
RANDOM WALKS AND AN O
∗(n5) VOLUME

ALGORITHM FOR CONVEX BODIES

Ravi Kannan1
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Abstract

Given a high dimensional convex body K ⊆ IR
n by a separation oracle, we can approx-

imate its volume with relative error ε, using O∗(n5) oracle calls. Our algorithm also brings
the body into isotropic position.

As all previous randomized volume algorithms, we use “rounding” followed by a multi-
phase Monte-Carlo (product estimator) technique. Both parts rely on sampling (generating
random points in K), which is done by random walk. Our algorithm introduces three new
ideas:

• the use of the isotropic position (or at least an approximation of it) for rounding,

• the separation of global obstructions (diameter) and local obstructions (boundary
problems) for fast mixing, and

• a stepwise interlacing of rounding and sampling.

1 . Introduction

For a variety of geometric objects, classical results characterize various geometric parameters.

Many of these results are useful even in practical situations: they can easily be transformed

into efficient algorithms. Some other theorems do not yield fast algorithms. One of the most

challenging examples is the problem of calculating the volume of a high dimensional body K.
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Even in the simplest cases, when K is convex, no classical formula seems to translate into an

efficient algorithm.

The reader may find powerful negative results in this direction in Elekes (1986), Bárány

and Füredi (1986), Dyer and Frieze (1988), Khachian (1988), (1989), (1993), Lawrence (1989)

and Lovász and Simonovits (1992). These results show that the diameter or the volume of

convex bodies cannot be computed, and in certain models not even approximated, by any

deterministic polynomial algorithm. (These problems can easily be solved in polynomial time

in any fixed dimension n. However the degree of those polynomials estimating the running

time of these algorithms increases fast with n.)

The situation changes dramatically if we allow randomization. Dyer, Frieze and Kannan

(1989) gave the first polynomial randomized algorithm to calculate the volume of convex

bodies. Their algorithm contained the main ingredients in all subsequent improvements: a

multiphase Monte-Carlo algorithm (using the so-called product estimator) to reduce volume

computation to sampling; the use of Markov chain techniques for sampling, and the use of the

conductance bound on the mixing time, due to Sinclair and Jerrum (1988). Unfortunately,

the degree of the time bound (O∗(n23)) prohibited practical applications. (We often use the

“soft-O” notation (O∗), indicating that we suppress factors of lnn as well as factors depending

on other parameters like the error bound ε.)

In all randomized volume algorithms we are given a convex body (a compact and full-

dimensional convex set) K ⊆ IR
n; we assume n ≥ 3 for convenience. We are also given two

small positive numbers ε (the required precision of our volume estimates) and η (an upper

bound on the probability of error).

Dyer, Frieze and Kannan (1989) (and its subsequent improvements) establish randomized

algorithms returning a nonnegative number ζ such that

(1 − ε)ζ < vol(K) < (1 + ε)ζ

with probability at least 1− η. The running time of the algorithm is polynomial in n, 1/ε and

ln(1/η).

This algorithm was subsequently improved by Lovász and Simonovits (1990) (to O∗(n16)),

Applegate and Kannan (1990) (to O∗(n10)), Lovász (1992) (to O∗(n10)), Dyer and Frieze

(1992) (to O∗(n8)), and Lovász and Simonovits (1992), (1993) (to O∗(n7)). The main result

2



of this paper improves the number of oracle calls used by the algorithm to O∗(n5). This is, we

hope, on the borderline of allowing practical implementations.

1.1 Computational model

The convex body is given by a separation oracle: a subroutine that, for a given point, tells

us whether the point is in K, and if not, it gives a hyperplane separating the point from K

(see Grötschel, Lovász and Schrijver (1988) or Lovász (1986) for a discussion of this and other

oracles for convex bodies).

We also assume that K contains the unit ball B and is contained in the ball of radius nconst

about the origin. Every convex body can be transformed into such a position (in fact with

radius n3/2) by a standard application of the ellipsoid method (or, quite often, by inspection),

in O∗(n4) steps.

In order not to obscure our arguments by numerical considerations, we assume throughout

that we can do exact real arithmetic, and that the separation oracle gives an exact answer.

Neither of these assumptions is essential; we could do all our computations with a precision

(say) ε∗ = ε/n10, and it would suffice to use a weak separation oracle, allowing an invalid

answer if the queried point is closer to the surface of K than ε∗, or a hyperplane that does

not quite separate: the queried point may be on its wrong side, but by at most ε∗. The proof

that this does not cause any harm is not hard and can be carried out on a quite general level;

since it is virtually identical to the proof given by Lovász and Simonovits (1993), we do not

reproduce it here.

The complexity of the algorithm can be measured by

• the number of queries to the oracle,

• the number of random bits used, and

• the number of arithmetic operations.

In the above sketch of the history of the problem we considered the number of oracle calls

(and we shall do so in the sequel); the number of random bits used is larger by a factor of

O∗(n) and the number of arithmetic operations is larger by a factor of O∗(n2).

In our algorithms, the number of oracle calls is a random variable itself, and for various

algorithms we will give slightly different kinds of bounds on it. Sometimes, we are able to give
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absolute bounds; sometimes, we can bound the expected number of calls; and sometimes, we

can only bound the expected number of calls conditional on the non-occurance of a certain

rare but very bad event. For the final algorithm, we can then conclude (applying Markov’s

inequality to the “good” cases) that with probability at least 1 − η, the number of oracle calls

is at most a given bound. One may keep the number of oracle calls below this bound in all

cases by interrupting the algorithm if the number of oracle calls gets too large, and include this

in the probability of failure. But it will be necessary to use the more complicated information

on the distribution of the number of oracle calls for certain subroutines.

We note that the role of the error probability η is unimportant, at least as long as we are

computing a single numerical parameter (like the volume): as Jerrum, Valiant and Vazirani

(1986) pointed out, if one can solve such a problem for some η0 < 1/2 in time T , then – iterating

the algorithm and using the median – one achieves a reliability η in time c(η0) ln(1/η) ·T . (For

a more detailed explanation see e.g. Lovász and Simonovits (1993).) However, for certain

other algorithmic problems, we’ll have to deal with the error probability explicitly.

2 . The main results

In this paper we shall improve upon previous randomized algorithms estimating the volume

of an n-dimensional convex body K, given by a separation oracle. We also obtain improved

algorithms for sampling and rounding. Let us assume throughout that K satisfies

B ⊆ K ⊆ dB

for some d < nconst. The main results of this paper can be summarized as follows.

Theorem 2.1 There is a (randomized) algorithm that, given ε, η > 0, returns a real number

ζ for which

(1 − ε)ζ < vol(K) < (1 + ε)ζ

with probability at least 1 − η. The algorithm uses

O

(

n5

ε2
(ln

1

ε
)3(ln

1

η
) ln5 n

)

= O∗(n5)

oracle calls.

The proof of this Theorem is given at the end of Section 6.
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As in all previous volume algorithms, the main technical tool is sampling from K, i.e.,

generating (approximately) uniformly distributed and (approximately) independent random

points in K. We in fact make use of several sampling algorithms, working under slightly

different assumptions. A result that has a simple statement is the following.

Theorem 2.2 Given a convex body K satisfying B ⊆ K ⊆ dB, a positive integer N and

ε > 0, we can generate a set of N random points {v1, . . . , vN} in K that are

(a) almost uniform in the sense that the distribution of each one is at most ε away from

the uniform in total variation distance, and

(b) almost (pairwise) independent in the sense that for every 1 ≤ i < j ≤ N and every two

measurable subsets A and B of K,

|P(vi ∈ A, vj ∈ B) − P(vi ∈ A)P(vj ∈ B)| ≤ ε.

The algorithm uses only O∗ (n3d2 + Nn2d2
)

calls on the oracle.

This running time represents an improvement of O∗(n) over previous algorithms (see Lovász

and Simonovits (1993) - Theorem 3.7) for this problem.

To make the sampling algorithm as efficient as possible, we have to find an affine transfor-

mation that minimizes the parameter d . Finding an affine transformation A such that

B ⊆ AK ⊆ d′B (1)

for some small d′ is called rounding or sandwiching. For every convex K, the sandwiching ratio

d′ = n can be achieved (using the so called the Löwner-John ellipsoid) but it is not known how

to find the corresponding A in polynomial time. For related references we again recommend

Grötschel–Lovász–Schrijver (1988) and the Handbook of Convex Geometry, (1993). For our

purposes “approximate sandwiching” is sufficient, where d′B is required to contain most of

K but not the whole body. The theorem below will imply that that one can approximately

well-round K with d′ = O(
√

n/ ln(1/ε)) using O∗(n5) oracle calls.

The approximate sandwiching will be done using an important auxiliary result, which may

be of interest in its own: an algorithm to find an affine transformation to bring the body to a

particularly nice position. To formulate it we need the following definitions.
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Definition 2.3. Let K be a convex body in IR
n, and let b(K) denote its center of gravity.

