on the trails and circuits already
processed, and with F elsewhere.

We verify that r/T--, 7", is injective by demonstrating that I and F are uniquely determined
by U rlTT,(I, F). Indeed, given U, we can compute U @ (T T’) I @ F and hence the
uniquely defined covering C1, Ce Cr of I @F by trails and circuits. The edge e T@ T’,
which is added or deleted by the transition T -- T’, points out which trail or circuit, Ci, is
being unwound, and how far the unwinding of Ci has progressed. Starting at state T’, we
may complete the unwinding of Ci and successive trails/circuits to discover the final state F;
equally well, we may use the reverse process to recover the initial state I. So the map /T’is injective, as claimed.
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1103

The other property we require of the encoding is that its weight should be roughly pro-
portional to that of the encoded path. Precisely, we require of U r/T-,r, (I, F) that

(24) yr(U)q(T, T’) > (2m)-llz4yr(I)rc(F),

or, equivalently, multiplying through by (Z’)2 and using assertion (20),

(25) w(U)w(T) > lZ4W(I)w(F) and w(U)w(T’) > lz4w(l)w(F).

The verification of the left-hand inequality will be treated in detail below; the right-hand
inequality will then be shown to follow by symmetry.

For X 6 f2, write A(X) I-I{i,jlx .ij, so that w(X) A(X)/xI(x)l. To verify the
left-hand inequality of (25) it is enough to demonstrate separately that

(26) A(U)A(T) > A(I)A(F),

and

(27) Iodd(U)l + Iodd(T)l- Iodd(l)l- Iodd(F)l < 4.

(We used here the fact that 0 < /z < 1.) We deal first with (26), which is the more straight-
forward. From the construction of canonical paths we have I A F c_ T U T’ c_ I U F, while
the definition of U entails U @ (T U T’) I (9 F. It follows by elementary set theory from
these two observations that U VI (T t2 TI) I N F and U U (T U TI) I LJ F. Hence

A(U)A(T O T’) A(U 0 (T (3 T’))A(U (’/(T t2 T’)) a(I U F)A(I O F) A(I)A(F),

which, together with A (T T’) < A (T), implies (26).
We now turn to inequality (27). For 6 [n] define

ix(i) Xodd(U)(i) %- Xodd(T)(i) Xodd(1)(i) Xodd(F)(i),

where Xs denotes the characteristic function of a set S. Note that -2 < or(i) < 2. Inequality
(27) can be re-expressed as

Z or(i) <(28) 4.
i[n]

We shall argue that or(i) < 0 for all outside a small set of exceptions. In order to discuss
these exceptions, we give names to three vertices which have special significance. Denote by
s the initial vertex of the circuit which is in the process of being unwound when the transition
T -- T’ is made (s is undefined if the transition occurs on a trail). Denote by u and v
the endpoints of the edge e T @ T’ which is added or subtracted during the transition
T T’; vertex u is distinguished from v by being the first to be encountered in the direction
of unwinding. We shall see that the vertices s, u, and v are the only ones which can provide a
positive contribution to the sum in (28).

Consider first the conditions under which or(i) 2 can occur. It must be the case that
has even degree in both I and F, and odd degree in both U and T. Now it is a consequence
of the way canonical paths are constructed that a vertex which has even degree in both I and
F will generally have even degree in the intermediate configuration T; the only exceptions
are the vertex s (whose degree became odd when the unwinding of the circuit commenced)
and the vertex u (whose degree was made odd by the previous transition, and whose parity is
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1104 MARK JERRUM AND ALISTAIR SINCLAIR

restored by the transition T --+ T’ itself). To summarise: The case c(i) 2 can occur only
when s or u.

Consider now the conditions under which or(i) 1 can occur. This case is ruled out,
with two exceptions, by simple parity considerations. Since I F U @ (T U Tt), the
value of or(i) must be even unless u or v. (These are the only points at which the
set T t_J T may differ from T.) Combining this observation with the previous analysis for
the case or(i) 2, we see that only three terms of the sum occurring in (28) can possibly be
strictly positive and that the sum itself cannot exceed 5. (The worst case is achieved by setting
u(s) 2, a(u) 2, and or(v) 1.) However, the sum cannot actually attain 5 on grounds
of parity: Each of the terms appearing on the left-hand side of (27) is necessarily even. This
completes the verification of (28), and hence of (27) and the left-hand inequality of (25). The
right-hand inequality of (25) follows by a symmetrical argument, with the roles of T and T’,
and u and v, interchanged.