We say that K is in isotropic position if its center of gravity is in the origin, and for each i, j,

1 ≤ i ≤ j ≤ n, we have
1

vol(K)

∫

K
xixj =

{

1, if i = j,
0, if i 6= j,

(2)

or equivalently, for every vector v ∈ IR
n,

1

vol(K)

∫

K
(vTx)2 dx = ‖v‖2. (3)

(Here xi denotes the ith coordinate of x. Note that we normalize differently from, e.g., Milman

and Pajor (1987); their definition corresponds to applying a homothetical transformation to

get vol(K) = 1.) The isotropic position has many interesting features. Among others, it

minimizes
∫

K ‖x‖2/vol(K) (see Milman–Pajor 1987).

If K is in isotropic position, then

1

vol(K)

∫

K
‖x‖2 dx = n,

from which it follows that “most” (i.e., all but a fraction of ε) of K is contained in a ball of

radius
√

n
ε . Using a result of Borell (1975), one can show that the radius of the ball could

be replaced by 2
√

2n log(1/ε). Also, if K is in isotropic position, it contains the unit ball (cf.

Lemma 5.1). It is well known that for every convex body, there is an affine transformation to

map it on a body in isotropic position, and this transformation is unique up to an isometry

fixing the origin.

In our case, we have to allow an error ϑ > 0, and want to find an affine transformation

bringing K into nearly isotropic position:

Definition 2.4. We say that K is in ϑ-nearly isotropic position (0 < ϑ ≤ 1), if

‖b(K)‖ ≤ ϑ,

and for every vector v ∈ IR
n,

(1 − ϑ)‖v‖2 ≤ 1

vol(K)

∫

K−b(K)
(vTx)2 dx ≤ (1 + ϑ)‖v‖2. (4)

Our main “sandwiching” result is the following:
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Theorem 2.5 Given 0 < η, ϑ < 1, there exists a randomized algorithm finding an affine

transformation A for which AK is in ϑ-nearly isotropic position with probability at least 1−η.

The number of oracle calls is

O(n5 ln(ϑη) lnn).

In particular, we obtain, with probability at least 1−η, a body AK that is almost contained

in 2
√

2n log(1/ε)B (for any 0 < ε < 1):

vol(AK \ 2
√

2n log(1/ε)B) < εvol(AK).

The number of oracle calls is

O

(

n5 ln
1

η
lnn

)

.

In the rest of this section we give an informal description of our algorithms.

2.1. Sampling

Our sampling algorithm, like all previous work mentioned above, uses random walks (Markov

chains) to sample. We do a random walk on the points of K, moving at each step to a uniformly

selected random point in a ball of radius δ about the current point (if this remains inside K).

If the new point is outside K, we stay where we were, and consider the step “wasted”. The

step-size δ will be chosen appropriately, but typically it is about 1/
√

n.

It follows by elementary Markov chain theory that the distribution of the point after t

steps tends to the uniform distribution as t tends to infinity. The crucial issue is, how long to

walk before the walking point becomes nearly uniformly distributed?

There are two reasons for needing a long walk: we have to get to the “distant” parts of K,

and we may get stuck in “corners” of K. The first reason suggests that we choose a step-size

that is large relative to the diameter of the body, while the probability of the second can be

reduced by choosing a small step-size.

A main ingredient in our improvement in sampling is to formally separate the two reasons

of slowness mentioned above. In Section 4, we show that disregarding wasted steps at the

boundary results in another random walk – we call it the speedy walk – and that the number

of steps this speedy walk needs to get close to its own stationary distribution can be bounded

in terms of the diameter/step-size ratio alone. The proof is based on the well-established tech-
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niques of isoperimetric inequalities, but needs some harder geometric work which is contained

in Section 3.

There are two points where we have to pay for the improvement in the running time bounds

for the speedy walk:

— First, the stationary distribution for the speedy walk is not uniform. Ideally, we would

like to generate uniformly distributed points; but the speedy walk generates points from an-

other distribution, which we call the speedy distribution. The density of this distribution Q̂ is

proportional to the probability of not jumping out from K from a given point. So Q̂ depends

on the step-size. Clearly, deep inside the body the density of Q̂ is close to 1, and approaching

to a fairly flat portion of the boundary this density drops to (roughly) 1/2. Where K has

sharp corners, this density may become very small.

The probability λ that making one step from a uniformly distributed random point in K

does not take us out of the body (and so the step is not wasted) will be called the average local

conductance, and will be an important parameter throughout. For example, the total variation

distance of the speedy distribution from the uniform is bounded by (1 − λ)/λ. If the step-size

is not too large, the average local conductance is close to 1, and the speedy distribution is not

too far from the uniform. We can either replace the uniform distribution by it (with some

care, we can make sure that the errors don’t accumulate), or we can use a rejection sampling

trick to generate uniformly distributed points. In fact, both of these ideas will be used in our

paper.

— Second, while we are ignoring wasted steps at the boundary, they do take time, and we

have to bound their number separately. We show that the fraction of steps that are wasted

at the boundary can be estimated in terms of the average local conductance; this in turn can

be estimated by the surface/volume ratio of the body. To keep this value small, it will suffice

to have a large inscribed ball (say, the unit ball). But the key parameter turns out to be the

average local conductance, and for our sampling algorithm to work efficiently, it suffices to

guarantee that this is not too small.

2.2. Rounding

To apply our sampling algorithms, we would like to have K satisfy B ⊆ K ⊆ dB for a small

d. (Recall that K ⊆ dB implies the upper bound for the number of steps of the speedy walk,
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while B ⊆ K implies that the average local conductance is large enough so that at most a

constant fraction of steps are wasted at the boundary.) With the ellipsoid algorithm, we can

achieve d = O(n3/2), and quite often a bound d = O(nconst) can be achieved by inspection,

and we assume such a bound.

Our aim is to bring K into isotropic position, for which, as remarked earlier, we get

d = O∗(
√

n) (after discarding a small part of K). So, we develop an algorithm (in Section 5)

to put K into nearly isotropic position. We have to do this in several steps.

We show in Theorem 5.11 that if we are given m = O(n2/ϑη) pairwise “nearly” independent

samples, each “nearly” uniformly drawn from a convex body K in IR
n, then we can bring K into

ϑ-nearly isotropic position with probability at least 1−η, by applying an affine transformation

that brings this discrete set of points into isotropic position. (We conjecture that the O∗(n2)

bound for the number of points can be improved to O∗(n).)

Using our sampling algorithm to generate these points, we would need too much time to

generate so many sample points, unless we had K ⊆ O(
√

n)B and an average local conductance

at least a constant to begin with (where the stepsize is δ ≈ 1/
√

n). So we have to improve

the shape of K by other means. We use “bootstrapping” for this, improving the shape of the

body K in two different ways.

Assume first that we already have B ⊆ K ⊆ 10nB. Scaling down we can achieve K ⊆
10

√
nB; this cheap fix for making the circumscribed ball small, however, leaves us with the

average local conductance possibly very small. Using Algorithm 5.16, we improve the average

local conductance to a value close to 1, without increasing the average square distance from

the origin. This improvement allows us to generate O∗(n2) random points in K in the allotted

time.

Now consider a general convex body K, satisfying only B ⊆ K ⊆ dB with d = O(n2). To

bring it into nearly isotropic position, we need several phases. In each phase, we consider the

part of K that is inside a ball with radius 10n, and apply an affine transformation bringing

this part into nearly isotropic position. We prove that O(lnn) phases of this suffice.

2.3. Volume

To calculate the volume of a body K, which is already in a nearly isotropic position, we apply

a multiphase Monte-Carlo algorithm (Algorithm 6.1) as in essentially all previous algorithms.
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B

K

Figure 1: Multi-phase Monte-Carlo

Informally, we consider the convex bodies Ki = (2i/nB)∩K (figure 1), and estimate the ratios

vol(Ki−1)/vol(Ki) by generating O∗(n) random points in Ki and (essentially) counting how

often we hit Ki−1. For technical reasons, we work with the speedy distribution, which means

that we count the points with appropriate weights.

2.4. Preliminaries

a. Notation. The following seven parameters will be used throughout:

n the dimension of the space,

d the radius of a ball containing K,

ε > 0 required precision of our volume estimates,

η > 0 the probability of failure of our estimates,

ϑ > 0 error bound for various rounding algorithms

0 < λ < 1 the average local conductance

δ > 0 the “step-size” - the radius of the ball in which we move

The notation log x means logarithm with base 2. Of course, lnx denotes the logarithm with

base e.
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b. Preliminaries from probability. Let P and Q be two probability distributions on the

same σ-algebra (Ω,A). The total variation distance of P and Q is defined by

|P − Q|tv = max
A

(P (A) − Q(A)).

It is easy to see that we might as well write

|P − Q|tv = max
A

|P (A) − Q(A)|,

which implies that the total variation distance of two distributions is exactly half of their ℓ1

distance.

It is a very simple but useful fact in our error-estimations that if X is any random variable

with distribution P (with values in Ω), then we can construct a random variable Y with

distribution Q such that X = Y with probability 1 − |P − Q|tv.
Throughout, we also will use another measure of how close P and Q are, denoted by

M(P, Q) (which we call informally the “M”-distance, although it is not a distance, for example,

it is not symmetric) defined by

M(P, Q) = sup
S

|P (S) − Q(S)|
√

Q(S)
,

where S ranges over all P - and Q-measurable sets with Q(S) > 0. While M(P, Q) may be

infinite, this will not be the case in our applications of this notion. In fact, in our applications

the density dP/dQ of P with respect to Q will be bounded by some c ≥ 1; then clearly

M ≤ c − 1.

The reason for introducing the M -distance is that we need Theorem 2.6 below from the

theory of rapid mixing of Markov chains.

A Markov chain is given by a σ-algebra (Ω,A) together with a probability measure Pu for

every u ∈ Ω. We fix an initial distribution Q0 and choose an initial element w0 according to

this distribution. This generates a random sequence w0, w1, . . . , wt, . . . of elements of Ω: given

wt we choose wt+1 with probability Pwt(A) from A. The distribution of the tth element wt

will be denoted by Qt.

The Markov chains we consider will always have a stationary distribution, i.e., a probability

measure Q on (Ω,A) such that

∫

Ω
Pu(A) dQ(u) = Q(A).

11



A Markov chain is time-reversible if (roughly speaking) for any two sets A, B ∈ A, it steps

from A to B as often as from B to A. Formally, this means that

∫

B
Pu(A) dQ(u) =

∫

A
Pu(B) dQ(u).

We call a Markov chain lazy if Pu(u) ≥ 1/2 at each u ∈ Ω. This condition is technical.

Every Markov chain can be made lazy by simply tossing a coin at each step and making a move

only if it is tails. This way we eliminate effects of periodicity or almost-periodicity (technically

this amounts to a positive semidefinite kernel) at the cost of a slowdown by a factor of 2.

Put

Φ(A) =

∫

A
Pu(Ω \ A) dQ(u).

This value is the probability of the event that choosing w0 from the stationary distribution,

we have w0 ∈ A but w1 /∈ A. The conductance of the Markov chain is

Φ = inf
0<Q(A)<1/2

Φ(A)

Q(A)
.

It is well-known (and will also follow from our results below) that if Φ > 0, and the Markov

Chain is lazy, then Qk → Q in the ℓ1 distance. To bound the rate of convergence is a central

problem of this field. Of the many results in this direction we will use the following (Lovász

and Simonovits, 1993).

Theorem 2.6. If Qt is the distribution after t steps of our random walk and Q the stationary

distribution, then

M(Qt, Q) ≤
(

1 − Φ2

2

)t

M(Q0, Q).

Such a simple exponential convergence does not hold for the total variation distance. This

M -distance has some similarity to the chi-squared distance, for which Fill (1991) proves a nice

exponential convergence as above.

Let X and Y be two random variables with values in possibly different σ-algebras. We say

that X and Y are ε-independent if

|P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)| ≤ ε

for every two measurable sets A and B. This is a rather weak measure of independence, but

the following simple lemma gives a convenient way to apply it.
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Lemma 2.7. Let X and Y be ε-independent real-valued random variables such that |X| ≤ a

and |Y | ≤ b. Then

|E(XY ) − E(X)E(Y )| ≤ 4εab.

Proof. Trivial, using that

E(XY ) =

∫ a

−a

∫ b

−b
P(X ≥ s, Y ≥ t) ds dt,

and

E(X)E(Y ) =

∫ a

−a

∫ b

−b
P(X ≥ s)P(Y ≥ t) ds dt. 2

We also introduce a definition used later.

Definition 2.8. We call a set u1, . . . , uk ∈ K of samples ε-good for a distribution Φ if

(a) for the distribution Φi of ui we have |Φi − Φ|tv < ε, and

(b) ui and uj are ε-independent for all 1 ≤ i < j ≤ k.

Preliminaries from geometry. We denote by volk the k-dimensional Lebesgue measure,

and put vol = voln.

The volume of the unit ball in IR
n is

πn = vol(B) =
πn/2

Γ(1 + n/2)
.

Therefore πn/πn−1 ∼
√

2π/n. Further, for n ≥ 3, πn/πn−1 > 2/
√

n.

Let us also quote the following well-known fact.

Lemma 2.9 Let H be a halfspace in IR
n not containing the center of the unit ball B. If the

distance of H from the center is 1/
√

n < t ≤ 1, then

1

10t
√

n

vol(H ∩ B)

vol(B)
<

1

t
√

n
(1 − t2)(n+1)/2 < e−nt2/2.

3 . An isoperimetric inequality

Let K be a convex body in IR
n and δ > 0. We denote by B′ the ball δB. (Recall that we

typically choose δ ≈ 1/
√

n.) We denote the uniform distribution on x + B′ by Px. So

Px(U) =
vol(U ∩ (x + B′))

vol(B′)
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for each measurable U ⊆ IR
n.

The local conductance at x ∈ K is defined by

ℓ(x) = Px(K) =
vol(K ∩ (x + B′))

vol(B′)
.

The local conductance is the probability that if we make a random step in the ball B′ around

x ∈ K, we stay in K. The local conductance plays a crucial role in our paper since one of the

main issues throughout will be to keep down the number of wasted steps. One new point in

this paper is that we keep only the average local conductance

λ =
1

vol(K)

∫

K
ℓ(x) dx

close to 1 (and not the pointwise local conductance), which allows us to choose a larger step-

size.

We note that the local conductance is a log-concave function, by the Brunn–Minkowski

Theorem. (A function is log-concave if it is non-negative valued, its support is convex, and its

logarithm, wherever the function is non-zero, is concave.)

The following theorem is the key to obtaining improved bounds on the mixing time of the

random walk.

Theorem 3.1. Let K ⊆ dB be a convex body, d > 32δ, and let K = S1 ∪ S2 be a partition of

K into two measurable subsets. Then

∫

S1

Px(S2) dx ≥ δ

10
√

nd
min

(∫

S1

ℓ(x) dx,

∫

S2

ℓ(x) dx

)

.

Dividing both sides by
∫

ℓ(x) dx, the above theorem says that the conductance of the

“speedy walk” is large.

The proof of Theorem 3.1 needs several lemmas, which aim at showing that if a convex

body K has a “large” intersection with each of two “nearby” congruent balls, then it also has

a “large” intersection with their intersection.

Let x, y be two points with ‖x − y‖ < δ/
√

n. Set

C = (x + B′) ∩ (y + B′).

and consider the “moons”

Mx = (x + B′) \ (y + B′), My = (y + B′) \ (x + B′).
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My

Figure 2: Half-Moon domains

(figure 2). Also set

Rx = Mx ∩ (x − y + C), Ry = My ∩ (y − x + C).

Let C ′ be obtained by blowing up C from its center 1
2(x + y) by a factor of

(

1 + 4
4n−1

)

.

Lemma 3.2. Mx \ Rx ⊆ C ′.

Proof. For convenience, assume that x = −y. Let z ∈ Mx \ Rx. Write z = µx + w where w

is orthogonal to x. It is easy to see that ‖z − x‖ ≤ δ, and ‖z − y‖, ‖z − 2x + y‖ > δ from the

hypothesis. It follows that µ ∈ (0, 2). Let

α =

(

1 +
4

4n − 1

)−1

=
4n − 1

4n + 3
= 1 − 4

4n + 3
.

We wish to show that ‖αz − y‖ ≤ δ. Clearly,

‖αz − y‖2 = (αµ + 1)2‖x‖2 + α2‖w‖2.

Here ‖w‖2 ≤ δ2 − (µ − 1)2‖x‖2, |µ| ≤ 2, and ‖x‖2 ≤ δ2/(4n). So

‖αz − y‖2 ≤ (αµ + 1)2‖x‖2 + α2(δ2 − (µ − 1)2‖x‖2)

=
(

(αµ + 1)2 − α2(µ − 1)2
)

‖x‖2 + α2δ2

≤
(

(4n + 3)α2 + 4α + 1
) δ2

4n

Using the actual value of α the coefficient of δ2 becomes 1. 2
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Lemma 3.3. For every convex body K containing x and y,

vol(K ∩ (Mx \ Rx)) ≤ (e − 1)vol(K ∩ C).

Proof. By Lemma 3.2, blowing up C by a factor of (1 + 4
4n−1) we cover both K ∩ C and

K ∩ (Mx \ Rx). Hence

vol(K ∩ (C ∪ (Mx \ Rx))) ≤ vol(K ∩ C ′)

≤
(

1 +
4

4n − 1

)n

vol(K ∩ C) ≤ evol(K ∩ C).

From this the inequality follows easily. 2

Lemma 3.4. For every convex body K,

vol(K ∩ C)2 ≥ vol(K ∩ Rx)vol(K ∩ Ry).

Proof. Consider the function

g(u) = vol(K ∩ (u + C)).