Finally, summing (24) over all canonical paths which employ the transition T --+ T we
obtain the following upper bound on the total weight of canonical paths which use T T’:

y rc(1)rr(F) < y 2m/Z-47r(OTT,(I, F))q(T, T’) < 2m/z-aq T,
(I, F)cp(T. T’) (I, F)Ecp(T,

where the second inequality rests on the fact that rlr-,r, is injective. In the notation of the
sketch map presented at the beginning of the proof, b 2m/z-4. Therefore, the conductance
of .J/Clsing is bounded below by 1/2b =/za/4m, as claimed at the outset.

Remark. The main task in the proofofTheorem 7 is to estimate the "bottleneck" measure
b; this is then used to get a bound on conductance, and hence on the rate of convergence of
JClsing. In fact, b can be used directly to obtain a significantly sharper bound on the rate
of convergence; for the details, see [28]. Specifically, the runtime of the generator quoted in
Theorem 2 is reduced by a factor O (/z-a), which improves the runtime of the approximation
algorithm for the partition function (Theorem 5) by a factor of o(nn). Similar improvements
apply to the runtimes of our other algorithms that make use of the generator.

5. The mean energy and mean magnetic moment. Of greater immediate importance
to physicists than the partition function Z itself are the partial derivatives of In Z with respect
to/3 and B. The key quantities of interest are the mean energy ’ -0(ln Z)/O, and the
mean magnetic moment A//=/3- 0(ln Z)/0 B. As their names suggest, both of these can be
viewed in the spins world as expectations of the corresponding physical quantities.

There is no reason to suppose that an fpras for the partition function Z will directly
yield an fpras for these derivatives of In Z. However, we demonstrate in this section that
polynomial-time approximation algorithms for and A//do indeed exist. The construction
of these algorithms relies on the surprising fact that g and .AA can be viewed as expectations
of appropriately defined random variables in the subgraphs world. Although some technical
complications arise, it is possible to estimate these expectations more or less directly by
simulating the subgraphs-world process for a polynomially bounded number of steps.

The mean magnetic moment is slightly easier to work with and we treat it first. The main
result is preceded by a technical lemma, whose proof is deferred to the end of the section.
Recall that in the subgraphs-world distribution, each configuration X occurs with probability
w(x)/z’.

LEMMA 8. Suppose the configuration X f2 is randomly selected according to the
subgraphs-world distribution. Then:

(i) Pr(lodd(X)l > 0) </z2/2, provided Y ,ij > 1;

(ii) Pr(Iodd(X)l 2) >/z2/10, provided ij and/z < n-1.
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1105

THEOREM 9. There exists an fprasfor the mean magnetic moment =/3-10 (In Z)/0 B,
where Z is the partitionfunction ofaferromagnetic Ising system.

Proof. We shall express the quantity A// as an expectation in the subgraphs world by
differentiating the logarithm of the expansion given in Theorem with respect to B. Before
doing this, it is convenient to perform some preparatory computations. Since .M 0 when
B 0, we may assume that B > 0. Recall that w(X) A(X)/zIdd(X)l, where/z tanhflB
by definition, and A (X) is independent of B. Then

0_____ w(X) A (X)lodd(X)llzIdd(xl-1 (sechflB)2 fl8B

w(X)lodd(X)l(tanh B)-1 (sechflB)2

w(X)
2filodd(X)l
sinh 2/5 B

Furthermore, from the definition of A in (5),

0
In A n In cosh flB nfl tanh/3B.3B OB

With these identities in mind, we compute A//using the expansion of Theorem as the starting
point:

1 0 0 0
lnZ lnA lnZ’

3B fl 3B

O
n tanh fl B + -w(X)

1 2lodd(X)l
n tanh fl B + 7 w(X)

x sinh 2flB

Using, as before, the notation (f) (Z’)- -x w(X)f(X) to express the expectation of a
random variable f in the subgraphs world, the above identity can be written more compactly
as

2
(29) .M n tanh fiB + Elodd(X)].sinh 2fib

Note that to approximate .M within ratio +e it is enough, since both terms of (29) are positive,
to estimate I::[odd(X)l within ratio + e. We propose to do this by using the Markov chain

A4CIsing, analysed in 4, to provide a polynomial number of sample configurations X from
the subgraphs-world distribution, and returning the average of lodd(X)[ over the sample. As
noted in the discussion preceding Lemma 3, this approach will yield an fpras for V/provided
the ratio max Iodd(X)l/l::lodd(X)l is bounded by a polynomial in n. Although such a bound
often holds, a more refined approach is necessary in certain circumstances. We proceed by
case analysis.

Case I. Y ij >-- 1. We identify two subcases, according to the size of
Case I(a). /z > n-1. In this range, we may estimate .h//by direct experiment. From

Lemma 8,

l=lodd(X)l >_ 2Pr(lodd(X)l > 0) >_/2 >_
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1106 MARK JERRUM AND ALISTAIR SINCLAIR

while, clearly, max Iodd(X)l < n. Thus the ratio max Iodd(X)l/l::lodd(X)l is bounded above
by n3.

Case I(b). /z < n-1. Intuitively, the problem when/z is small is that a randomly sampled
configuration may, with high probability, satisfy Iodd(X)l 0; in this situation, very many
trials may be required to obtain a sufficiently accurate estimate of the expectation of Iodd(X)I.
The solution is to perform experiments at an increased value of/z, say/2, at which the even
Iodd(X)[ > 0 occurs with sufficiently high probability. Since we shall be allowing/z to vary,
it is convenient, as before, to refine our notation to make the dependence on/z explicit. In
particular, !: (f) will denote the expectation of the random variable f when experiments are
undertaken with/z set to some revised value/2. The unsubscripted notation i:(f) will be
reserved for expectations with respect to the original value of/z.

Set/2 n -1 and define

/)
Iodd(X)l

f (X) Iodd(X)l

Straightforward manipulations yield the identity

Z’ (/2) I:: (f)(30) Ilodd(X)l--
Z’()

which relates the quantity we are attempting to estimate to the expectation of f at the revised
value of/x. Since Z’ (/2) and Z’ (/z) may be estimated by the techniques of 3, we concentrate
here on the estimation of i:: (f). From part (ii) of Lemma 8 we have Pr(]odd(X)l 2) _>
/22/10; this inequality allows the expectation of f to be bounded below:

/z
2

Pr(lodd(X)l 2) >_ -.
The maximum of f, meanwhile, satisfies the crude bound max(f) _< (///)2n. Thus the
ratio max(f)/;(f) is bounded above by 5n/-2 5n3. Case II. .ij < 1. In this rather
pathological case, the essential problem we face is that a randomly sampled configuration
may, with high probability, be the empty set. As before, we shall conduct experiments at an
artificially inflated value of/z and use (30) to relate the results of these experiments to the
value we are attempting to estimate. This time, however, we choose to work with/2 1.

Unfortunately, even with/2 set to 1, the highest possible value, it may still happen that
the empty configuration X 0 occurs with very high probability. We overcome this problem
by sampling from the distribution obtained by conditioning on the event X 0. With f as
before, and noting that/2 and f(0) O, we have

Ln/2/

I= (f) Z 2k/z2kprt (Iodd(X)l 2k)
k=O

Ln/2J

Pr(X 0) Z 2klz2kpri(ldd(X)l 2k IX 0).
k=l

Now Z’ (/2) I-I (1 + )l.ij), and hence

(31) Pr# (X 7 0)
z’02)
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1107

is easy to evaluate directly. It is enough, therefore, to estimate the expectation of f with
respect to the distribution of conditional probabilities, in which each nontrivial configuration
X : 0 occurs with ,probability (Z’(fi) 1) -1 1-Ili,jlx ij. This conditional distribution
may be sampled without recourse to Markov chain simulation, the direct method being as
follows. Start with X 0 and perform a sequence of rn trials, each trial determining whether
a particular edge is to be added to X. The probability governing each trial has one of two
values, depending on whether any of the previous trials have contributed an edge to X. Define
Pij ,ij (1 + ,,ij)-l, and suppose that we are about to decide whether to add a certain edge
{i, j} to X. If X 7 0, the edge {i, j} is added to X with probability pij; otherwise, the
edge is added to X with probability Pij[ 1--I (1 phg)] -1, where the product is over all
edges {h, k} whose fate is yet to be decided, including edge {i, j itself. It is straightforward
to verify that this procedure yields the required distribution. It only remains to verify that a
polynomially bounded number of sample configurations suffice to provide an accurate estimate
of the expectation of f. Again, we do this by demonstrating an upper bound on the ratio
between the maximum of f and the mean of f. Observe that

(32)

and

Z’(/2)-- H(1 + iij exp( .ij) <1-+-2Z)ij

(33) Pr# (Iodd(X) 2) > Z’(/2)
)ij,

where in (32) we used the fact that ex < + 2x in the range 0 < x < 1. Combining (31) and
(33), we obtain a lower bound on the probability of Iodd(X)l 2 conditional on X 7 0.

Pr(Iodd(X)l 2IX :/: O)-
Pr(Iodd(X)l 2)

Pr(X :/: O)

Z’(/2)

the final step here relies on (32). It follows immediately that the expectation of f with respect
to the conditional distribution is at least/z2. Using the crude bound max(f) < n#2, we see
that the ratio of the maximum to the mean of f is bounded above by n. This completes the
analysis of Case II.