By the Brunn-Minkowski theorem, this function is log-concave, and so

g(0)2 ≥ g(x − y)g(y − x)

= vol(((x − y) + C) ∩ K)vol(((y − x) + C) ∩ K)

≥ vol(Rx ∩ K)vol(Ry ∩ K).

2

Lemma 3.5. For every convex body K containing x and y,

vol(K ∩ C) ≥ 1

e + 1
min{vol(K ∩ (x + B′)), vol(K ∩ (y + B′))}.

Proof. We have

vol(K ∩ Rx) = vol(K ∩ Mx) − vol(K ∩ (Mx \ Rx))

≥ vol(K ∩ (x + B′)) − vol(K ∩ C) − (e − 1)vol(K ∩ C)

16



by Lemma 3.3. We also get a symmetric lower bound for vol(K ∩ Ry). Then, by Lemma 3.4,

we have

vol(K ∩ C) ≥ min{vol(K ∩ Rx), vol(K ∩ Ry)}

≥ min{vol(K ∩ (x + B′)), vol(K ∩ (y + B′))} − evol(K ∩ C).

The lemma now follows. 2

Lemma 3.6. Let K be a convex body and let K = S1 ∪ S2 be a partition of K into two

measurable subsets. Let x ∈ S1 and y ∈ S2 be such that ‖x − y‖ < δ/
√

n. Then

Px(S2) + Py(S1) ≥ 1

e + 1
min{ℓ(x), ℓ(y)}.

Proof. We have

Px(S2) =
1

vol(B′)
vol(S2 ∩ (x + B′)) ≥ 1

vol(B′)
vol(S2 ∩ C),

and similarly,

Py(S1) ≥ 1

vol(B′)
vol(S1 ∩ C).

Hence

Px(S2) + Py(S1) ≥ 1

vol(B′)
vol(K ∩ C).

By Lemma 3.5,

Px(S2) + Py(S1)

≥ 1

(e + 1)vol(B′)
min{vol(K ∩ (x + B′)), vol(K ∩ (y + B′))}

=
1

e + 1
min{ℓ(x), ℓ(y)}. 2

We need two further technical lemmas. The first is an elementary inequality involving the

exponential function.

Lemma 3.7. For reals u0, u1 with 0 < u0 ≤ u1 and integer m ≥ 0, we have

∫ u1

u0

e−uum du ≥ 1

4
√

m
(1 − eu0−u1) min

[∫ u0

0
e−uum du,

∫ ∞

u1

e−uum du

]

.

17



Proof. We have trivially

∫ u1

u0

e−uum du ≥ um
0 (e−u0 − e−u1).

Thus it suffices to prove that

um
0 e−u0 ≥ 1

4
√

m
min

[∫ u0

0
e−uum du,

∫ ∞

u1

e−uum du

]

.

For a fixed u0, this inequality is strongest if u1 = u0, so we may assume this. Assume first that

u0 ≥ m, then we claim the second term in the inequality satisfies the condition. Rearranging,

we claim that
∫ ∞

0

(

1 +
x

u0

)m

e−x dx ≤ 4
√

m.

It suffices to prove this inequality for the worst case when u0 = m. Returning to the previous

variables, we have to prove that

∫ ∞

m
e−uum du ≤ 4

√
mmme−m.

Here
∫ ∞

m
e−uum du <

∫ ∞

0
e−uum du = m! <

(

m

e

)m

· 4
√

m.

This proves the assertion when u0 ≥ m.

The case u0 ≤ m follows similarly. (As a matter of fact, the two integrals

∫ m

0
e−uum du,

∫ ∞

m
e−uum du

are asymptotically equal to m!/2, so the constant 4 could be replaced by
√

π/2.) 2

The second technical lemma generalizes the last inequality to log-concave functions.

Lemma 3.8. Let a < x < y < b be reals, let F be a log-concave function defined on [a, b],

and let g be a non-negative linear function defined on [a, b]. Assume that F (x) ≥ F (y). Then

∫ y

x
F (t)(g(t))n−1 dt

≥ 1

4
√

n

F (x) − F (y)

F (x)
min

{

∫ x

a
F (t)(g(t))n−1 dt,

∫ b

y
F (t)(g(t))n−1 dt

}

.

Proof. Let µ = ln(F (x)/F (y))
y−x . Let h(t) be the function obtained by linearly interpolating

lnF (t) over [x, y], i.e., let

h(t) = µ(y − t) + lnF (y).
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Let H(t) = eh(t). It is easy to see that it suffices to prove the lemma with F (t) replaced by

H(t). Let g(t) = αt + β.

Case 1. α ≤ 0. Then

∫ b

y
(g(t))n−1H(t)dt ≤ (g(y))n−1

∫ ∞

y
H(t)dt

=
1

µ
(g(y))n−1F (y).

But,

∫ y

x
(g(t))n−1H(t) dt ≥ (g(y))n−1

∫ y

x
H(t) dt

=
1

µ
(g(y))n−1(F (x) − F (y)).

From these two inequalities and the fact that F (x) ≥ F (y), the lemma follows.

Case 2. α > 0. It is easy to see that for any two reals A and B, we have

∫ B

A
(g(t))n−1H(t)dt = D

∫ (B+ β

α
)µ

(A+ β

α
)µ

un−1e−udu,

where D is a constant (independent of A, B).

We now apply Lemma 3.7 with u0 = (x + β
α)µ and u1 = (y + β

α)µ. 2

Proof of Theorem 3.1. Define

h(x) =

{

Px(S1), if x ∈ S2,
Px(S2), if x ∈ S1.

(the probability that a random step from x crosses over). Clearly h(x) ≤ ℓ(x). An easy

computation shows that
∫

S1

h(x) dx =

∫

S2

h(x) dx

(a long walk steps as often from S1 to S2 as vice versa). Therefore it suffices to show that

∫

K
h(x) dx ≥ δ

5d
√

n
min

{∫

S1

ℓ(x) dx,

∫

S2

ℓ(y) dy

}

Suppose this is false. Setting

fi(x) =







δ
5d

√
n
ℓ(x) − h(x), if x ∈ Si,

−h(x), if x ∈ S3−i,
0 otherwise
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we have
∫

IR
n

fi(x) dx > 0 (5)

for i = 1, 2.

By the Localization Lemma (2.5 of Lovász–Simonovits 1993), there exist points a, b and a

linear function g(t) ≥ 0 for t ∈ [0, 1] such that setting x(t) = (1 − t)a + tb, we have

∫ 1

0
g(t)n−1fi(x(t)) dt > 0

for i = 1, 2. Let Ji = {t ∈ [0, 1] : x(t) ∈ Si} for i = 1, 2. Then we have

∫ 1

0
g(t)n−1h(x(t)) dt <

δ

5d
√

n
min
i=1,2

∫

Ji

g(t)n−1ℓ(x(t)) dt. (6)

We abuse the notation by writing h(t) and ℓ(t) for h(x(t)) and ℓ(x(t)).

For i = 1, 2, define

S′
i =

{

x ∈ Si : h(x) <
1

9
ℓ(x)

}

.

Let J ′
i = {t ∈ [0, 1] : x(t) ∈ S′

i} for i = 1, 2. Let

B = [0, 1] \ (J ′
1 ∪ J ′

2).

It is easy to see that S′
i, J

′
i and B are all measurable sets.

Define a measure µ on [0, 1] by

µ(T ) =

∫

T
g(t)n−1ℓ(t) dt

for any measurable subset T . Since each point x(t) ∈ B contributes at least (1/9)g(t)n−1ℓ(t)

to
∫ 1
0 g(t)n−1h(t), we get by (6) that

µ(B) <
9

5

δ

d
√

n
min{µ(J1), µ(J2)}

whence

µ(B) <
2δ

d
√

n
min{µ(J ′

1), µ(J ′
2)}. (7)

First we consider the crucial case when J ′
1 = [a, x), B = [x, y] and J ′

2 = (y, b] are intervals.

If y−x ≥ δ/
√

n, then (7) contradicts Theorem 2.6 of Lovász–Simonovits (1993), applied to the

1-dimensional body [a, b] and the log-concave function gn−1ℓ. So suppose that y − x < δ/
√

n.

Choose u < x and v > y such that v − u < δ√
n
. Let e.g. ℓ(u) ≥ ℓ(v). By Lemma 3.6,

h(u) + h(v) ≥ 1

e + 1
ℓ(v),
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On the other hand, we have by the choice of u and v that

h(u) <
1

9
ℓ(u), h(v) <

1

9
ℓ(v),

whence

ℓ(v) <
e + 1

9 − (e + 1)
ℓ(u).

Letting u tend to x and v to y, we get by the continuity of the function ℓ that ℓ(y) ≤ e+1
9−(e+1)ℓ(x)

(or the other way around). Then we have ℓ(x)−ℓ(y)
ℓ(x) ≥ 1

4 . We apply Lemma 3.8 to get

µ(B) ≥ 1

16
√

n
min{µ(J ′

1), µ(J ′
2)},

which contradicts (7).

Now we turn to the general case. Let [xi, yi] be all maximal intervals contained in B. By

the special case settled above, we have

µ([xi, yi]) ≥ 2δ

d
√

n
µ(Ti),

where Ti is either [a, xi] or [yi, b]. Summing over all i, we get

µ(B) ≥ 2δ

d
√

n
µ(∪iTi).

To finish, it suffices to notice that either J ′
1 or J ′

2 is contained in ∪iTi. Suppose not. Then, for

any u ∈ J ′
1 \ ∪Ti and v ∈ J ′

2 \ ∪Ti there is an interval [xi, yi] separating them, and then either

u or v is contained in Ti. 2

4 . Sampling

4.1. Speedy Walks

Let K ⊆ dB ⊆ IR
n be a convex body, let δ > 0 and set B′ = δB. We consider a random walk

in K defined as follows: we select v0 from some initial distribution Q0. Given vk, we flip a

fair coin and if it is heads, we let vk+1 = vk. Else, we generate a vector u from the uniform

distribution on B′, and consider vk + u. If vk + u ∈ K, we let vk+1 = vk + u. (We then call

this move a “proper” step.) Else, we let vk+1 = vk. We call this walk the lazy random walk

in K with δ-steps. It is straightforward to see that this is a time-reversible Markov chain and

the uniform distribution Q on K is stationary.
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We also consider a variation of the above random walk called the speedy walk in K with

δ-steps: we start from a point w0 drawn from some initial distribution Q̃0. Given wk, we let

wk+1 = wk with probability 1/2 again. Else, we choose wk+1 from the uniform distribution on

(wk + B′) ∩ K. (One could “implement” the speedy walk by doing a lazy walk, but selecting

only those points which are either different from the previous point or correspond to flipping

a “head”.)

This defines a time-reversible Markov chain with stationary distribution Q̂ given by

Q̂(A) =

∫

A
vol((x + B′) ∩ K) dx

/∫

K
vol((x + B′) ∩ K) dx

We call Q̂ the speedy distribution (on K, for step size δ). In terms of the local conductance

ℓ(x), defined in Section 3, the density function of Q̂, with respect to the uniform distribution

Q, is
dQ̂

dQ
(x) =

ℓ(x)

λ
.

Theorem 4.1. Let K ⊆ dB be a convex body, and let 0 < δ < d/32. Let Q0 be any probability

distribution on K with M(Q0, Q̂) < ∞. Let (w0, w1, . . .) be a speedy random walk in K with

δ-steps, with w0 drawn from Q0. Let Qt be the distribution of wt. Then we have

M(Qt, Q̂) ≤ M(Q0, Q̂) exp

(

− tδ2

800d2n

)

.

Further, for

τ = [M(Q0, Q̂) + 1] exp

(

− tδ2

800d2n

)

,

the random points w0 and wt are τ -independent.

Remark. This means that M(Qt, Q̂) drops by a factor of 1
e in

800n

(

d

δ

)2

steps. Hence, if we need T steps to achieve a precision ε, then ε/n10 can be achieved in almost

the same number of steps: we loose only a factor of O(lnn). In other words, the precision is

not a crucial issue in sampling.

Proof. Theorem 3.1 says that the conductance of the speedy random walk is at least 1
2

δ
10d

√
n

(the 1/2 comes from the laziness) because the steady state probability densities are propor-

tional to ℓ. Then Theorem 2.6 directly yields the first result.
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To see the τ -independence, we argue as follows. Let A, B be any two measurable sets. Let

f(A, B) = |P(w0 ∈ A, wt ∈ B) − P(w0 ∈ A)P(wt ∈ B)|

= Q0(A)|P(wt ∈ B | w0 ∈ A) − Qt(B)| (8)

Let Q′
0 be the distribution of w0 conditioned on it being in A, i.e., Q′

0(S) = Q0(S ∩ A)/Q0(A)

for any measurable S. Then, P(wt ∈ B|w0 ∈ A) is the distribution of wt if we start with w0

drawn from Q′
0. So, applying the first part of the theorem, we get

|P(wt ∈ B | w0 ∈ A) − Q̂(B)| ≤
√

Q̂(B)M(Q′
0, Q̂) exp

(

− tδ2

800d2n

)

. (9)

For any measurable S,

Q̂(S) =
1

Q0(A)
Q̂(S ∩ A) −

(

1

Q0(A)
− 1

)

Q̂(S ∩ A) + Q̂(S \ A),

and hence

|Q′
0(S) − Q̂(S)| ≤ 1

Q0(A)
|Q0(S ∩ A) − Q̂(S ∩ A)|

+

(

1

Q0(A)
− 1

)

Q̂(S ∩ A) + Q̂(S \ A).

So, we have M(Q′
0, Q̂) ≤ 1

Q0(A) [M(Q0, Q̂) + 1] and now using (8) and (9), and the first part of

this theorem, we get the claimed τ -independence. 2

The case when we start from a given point u needs a little additional care since M , as

defined in the theorem, is infinite. But we can apply the theorem after making the first step.

This will put us uniformly in the set S = (u + δB) ∩ K.

Corollary 4.2. Let K ⊆ dB be a convex body and d > 32δ. Let us start a speedy random

walk from an arbitrary point of K. We have

M(Qt+1, Q̂) ≤
(

d

δ

)n

exp

(

− tδ2

800d2n

)

.

Proof. Let S = (u + δB) ∩ K. It is easy to see that M(Q1, Q̂) ≤ 1/
√

Q̂(S). Now, for any x,

ℓ(x) satisfies ℓ(x)vol(δB)(d/δ)n ≥ vol(K), since blowing up (x + δB) ∩ K from x by a factor

of d/δ covers K. So, for any two x, y, we have

ℓ(x)

ℓ(y)
≥
(

δ

d

)n vol(K)

vol(δB)ℓ(y)
≥
(

δ

d

)n

.
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Now,

Q̂(S) =

∫

S ℓ(x) dx
∫

K ℓ(x) dx
≥ vol(S)

vol(K)

(

δ

d

)n

≥
(

δ

d

)2n

,

the last inequality following again from the above argument about blowing up. This completes

the proof. 2

4.2. Local conductance

If we are to implement a speedy random walk, and the current point v has small local con-

ductance ℓ(v), then we have to carry out about 1/ℓ(v) membership tests before a step in the

speedy walk can be generated. Hence the bound on the number of steps of the speedy walk

inferred from Theorem 4.1 does not reflect the full time-complexity of the algorithm. In fact,

note that choosing δ = d, the speedy walk yields a uniformly distributed point of K in a single

step!

Thus it is important to have good bounds on the average local conductance. Our bounds

are based on the following lemma (for later use, we formulate it more generally than needed

right now).

Lemma 4.3. Let L be a measurable subset of the surface of a convex set K in IR
n and let S

be the set of pairs (x, y) with x ∈ K, y /∈ K, ‖x − y‖ ≤ δ, and such that the line segment xy

intersects L. Then the (2n)-dimensional measure of S is at most

δvoln−1(L)
πn−1

(n + 1)πn
vol(δB).

Proof. It suffices to prove the assertion for the case when L is “infinitesimally small”. In

this case, the measure of S is maximized when the surface of K is a hyperplane in a large

neighborhood of L. Then the measure of S is independent of K and, by a direct computation,

is in fact equal to the upper bound given. 2

Corollary 4.4. Let K and L be as in Lemma 4.3. Choose x uniformly from K and choose

u uniformly from δB. The probability that [x, x + u] intersects L is at most

δvoln−1(L)

2
√

nvol(K)
.

This bound gives us a lower bound on the average local conductance in terms of the

surface/volume ratio of K.
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Corollary 4.5. The average local conductance λ with respect to δ-steps satisfies

λ ≥ 1 − δ

2
√

n

voln−1(∂K)

vol(K)
.

While the surface/volume ratio of an implicitly given convex body may be difficult to

estimate, the following, slightly weaker bound is easier to apply.

Corollary 4.6. If K contains a ball of radius r, then

λ ≥ 1 − δ
√

n

2r
.

Proof. In this case,

vol(K) ≥ r

n
voln−1(∂K). 2

4.3. Sampling by random walk

Now we turn to the problem of sampling. We describe two algorithms to sample from the

distribution Q̂; then we show a simple trick to use this to get a sample from the uniform

distribution Q.

We assume that we already have a “reasonably good” starting point in the sense that the

distribution is near the stationary. We will also assume that the average local conductance is

at least 0.95. Soon we will see an important situation where both of these assumptions are

valid.

Algorithm 4.7. [Sampling from a random starting point] Let K ⊆ dB be a convex body

and let δ, ε > 0. Start a lazy random walk with δ-steps from a distribution Q0. Output the

point we have immediately after

t =

⌈

801n ln
5

ε

(

d

δ

)2
⌉

proper steps.