We conclude by analysing the time complexity of the proposed approximation scheme
for A/[. The worst case is realised by Case I(b), where our method demands that the three
quantities appearing on the right-hand side of identity (30) be known with sufficiently high
accuracy. To obtain an fpras for .A4, it is enough to estimate each of these three quantities
within ratio + 6/4 and with failure probability 1/12. Setting 6/4 and 1/12 in
Lemma 3, we see that O (-2n3) samples from the generator suffice to estimate 1::9 (f) within
ratio / 6/4 and with failure probability 1/12. The production of each sample requires time
O(m2/2-8(log 6-1 "-1- m)), where 6-1 O(e-ln3). We may assume that e >_ 2-m; otherwise
there would be time enough to evaluate .M exactly using a brute force algorithm. With this
simplifying assumption, and noting that/2 n-1, the time to produce each sample is seen
to be O(m3n8), and the total time to estimate I::(f) is O(e.-Zm3n11). The overall execution
time for the algorithm is thus dominated by the time taken to estimate Z’(/z) and Z’ (/2) within
ratio / 6/4 and with failure probability 1/12; from Remark (i) following Theorem 5 this
dominant term is seen to be O(:-2m3n 11 log n). [3
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1108 MARK JERRUM AND ALISTAIR SINCLAIR

We turn now to the mean energy . Up to this point, we have always sampled con-
figurations with/x set to some value which is at least n -1. In the sequel, we shall need to

sample configurations at smaller values of/z; at these values Theorem 2 no longer guarantees
an execution time for the sampling procedure which is polynomial in n. However, efficient
sampling is possible, even at/x 0.

THEOREM 10. There exists a generator for subgraphs-world configurations which, on

inputs ()ij, lz) and 3, runs in expected time bounded by a polynomial in n and log -l.
Specifically, the expected execution time of the generator is O(rn2nS(log- + m)).

Proof. The result for/x > n-1 follows directly from Theorem 2, so assume that/z < n-We employ the generator of Theorem 2 but with/z artificially boosted to/2 n-1, and
decreased to 3/10. To sample a configuration X from the distribution corresponding to
the original value of/z, perform a sequence of trials of the following form. First produce a
random configuration X using the generator of Theorem 2 (with the modified parameters);
then, with probability (/z//) Idd(x)l, declare the trial successful; otherwise, declare the trial a
failure. The sequence of trials is halted at the first successful trial, and the configuration X
produced by that trial is returned as the result.

The probability that a trial is declared successful is at least Pr (Iodd(X)l 0), which
by Lemma 4 (setting/x 0 and/z0 n-1) is at least 1/10. Thus the expected number of
trials required to generate a configuration is at most 10. It is straightforward to check that the
procedure described above, viewed as a generator with respect to the original value of/z, has
tolerance at most 10 3.

As in the case of the mean magnetic moment, the main result rests on a technical lemma,
whose proof is deferred.

LEMMA 11. Suppose B O, i.e., that there is no externalfield. If w(X) < 1/32nm2 for
all X 7 0, then Z’ x w(X) < m.

THEOREM 12. There exists an fpras for the (negation of the) mean energy -g
0 (In Z)/0, where Z is the partitionfunction ofaferromagnetic Ising system.

Proof. We shall assume that B 0, i.e., that there is no external field; the proof in the
general case introduces extra technical complications, but requires no new ideas. At the end
of the proof, we sketch the modifications required to deal with a nonzero external field.

When B 0 the partition function, Z, simplifies to Z A Yx w(X), where

A H cosh V/j,
{i,j}eE

w(X) H tanh flV/j,
{i,jIeX

and the sum is over all closed X

_
E. (A graph X is said to be closed if every vertex of X

has even degree.) Define

c Vij tanh fl V/j,
{i,j}6E

g(X) 2Vij/ sinh2flV/j,
{i,j}eX

and let f(X) c + g(X). Then

O--fi w X - H tanhfVij
{i,j}X

H tanhflV/j 2Vij/sinh2flVij
{i,j}eX {i,j}X

w(X)e,(x).
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1109

Using this identity, and starting from the expansion given in Theorem 1"- =/30--=(lnZ) =/8---=-lnA 8/3
lnZ’

{i,j}E

8
z, a w(X)

X

E vij tanh t3 vii + 7E w(X)g(X)
{i,j}E X

z--; w(X)(c + g(X)).
X

Thus, the mean energy can be expressed as an expectation: - I=(f). This expression for- immediately suggests that we attempt to estimate the mean energy by taking an average
of f(X) over some polynomially bounded set of sample configurations X. This basic idea
can be made to work, with a little refinement. As before, we proceed by case analysis.