To formulate the theorem analyzing this algorithm, we need the following definition. (We

are quite sure that the theorem remains valid with “ordinary” expectation, but cannot prove

it at the moment.)

Definition 4.8. Given a random variable Z, we say that it has expectation at most E with

exception ε if there is an event A with probability at least 1 − ε such that the expectation of

Z conditional on A is at most E.
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Remark 4.9. For this and other algorithms in the paper, we will prove that their expected

running time is at most a certain T0 with exception s. The probability that we take more than

2T0 steps is clearly at most (1 + s)/2.

We may change the algorithm description to say : if a run of the algorithm takes more

than 2T0 steps, abandon it and start a new run with independent coin tosses; if we take more

than k runs, declare the algorithm a failure and stop. It is easy to see that if 1
2 − s = Ω(1),

then the above algorithm will succeed with probability at least 1 − 2−Ω(k); also, the algorithm

will now always take only O(kT0) steps.

Theorem 4.10. Assume that 0 < δ < d/32 and that the average local conductance of K with

respect to δ-steps is λ ≥ .95.

(a) Assume that the starting distribution Q0 satisfies M(Q0, Q̂) ≤ 2. Then the distribution

Qf of the point returned by Algorithm 4.7 satisfies

M(Qf , Q̂) ≤ ε.

The starting point and the point returned by the algorithm are ε-independent.

(b) Assume that M0 = M(Q0, Q̂) < 1√
2
. Then the expected number of proper and improper

steps with exception 2M2
0 is at most

2t

λ(1 − 2M2
0 )

.

Proof. (a) The bound on M(Qf , Q̂) and the ε-independence follow from Theorem 4.1.

(b) The statement on the number of calls is a bit trickier. Let V ⊆ K be the set of points

x where dQ0(x)/dQ̂(x) > 2. Then, V is measurable and Q0(V ) − Q̂(V ) ≤ M0

√

Q̂(V ). Also,

Q0(V ) ≥ 2Q̂(V ). From these two, it follows that Q0(V ) ≤ 2M2
0 . Let A be the event that the

starting point does not belong to V . Let Z be the number of steps of the algorithm. Then,

P(A) > 1 − 2M2
0 . So it suffices to show that E(Z|A) is at most 2t/(λ(1 − 2M2

0 )). To this end,

let Q′
i be the distribution and wi the current point after the ith proper step conditioned on

the event A. Then, for all measurable S,

Q′
0(S) =

Q0(S \ V )

Q0(K \ V )
≤ 2Q̂(S \ V )

1 − 2M2
0

.

Then we see by induction on i that

Q′
i(S) ≤ 2

1 − 2M2
0

Q̂(S).
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If wi = x, the expected number of (proper and improper) steps before the next proper move is

1/ℓ(x). So the expected number of steps between the ith and (i+1)st proper move conditioned

on A is
∫

K

1

ℓ(x)
dQ′

i(x) ≤ 2

1 − 2M2
0

∫

K

1

ℓ(x)
dQ̂(x) =

2

λ(1 − 2M2
0 )

.

So, by linearity of expectation, it follows that E(Z|A) ≤ 2t/(λ(1 − 2M2
0 )). 2

Now we address the question of how to obtain a “reasonably good” starting point. Note that

the condition on the starting distribution was needed not only because we applied Theorem

4.1, but also because we had to bound the expected number of “wasted” steps. So we could

not simply sacrifice a factor of (about) n lnn and just invoke Corollary 4.2. Instead, we use

the “chain of bodies” trick as in all previous work. This construction will also be fundamental

in the volume algorithm.

Let K be a convex body with B ⊆ K ⊆ dB. Define m = ⌈n log d⌉ and Ki = K ∩ 2i/nB

(i = 1, . . . , m). Clearly

B = K0 ⊆ K1 ⊆ . . . ⊆ Km = K.

An important feature of these bodies is that

vol(Ki) ≤ 2vol(Ki−1).

We denote by ℓi(x) the local conductance of Ki (with respect to δ-steps), by Qi, the uniform

distribution on Ki, and by Q̂i, the speedy distribution on Ki. We will use this notation

throughout.

Algorithm 4.11. [Sampling from a fixed starting point] Let K be a convex body such that

B ⊆ K ⊆ dB. Let 0 < ε < 1/(4m) be given.

Define

δ =
1

10
√

n log(m/ε)
.

Choose a point w0 according to Q̂0 from B. For i = 1, 2, . . . m, execute Algorithm 4.7 in Ki

starting at wi−1 to get a sample point wi ∈ Ki. Output the sequence (wi : i = 0, 1, 2, . . . m).

Remark 4.12. Choosing w0 from Q̂0 is easy to do : first pick w0 according to the uniform

distribution on B. Then pick a point u uniformly from δB. If w0 + u /∈ B, then reject w0 and

repeat. Otherwise choose w0. It is easy to see that we do expect to reject only O(1) times.
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Remark 4.13. The choice of δ will become clear in the next algorithm.

Theorem 4.14. Let Pi be the distribution of wi returned by Algorithm 4.11. Then

M(Pi, Q̂i) ≤ ε for each i. The wi are pairwise ε-independent.

Further, the expectation of the number of calls on the oracle, with exception 2mε2, is at

most

3mt = O

(

n3d2
(

ln
m

ε

)2

ln d

)

.

Proof. It follows from Corollary 4.6 that the average local conductance of each Ki is at least

0.95. We prove by induction on i that for all i = 1, 2, . . . , m,

M(Pi, Q̂i) ≤ ε. (10)

This is obvious for i = 0. Let S be any measurable subset of Ki. Then, by definition,

Q̂i(S) =

∫

S
ℓi(x) dx

/∫

Ki

ℓi(x) dx.

Further, if S ⊆ Ki−1, then

Q̂i−1(S) =

∫

S ℓi−1
∫

Ki−1
ℓi−1

≤
∫

S ℓi
∫

Ki−1
ℓi−1

=

∫

Ki
ℓi

∫

Ki−1
ℓi−1

Q̂i(S).

Here
∫

Ki

ℓi ≤ vol(Ki),

and
∫

Ki−1

ℓi−1 ≥ 19

20
vol(Ki−1) ≥ 19

40
vol(Ki).

Thus

Q̂i−1(S) ≤ 40

19
Q̂i(S). (11)

Now let S ⊆ Ki and let S1 = S ∩ Ki−1, S2 = S \ Ki−1. We have

|Pi−1(S) − Q̂i(S)| ≤ |Pi−1(S1) − Q̂i−1(S1)| + |Q̂i−1(S1) − Q̂i(S1)| + Q̂i(S2)

Here the first term is at most ε
√

Q̂i−1(S1) by the induction hypothesis. The second term is at

most (21/19)Q̂i(S1) by (11). Combining these and using (11) again, we get

|Pi−1(S) − Q̂i(S)| ≤ ε
√

Q̂i−1(S1) +
21

19
Q̂i(S1) + Q̂i(S2) < 2

√

Q̂i(S).
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From this it follows that M(Pi−1, Q̂i) ≤ 2 and now applying Theorem 4.10, we get that

M(Pi, Q̂i) ≤ ε, as promised.

The pairwise ε-independence follows from Theorem 4.10.

The statement on the expected number of steps follows directly from Theorem 4.10(b),

noting that from the previous proof we can take the M0 there to be ε. 2

Assume now that we want to get a sample from an approximately uniform distribution

Q on K, using any Algorithm A (for example, Algorithm 4.11) that generates independent

samples from some distribution P on K.

Algorithm 4.15. [Uniform sampling] Use Algorithm A to generate independent points

u1, u2, . . . from P until a point ui is obtained with (2n/(2n − 1))ui ∈ K. Return v =

(2n/(2n − 1))ui.

Theorem 4.16. Assume that |P − Q̂|tv ≤ ε, B ⊆ K, and

δ ≤ 1
√

8n ln(n/ε)
.

Then the distribution P ′ of the point v returned by Algorithm 4.15 satisfies

|P ′ − Q|tv < 10ε.

The expected number of calls on Algorithm A is at most 2.

Proof. Put c = 1− 1/(2n). We start by estimating the average local conductance on cK. We

have

vol(B′)
∫

cK
(1 − ℓ(x))dx = vol2n({(x, y) ∈ IR

2n : x ∈ cK, y /∈ K, ‖x − y‖ ≤ δ}).

Let t > 0. For each y /∈ (1 + t)K, we have that there is a tangent hyperplane to (1 + t)K

separating y and the parallel tangent hyperplane to cK is at least (in perpendicular distance)

1 − c + t away (since B ⊆ K). So we get, by Lemma 2.9, that

vol((y + B′) ∩ (cK)) ≤ e−n(1−c+t)2/(2δ2)vol(B′) ≤ e−1/(8nδ2) · e−t/(2δ2)vol(B′).

The volume of (1 + t + dt)K \ (1 + t)K is n(1 + t)n−1vol(K) dt which is at most nentvol(K) dt,

and so by integrating with respect to t, we get

∫

cK
(1 − ℓ(x)) dx ≤ vol(K)

1

2
e−1/(8nδ2) < εvol(cK).
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Hence it follows that

Q̂(cK) >
1

2
.

Now we return to the proof. Clearly, the distribution of ui, the first point satisfying

(1/c)ui ∈ K, is proportional to the restriction of P to cK. Therefore for every S ⊆ K,

P ′(S) − Q(S) =
P (cS)

P (cK)
− Q(S) ≤ Q̂(cS) + ε

Q̂(cK) − ε
− Q(S)

Here

Q̂(cS) ≤ vol(cS)
∫

K ℓ
,

and

Q̂(cK) =
vol(cK) −

∫

cK(1 − ℓ)
∫

K ℓ
≥ vol(cK) − εvol(cK)

∫

K ℓ
.

Hence

P ′(S) − Q(S) ≤ vol(cS) + ε
∫

K ℓ

vol(cK) − εvol(cK) − ε
∫

K ℓ
− vol(cS)

vol(cK)
< 10ε

because we may assume that ε < 1/10.

The fact that the expected number of trials is less than 2 follows from Q̂(cK) > 1/2. 2

Proof of Theorem 2.2. Suppose we wish to draw N samples from K satisfying B ⊆ K ⊆
dK each nearly uniformly distributed and pairwise nearly independent. We can first apply

Algorithm 4.11 to produce a point w from a distribution Q1 within M distance 2 of Q̂ in time

O∗(n3d2). Then we may apply Algorithm 4.7 starting from w and run it N times (with δ as

in Algorithm 4.11) to get 3N points (in total time O∗(n2d2N)) which is an ε-good sample for

a distribution P satisfying the hypothesis of Theorem 4.16. We then apply Algorithm 4.15

to get (with high probability) the N samples we need. The overall time for this process is

O∗(n3d2 + n2d2N) and as remarked in the Introduction, this is an improvement of O∗(n) over

previous algorithms. 2

5 . Transforming into isotropic position

It will be convenient to introduce the following notation: given a convex body K ⊆ IR
n and a

function f : K → IR
m, we denote by EK(f) the “average of f over K”, i.e.,

EK(f) =
1

vol(K)

∫

K
f(x) dx.
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We denote by b = b(K) = EK(x) the center of gravity (baricenter) of K, and by A(K) the

n × n matrix

EK((x − b)(x − b)T).

The trace of A(K) is the average square distance of points of K from the center of gravity,

which we also call the second moment of K.

We recall from the introduction the definition of the isotropic position. The body K ⊆ IR
n

is in isotropic position if and only if b(K) = 0 and A(K) = I, the identity matrix. In this case

we have EK(xi) = 0, EK(x2
i ) = 1, EK(xixj) = 0. The second moment of K is n, and therefore

all but a fraction of ε of its volume lies inside the ball
√

n
ε B.

We also need the following fact about isotropic bodies:

Lemma 5.1. If K is in isotropic position, then

√

n + 2

n
B ⊆ K ⊆

√

n(n + 2)B.

It will be enough to use the weaker but more convenient relations

B ⊆ K ⊆ (n + 1)B.

This lemma is, in a sense, folklore. For centrally symmetric bodies, the corresponding

result (in which case the bounds are somewhat sharper, but only by absolute constants) was

proved by Milman and Pajor (1987). For the non-symmetric case, the containment, up to

absolute constants, was proved by Sonnevend (1989). For a detailed proof see Kannan, Lovász

and Simonovits (1995). Since we deal occasionally with nearly isotropic bodies, we need also

the following version:

Corollary 5.2. Let ϑ < 1/2. If K is in ϑ-near isotropic position, then

(1 − 2ϑ)B ⊆ K ⊆ (1 + 2ϑ)(n + 1)B.

Corollary 5.3. Let K be a convex body and f , a linear function on K. Then

EK(f2) ≤ EK(f)2 +
(

max
K

f − EK(f)
)2

.

Indeed, when K is in isotropic position, EK(f) = 0, and EK(f2) = 1, then the assertion is

just the second inequality in Lemma 5.1. The general case follows on noticing that the assertion
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is invariant under applying any affine transformation to K as well as adding a constant to f

and scaling f .

As a special case we obtain that if the center of gravity of a convex body K is the origin

and K is contained in the half-space x1 ≤ c, then

EK(x2
1) ≤ c2.

We shall need the following, slightly more general assertion.

Lemma 5.4. If the center of gravity of a convex body K is contained in −αK, for α > 0,

and K is contained in the half-space x1 ≤ c, then

EK(x2
1) ≤ (1 + 2α + 2α2)c2.

Proof. Since b ∈ (−αK), we have

EK(x1) = b1 ≥ −αc.

We also have by assumption

max
k

x1 ≤ c.

So, by Corollary 5.3, we have

EK((x1)
2) ≤ c2 + (c + αc)2 = (1 + 2α + 2α2)c2.

2

5.1. Finding the center of gravity

The center of gravity of a convex body can be found in the obvious way, by drawing a sufficiently

large sample and computing the center of gravity of this sample. The only issue is to estimate

the error.

One cause of error is that we will have to use random points from Q̂ rather than from Q.

The following lemma estimates the error in the center of gravity and in the moment of the

body that this causes.
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Lemma 5.5. Let K be a convex body in IR
n in isotropic position. Let Q be the uniform

distribution on K, and let P be any other distribution on K, such that P ≤ (1+α)Q for some

0 < α < 1/10. Then for any unit vector v, we have,

∣

∣

∣

∣

∫

K
v · x dP (x)

∣

∣

∣

∣

≤ 5α ln
1

α

and

1 − 26α ln2 1

α
≤
∫

K
(v · x)2 dP (x) ≤ 1 + α.

Proof. Without loss of generality, we may assume v ·x = x1. The definition of α implies that

we have a probability measure R on K such that

P = (1 + α)Q − αR.

Let F (t) denote the (n−1)-dimensional volume of the intersection of K with the hyperplane

x1 = t, divided by vol(K). Then F (t) is log-concave by the Brunn–Minkowski theorem, and

the isotropic position of K implies that

∫ ∞

−∞
t2F (t) dt = 1. (12)

Let

G(t) =

∫ ∞

t
F (u) du.

G is also log-concave. By a theorem of Grünbaum (1960), a hyperplane through the center of

gravity of a convex body K has at least a fraction of 1/e of the volume on each side. Hence

1
e ≤ G(0) ≤ 1 − 1

e . Let β be chosen so that

G(β) =
α

1 + α
. (13)

Clearly, β > 0. Fix A, B so that Ae−Bt = G(t) for t = 0 and t = β; thus A = G(0) and

B = L/β for L = ln((1 + α)A/α) > 1.

First we show that β cannot be too large. Integrating by parts, we have that

1 ≥
∫ ∞

0
t2F (t) dt = 2

∫ ∞

0
tG(t) dt ≥ 2

∫ β

0
tG(t) dt

≥ 2A

∫ β

0
te−Bt dt = 2A

∫ β

0
te−Lt/β dt = 2A

β2

L2

∫ L

0
se−s ds

≥ 2A
β2

L2

∫ 1

0
se−s ds = 2A

β2

L2

(

1 − 2

e

)

.
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Hence

β ≤
√

1

2A(1 − (2/e))
L. (14)

Let c1 =
∫

K x1 dR(x). We claim that

c1 ≤ 1 + α

α

∫ ∞

β
tF (t) dt. (15)

In fact, the density of R is at most (1 + α)/α, and hence is maximized if R is concentrated on

the fraction of K of size α/(α + 1) where x1 is largest. This proves (15). To estimate c1, we

use

∫ ∞

β
tF (t) dt = [−tG(t)]∞β +

∫ ∞

β
G(t) dt

≤ αβ

1 + α
+ A

∫ ∞

β
e−Bt dt =

αβ

1 + α
− A

B

[

e−Bt
]∞

β
=

αβ

1 + α
+

Aβ

L
e−L

≤ 5

2

α

1 + α
L +

5

2

α

1 + α
< 5

α

1 + α
L.

Hence c1 ≤ 5L. Consequently,

∫

K
x1 dP = −α

∫

K
x1 dR ≥ −5αL ≥ −5α ln

(

1

α

)

.

This proves the first inequality, because we can apply the same argument with −v · x instead

of v · x as well.

To prove the second inequality we start with

∫

K
x2

1 dQ = (1 + α)

∫

K
x2

1 dP − α

∫

K
x2

1 dR = 1 + α − α

∫

K
x2

1 dR.

This implies the upper bound immediately.

Let γ be chosen so that
∫

|t|≥γ
F (t) =

α

1 + α
.

Let

α1 =

∫

t≥γ
F (t) dt and α2 =

∫

t≤−γ
F (t) dt.

Define Li = ln((1+αi)A/αi). Clearly max{α1, α2} ≥ α/2 and hence min{L1, L2} ≤ ln(2A(1+

α)/α). To estimate γ from above, we apply (14) to get

γ ≤
√

1

2A(1 − (2/e))
L1,
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and similarly,

γ ≤
√

1

2A(1 − (2/e))
L2.