Case I./3 V/j > for some pair i, j. The condition guarantees that the constant c is not
too small in relation to g(X), and hence that the ratio max(f)/l::(f) is not too large. This,
as we have seen, implies that I::(f) can be estimated by direct experiment. First note that the
existence of a pair i, j with/3 V/j > entails

3V/j 3
(34) c > Vij tanhflVij > >--.

4 4fl
Then observe that the inequality x/sinh x < 1, valid for x > 0, implies

m
g X E 2Vi / s nh 2fl Vi < E - <

{i,j}6X {i,j}6X

Thus max(f) c + max(g) < c + m/fl < c(1 + 4m/3), where the final step relies on (34).
Since (f) is certainly bounded below by c, it follows that max(f)/Iz(f) < + 4m/3 <

7m/3.
Case II./3 V/j < 1 for all i, j. To estimate I::(f) within ratio + it is enough, since c

is positive, to estimate I::(g) I::(f) c within ratio + . For simplicity, we shall, in the
sequel, work with g instead of f. Using the bounds 1/2 < x! sinh x < 1, valid for x in the
range 0 < x _< 2, we have 1/2fl < 2 Vij / sinh 2fl V/j < 1/fl, implying

(35) 1/2fl < g(X) < m/fl, for X -7/= 0.

Let C 0 be a closed subgraph which maximises w(C). Note that C is necessarily a cycle,
and can be found in polynomial time using a standard shortest paths algorithm. There are two
subcases, depending on the magnitude of w(C).

Case II(a). w(C) > 1/32nm2. In this subcase we may estimate I::(g) by direct experiment.
Since Z’ > w(O) + w(C) + w(C), it follows that

Pr(X 0)-
w(0)

< (1 + w(C))-1 <
Z Z 64nm2"

Combining this inequality with inequality (35), we obtain l::(g) > (1/2fl) Pr(X 0) >

1/128flnm2. Then a further application of (35) yields the required bound: max(g)/ff.(g) <
128nm3.
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1110 MARK JERRUM AND ALISTAIR SINCLAIR

Case II(b). w(C) < 1/32nm2. The essential problem in this case is that we have no
lower bound on the expectation of g. The solution is to increase the expectation artificially by
adjusting the weight function w. Naturally, a new weight function induces a new probability
distribution on configurations, which in turn alters the expectation of g. It is therefore important
to adjust the weights systematically, so that it is possible to recover the expectation of g with
respect to the original distribution from the knowledge of the expectation of g with respect to
the new distribution.

The new weight function w is parameterised by a real number o in the range 0 _< o _< 1.
We define adjusted edge weights i(.) ]7t which induce a new Weight function w"

wo(x)= FI .)= FI
{i,j}eX {i,j}eX

Note that the original weight function corresponds to setting oe 0, i.e., w(X) wo(X).
Note also that 0 < )vi(. < 1, so the new edge weights )Vi(.) correspond to a well-defined
subgraphs-world process; as a consequence, it is possible to sample configurations according
to the distribution which assigns probability w(X)/Z’ to configuration X, where Z’x w(X). Let !=(.) denote the expectation operator with respect to the new distribution,
i.e., I::(h) (Ztot) -1 x w(X)h(X).

Now fix oe so that w(C) 1/32nm2; the required value of oe is the solution to the
equation w(C)1- 1/32nm2, and lies in the range 0 < oe < 1. For any X 7 0, maximality
of C implies w(C) >_ w(X), which in turn implies w(C) w(C)- >_ w(X)1- w(X);
thus C remains a maximum weight nontrivial configuration under the new weight function

w. Now the quantity we wish to evaluate, namely, I=(g), can be written as an expectation
with respect to the new distribution:

l::(g) ; w(X)g(X) ; Z w(X)w(X)g(X)

(36) x x

Z’
l=,(w(X)g(X)).

Z’

Since Z’ and Z’ can be computed by the fpras of 3, we merely have to show that the
remaining factor I=(w(X)g(X)) can be approximated in polynomial time. As before, this
can be achieved by bounding the ratio of the maximum to the mean.

By maximality of C and inequality (35),

m
max(w(X) < w(C)-fi"

Also, by Lemma 11 and (35),

E,(w(X)’g(X)) >_
w(C)
(w(C)g(C))

w(C) w(c)
32rim 2/3 64flnm3"

Putting these inequalities together, we obtain

max(w(X)g(X))
< 64nm4.

I=(w(X)ag(X))

This completes the analysis of Case II(b).
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1111

It is this final case which determines the execution time of the proposed fpras for -g.
Consider the cost of evaluating the three factors appearing in (36), within ratio + /4 and
with failure probability 1/16. From 3, O(.-2m3n 11 log n) time suffices to obtain satisfactory
estimates for the factors Z’ and Z’. Setting /4 and r/ 1/16 in Lemma 3, we
see that O(.-2nm4) samples from the generator suffice to evaluate the remaining factor,
F_.(w(X)g(X)), within ratio + /4 and with failure probability 1/16. By Theorem 10, the
generation of each sample requires expected time O(m3nS). (As before, we are justified in
assuming that > 2-m.) Thus the expected time required to obtain a sufficiently accurate
estimate of F.(w(X)g(X)) is O(-2m7n9); it can be seen that this term dominates those
which arise in the other steps ofthe algorithm. Now set a definite upper bound on the aggregated
execution time of the generator which is 16 times the expected execution time. By this means
the quoted average case time complexity is converted into a worst case time complexity, at the
cost of introducing an additional failure probability of / 16. This additional failure probability
may be absorbed into the overall failure probability of 1/4 which the definition of fpras allows.

Finally, we sketch the modifications required to handle the case of nonzero external field,
i.e., B > 0. Starting with the general subgraphs-world expansion for Z, and differentiating
In Z with respect to/3, the mean energy -g can again be expressed as the expectation of an
appropriately defined random variable f (X). Naturally, the form of f is now more complex.
Lemma 11 continues to hold, but with 1/64n2m2 replacing 1/32nm2 as the upper bound on
w (X). The proof of Lemma 11 increases in technical complexity, but the main idea remains
as before. The complications arise from the fact that the maximum weight nontrivial subgraph
may be either a cycle (as before) or a single edge (previously excluded). The case analysis in
the proof of the theorem proceeds as before, but the upper bound on overall execution time
rises to O(-2m7nl). [3

In this section, we have presented fully polynomial randomised approximation schemes
for the first derivatives of In Z with respect to and B. The second derivatives of In Z also have
physical significance: C k/202(ln Z)/O2 is the specific heat, and 2, -/-102(ln Z)/OB2

the magnetic susceptibility. (Here, k denotes Boltzmann’s constant.) It is natural to ask
whether the techniques presented in this section can be extended to these quantities. With a
certain amount of computational effort, it is possible to express C and 2, as expectations of
appropriate random variables in the subgraphs world. Unfortunately, however, these random
variables are not necessarily positive, and the proof techniques of Theorems 9 and 12 are
therefore not applicable. At present, the question of the existence of an fpras for C and 2’
remains open.

We close the section by presenting proofs of the technical lemmas.

ProofofLemma 8. We demonstrate, by a simple mapping argument, that

(37) Pr(Iodd(X) 2) >_/z2pr(Iodd(X)l 0).

Let denote the set {X f2 Iodd(X)l 2k}. Associate with each configuration X f20
the set S(X) {X’ f2 IX’ @ XI

_
S21. It is straightforward to verify that the subsets

{S(X) X f20} are pairwise disjoint, and that Yx,es(x w(X’) > w(X)#e for all X f20.
(For X 0 we need the condition )ij >-- 1.) Thus -xeal w(X) > Ize Xeao w(X), and
(37) follows by dividing through by Z’.

It follows from (37) that Pr(Iodd(X)l > 0) > /xe/(1 +/ze) > /ze/2; this deals with the
first part of the lemma. Furthermore, Lemma 4 assures us that Pr(Iodd(X)l 0) > 1/10
whenever # < n-. Combining this observation with (37) yields the second part of the
lemma. [3

Proof ofLemma 11. Since B O, it is only the closed subgraphs X

_
E which have

nonzero weight: w(X) H{i,j}x ij. Let Xo, Xa, X2 Xs_ be an enumeration of the
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1112 MARK JERRUM AND ALISTAIR SINCLAIR

closed subgraphs of E in order of nonincreasing weight; thus Xo 0, w(Xo) 1, and
w(X1) < 1/32nm2. For each edge e [i, j} E define l(e), the length of e, to be ln)ij.
Extend the length function to subsets of E by summation, so that (X) In w(X). (Clearly,
these "lengths" are merely weights which combine additively rather than multiplicatively.
Even so, they will prove to be a convenient notational and conceptual aid.)

Define L /(X1) -In w(X1). Let C (el, e2,..., er) be any circuit in E; here,
each ei {Vi-1, l)i} is an edge, and Ur 1)0. Define do 0, and dk -=1 l(ei) for
1 < k < r. Call a directed edge ek (Vk_l, vk) of C a pier if there exists an integer h with

d-i < hL/2 < d. We make two observations about piers. First, the circuit C is completely
determined by the start vertex v0 and the set of all piers. This is because the total length of
edges in C which form a span between two consecutive piers is strictly less than L/2. Thus,
the existence of two distinct spans between consecutive piers would imply the existence of a
circuit of length less than L, and hence of a nontrivial closed subgraph of weight greater than
e-L w(X1); this would contradict the assumption that X1 is maximal. Second, the total
number of piers in C is at most 2dr/L 21(C)/L. Intuitively, the role of piers is to provide
a compact encoding of circuits.

Now suppose ot > 0, and let X

___
E be a general closed subgraph with I(X) <

Decompose X into its connected components; each of these components is Eulerian and
hence can be regarded as a circuit with specified start vertex. Encode each component of X
as a sequence consisting of the start vertex of the circuit followed by the piers of the circuit in
sequence. Encode X itself by concatenating the codes for the various components; note that
X is completely determined by the code so formed. Since each connected component of X
has length at least L, the total number of vertices in the code (which is equal to the number of
components) is at most (X)/L or. Furthermore, the total number of directed edges in the
code (which is the total number of piers) is at most 21(X)/L 2or. These observations yield
an upper bound on the number of distinct codes for closed X with (X) < ot L. The number of
ways of selecting a sequence of at most ot distinct vertices is bounded by n; that of selecting
a sequence of at most 2or distinct directed edges by (2m)2; that of interleaving the vertex and
edge sequences by 23. Thus the number of distinct codes, and hence the number of closed X
with l(X) <otL, is bounded above by (32nm2).

Now consider the subsequence X0, X1, Xk-1, consisting of the k closed subgraphs
of greatest weight (i.e., shortest length), and let ot I(X_I)/L. Then the coding argument
implies (32nm) > k. On the other hand, from the definition of or, and using the bound on
w(X1) guaranteed in the statement of the lemma,

(32nm2) <
w(X1) W(Xk_I)

Combining these two inequalities we obtain w(X_l) <_ k-1, and hence

Z’-- tO(Xk_l) _< _<
k-1 k--1 k

By a well-known asymptotic result [21, p. 74], the latter sum is bounded by m for all sufficiently
large m; indeed it is enough that m > 3. The lemma holds trivially for m < 3.

6. Completeness results. In this paper we have restricted our attention to theferromag-
netic case of the Ising model; moreover we have contented ourselves with solutions which
are approximate only. The results of this section aim to justify these apparently limited goals.
Since we are concerned here with negative results, it will be an advantage to work with a
simplified version of the Ising problem.
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1113

INSTANCE: A symmetric matrix (V/j i, j E [n]) with entries in {- 1, 0, 4-1 }, and a natural
number,/3, presented in unary notation.

OUTPUT: The partition function

z z(v, ) 2-(),

where H(r) -li,jlE Vjaiaj, and the sum is over E {-1, +1}n. (As
usual, E is the set of pairs {i, j} with V/j 0.)

We refer to the problem in this form as ISING. The main points to note are that the external
field is zero, and that powers of e have been replaced by powers of 2. The latter modification
merely amounts to a scaling of , and is made to avoid problems which would arise from the
introduction of real arithmetic. The restrictions imposed on the various quantities appearing
in an instance of ISING ensure that the output is a rational number whose numerator is a binary
integer with a polynomially bounded number of digits, and whose denominator is a certain
power of two. The output can thus be considered as a fixed-point binary number with an
explicit "binary point." Adopting this viewpoint, it is not difficult to locate ISING within the
class #P of combinatorial enumeration problems. (See Garey and Johnson’s book 12, p. 167]
for an explanation of #P and its completeness class.)

The two problems which form the starting point for the intractability results of this section
are MAXCUT:

INSTANCE: An undirected graph G and a positive integer b.
QUESTION: Is there a cut set in G of size b? That is to say, is there a partition of the vertex

set of G into two subsets such that the number of edges which span the two
subsets is at least b?

and the related #MAXCUT:
INSTANCE: An undirected graph G.
OUTPUT: The number of cut sets in G of maximum size.
The following is a slight extension of a known result.
LEMMA 13. MAXCUT is NP-complete, and #MAXCUT is #P-complete.
Proof. NP-completeness of MAXCUT is proved in [13]. The reductions used there are

not "parsimonious" [12, p. 169], and hence do not immediately imply #P-completeness of
#MAXCUT. As usual, however, the reductions (given in the proofs of Theorems 1.1 and 1.2 of
that paper) can be modified, without great difficulty, to yield parsimonious versions. For those
who wish to follow the argument in detail, the necessary modifications are presented below.

In [13, Thm. 1.1], new variables {ei < < m} should be introduced, and the definition
of the clause set S’ amended to read

S’ U (di V ei ),
i=1

(ai (bi), (ci ), (di), (ei ),

(aiv bi), (ai v ci) (di v ei),

(-"ai V -"bi (ai V "Ci) (’di V -"ei

where each ellipsis stands for seven omitted disjunctions. Note that there are 26 clauses in S’
arising from the th clause, (ai v bi v ci), of S. If the th clause of S is satisfied, then there
is precisely one way to choose truth values for the variables di and ei so that 20 of these 26
clauses of S’ are satisfied. Conversely, if the th clause of S is not satisfied then, however di
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1114 MARK JERRUM AND ALISTAIR SINCLAIR

and ei are chosen, at most 19 of the 26 clauses can be satisfied. Thus, setting k 20m, the
original proof goes through. Note that the reduction is now parsimonious.

In [13, Thm. 1.2], duplicate clauses should be removed by replacing each clause C
(ui /vi) by the seven clauses

(Ui V Ci), (-"Ui V Ci), (Ui V --’di), (-’ui V di), (ci v -’di), (-ci k/ di) and (ci v vi),

where C and di are new variables. For a given assignment to U and Vi, one must set C di
u in order to maximise the total number of satisfied clauses within these seven. Now, if C is
satisfied then all seven clauses may be satisfied; however, if C is not satisfied then at most six
of the clauses may be satisfied. The existing proof goes through with k set to k’ + 6q. Again,
the modified reduction is parsimonious.

The first theorem of the section presents evidence that our restriction to the ferromagnetic
case of the Ising model cannot be relaxed.

THEOREM 14. There can be no fpras for ISING unless RP NP.
RP is the class of decision problems which can be solved in polynomial time by a certain

type of randomised algorithm which is allowed one-sided errors. (See [2, p. 138] for a precise
definition.) It is widely conjectured that RP is strictly contained in NE Thus Theorem 14 can
be interpreted as strong evidence that no approximation algorithm exists for the Ising parti-
tion function in the nonferromagnetic, or "spin-glass" case. Indeed, the existence of such an
algorithm would imply, by virtue of Theorem 14, the existence of efficient randomised algo-
rithms for such hard problems as testing satisfiability of a Boolean formula and the Travelling
Salesman Problem.

Proof of Theorem 14. Let G ([n], E) be a graph and b a positive integer defining an
instance of MAXCUT. Construct an instance of ISING by setting/3 n, and V/j --1 when
{i, j} 6 E. (As usual, V/j 0 when {i, j} E.) Each spin-vector cr partitions In] into
two subsets, and hence defines a cut set of G: cut(a) {{i, j E cricrj -1 }. Note
that H(r) m 2]cut(o-)], where m IEI. Let N denote the number of spin vectors
r for which Icut(cr) k. Then the simplified partition function can be re-expressed as
Z m=0 N2t(z-m).

Note that if a cut set of size b exists in G then Z > 2/(2b-m) 2n(2b-m); in contrast,
if no such cut set exists, Z <_ 2n2(2b-2-m) 2-n2n(2b-m). Now the existence of an fpras
for ISING would imply that these two cases could be distinguished in polynomial time, with

1.failure probability at most , in other words, MAXCUT G BPE From this it would follow.m
since MAXCUT is NP-complete and BPP is closed under polynomial time reductions--that
NP

___
BPE However, the inclusion NP _c BPP entails RP NP [22].

Our final theorem states that ISING is a complete problem for the class #E Thus a poly-
nomial time algorithm which solves it exactly would yield similar algorithms for a range of
presumably intractable problems, such as counting the number of satisfying assignments of a
Boolean formula and counting optimal Travelling Salesman tours. We should therefore not be
too disappointed that we have obtained only approximation algorithms for the Ising problem.

THEOREM 15. ISING is #P-complete even when the matrix gij is nonnegative (i.e., even
in theferromagnetic case).

Proof. We present an easy polynomial-time (Turing) reduction from #MAXCUT. Let
G- ([n], E)be an instance of#MAXCUT. Set V/j +1 when {i, j} 6 E, and V/j 0 other-
wise. Note that H(r) 21cut(r)l m. With N as before we have Z -m=o Nk2(m-2k)
2mp(4-), where p(x) Nx is a polynomial of degree m. Suppose that the value of p
is known at the points/3 0, m, i.e., at x 1, 4-1,4-2, 4-m. Then the coefficients
of p can be recovered in polynomial time from these values by interpolation. Using Newton’s
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APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1115

formula, this process can be carried out using only rational arithmetic; moreover, the lengths
of the numerators and denominators all remain polynomially bounded. The leading (nonzero)
coefficient of p is twice the number of maximum cut sets in G. (Note that each bipartition of
[n] corresponds to a pair of opposite spin-vectors.) V]

Further completeness results related to the ones in this section can be found in [3], 15].
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