Hence (by A > 1
e )

γ ≤
√

1

2A(1 − (2/e))
ln

2A(1 + α)

α
< 2.27 ln

1

α
.

Similarly as before
∫

K
x2

1 dR(x) ≤ 1 + α

α

∫

|t|>γ
t2F (t) dt. (16)

Here

∫ ∞

γ
t2F (t) dt =

[

−t2G(t)
]∞

γ
+ 2

∫ ∞

γ
tG(t) dt

≤ α1γ
2 + 2A

∫

te−L1t/γ dt = α1γ
2 + 2Ae−L1

(

γ2

L1
+

γ2

L2
1

)

= α1γ
2
(

1 +
2

L1
+

2

L2
1

)

≤ 5α1γ
2

(since L1 ≥ L ≥ 1). Similarly,
∫ −γ

−∞
t2F (t) dt ≤ 5α2γ

2.

Thus
∫

|t|≥γ
t2F (t) dt ≤ 5

α

1 + α
γ2 ≤ 26

α

1 + α
ln2 1

α
.

Hence the lemma follows. 2.

Corollary 5.6. Let K be a convex body in IR
n in isotropic position. Let Q be the uniform

distribution on K, and let P be any other distribution on K, such that P ≤ (1+α)Q for some

0 < α < 1/10. Let a =
∫

K x dP . Then ‖a‖ ≤ 5α ln 1
α .

Proof.

‖a‖ =

∫

K
a · xdP

and so the previous lemma gives us the Corollary. 2

We can also formulate an affine invariant consequence:

Corollary 5.7. Let K be a convex body in IR
n with b(K) = 0. Let Q be the uniform dis-

tribution on K, and let P be any other distribution on K, such that P ≤ (1 + α)Q for some

0 < α < 1/10. Let a =
∫

K x dP . Then a ∈ 5α ln 1
αK and a ∈ −αK.
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Proof. It is easy to see that the statement is invariant under linear transformations. So, we

may assume that K is in isotropic position. Then the first assertion of the Corollary follows

from the previous one. The second is easily seen using the decomposition P = (1 + α)Q − αR

from the proof of lemma 5.5:

a =

∫

K
x dP = (1 + α)

∫

K
x dQ − α

∫

K
x dR = −α

∫

K
x dR ∈ −αK.

2

Based on this, we can prove the correctness of the following algorithm.

Algorithm 5.8. [Approximating the center of gravity] Let K be a convex body in IR
n and

0 < ϕ, η < 1 be given. Compute

m =

⌈

8n

ϕη

⌉

and ε =
ϕη

20(n + 1)2
.

Draw an ε-good (recall Definition 2.8) sample of m random points from some distribution P

on K and compute their center of gravity g.

Theorem 5.9. (a) Assume that P ≤ (1 + (ϕ/2))Q. Then with probability at least 1 − η,

g − b(K) ∈ −ϕ(K − b(K)).

(b) Assume that P ≤ (1 + α)Q where α < 1/10 and 10α ln(1/α) ≤ ϕ. Also assume that K

is in isotropic position. Then with probability at least 1 − η, ‖g − b(K)‖ ≤ ϕ.

Proof. We describe the proof of (b); the proof of (a) is similar and, in fact, simpler.

Let c =
∫

K x dP (x). By Corollary 5.6, we have ‖c‖ ≤ 5α ln 2
α ≤ ϕ/2. Thus it suffices to

show that with probability at least 1 − η, ‖g − c‖ ≤ ϕ/2. Let (z1, . . . , zm) be the sample, and

define yk = zk − c. Let us compute the expectation of ‖g − c‖2.

E(‖g − c‖2) =
1

m2





m
∑

i=1

E(‖yi‖2) +
∑

i6=j

E(yT

i yj)



 . (17)

To estimate the first sum, fix an i and consider a random point z in K from distribution P

that agrees with zi with probability at least 1 − ε. Let y = z − c. Then we have

E(‖yi‖2) = E(‖y‖2) + E(‖yi‖2 − ‖y‖2).

The first term is

∫

K
‖z − c‖2 dP (x) =

∫

K
‖z‖2 dP (z) − ‖c‖2 ≤ (1 + α)

∫

K
‖x‖2 dQ(x) = (1 + α)n.
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The second term is at most ε(n+1)2 < 1 since ‖yi‖ ≤ n+1 by Lemma 5.1. Hence E(‖yi‖2) ≤ 2n.

Also note that ‖E(yi)‖ ≤ ‖E(y)‖ + ‖E(yi − y)‖ = 0 + ‖E(zi − z)‖ ≤ 2ε(n + 1).

To estimate the second sum in (17), consider a typical term and use Lemma 2.7:

E(yT

i yj) =
∑

k

E(yikyjk) ≤
∑

k

E(yik)E(yjk) + 4ε(n + 1)2

= E(yi)
T
E(yj) + 4ε(n + 1)2 ≤ 4ε2(n + 1)2 + 4ε(n + 1)2

≤ 5ε(n + 1)2.

Hence the second sum in (17) is at most 5m(m − 1)ε(n + 1)2. Summing up, we get

E(‖g − c‖2) ≤ 2n

m
+ 5ε(n + 1)2 ≤ ϕη

2
.

by the choice of ε and m. Hence by Markov’s inequality, the probability that ‖g − c‖ > ϕ/2

is at most η. 2

5.2. Isotropy through sampling

Let K be a convex body; our goal is to describe an algorithm that brings K into a ϑ-nearly

isotropic position with probability at least 1−η. In this section we describe an algorithm that

achieves this provided that we have a subroutine to generate almost uniformly distributed

random points in K. This will be combined with a sampling algorithm in the next sections.

The idea is to generate a set of m = O∗(n2) random points in K, and bring those into

near-isotropic position. We prove that bringing these sample points from such a distribution

into isotropic position actually brings K into near isotropic position.

Algorithm 5.10. [Isotropy transformation using sampling] Let K ⊆ IR
n be a convex body,

and let 0 < ϑ, η < 1/4.

(1) Compute

ε1 =
η2ϑ2

32(n + 1)4
m =

⌈

80n2

ϑ2η2

⌉

.

Draw an ε1-good sample, from some distribution P , of m random points y1, . . . , ym from K.

Compute the vector

y =
1

m

∑

i

yi

and the matrix

Y =
1

m

m
∑

i=1

(yi − y)(yi − y)T .
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If Y 1/2 is not invertible, declare the attempt a failure and repeat. Otherwise, output K ′ =

Y −1/2(K − y).

Remark. It is easy to see that since K has nonzero volume and m ≥ n, Y is invertible with

probability 1.

Theorem 5.11. Assume that P satisfies P ≤ (1 + α)Q, where 40α ln2 1
α = ϑ. Then with

probability at least 1 − η, the body K ′ produced by Algorithm 5.10 is in ϑ-nearly isotropic

position.

Proof. It is easy to check that the assertion is invariant under affine transformation of K, so

we may assume that K is in isotropic position.

We start with proving the second condition of the ϑ-isotropy. We want to prove that with

probability at least 1 − η, every vector w ∈ IR
n satisfies

(1 − ϑ)‖w‖2 ≤ 1

vol(K ′)

∫

K′−b(K′)
(wTy)2 dy ≤ (1 + ϑ)‖w‖2. (18)

By a change of variables, inequality (18) can be written as

(1 − ϑ)vTY v ≤ 1

vol(K)

∫

K
(vTy)2 dy ≤ (1 + ϑ)vTY v.

Here we may assume that ‖v‖ = 1, then the middle term is 1, and so we have to prove that

1

1 + ϑ
≤ vTY v ≤ 1

1 − ϑ
. (19)

We have

Y = Z − yyT,

where

Z =
1

m

m
∑

i=1

yiy
T

i .

Hence it suffices to show that with probability at least 1 − η, for every v ∈ IR
n, ‖v‖ = 1 we

have
1

1 + ϑ
+ (vTy)2 ≤ vTZv ≤ 1

1 − ϑ
+ (vTy)2. (20)

To prove this, we need some auxiliary inequalities of similar nature. Let

A =

∫

K
xxT dP (x).
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By Lemma 5.5, for every unit vector v,

1 − 26α ln2 2

α
≤ vTAv < 1 + α. (21)

Now we prove that for all unit vectors v,

|vT(EZ − A)v| ≤ ϑ

4
. (22)

Indeed, let Pi be the distribution of yi. Then

vT
EZv =

1

m

m
∑

i=1

vT
E(yiy

T

i )v =
1

m

m
∑

i=1

∫

K
(vTx)2 dPi(x) =

∫

K
(vTx)2 dP ′(x),

where P ′ = (1/m)
∑

i Pi. Hence

|vT(EZ − A)v| =

∣

∣

∣

∣

∫

K
(vTx)2 (dP ′(x) − dP (x))

∣

∣

∣

∣

≤ ε1(n + 1)2,

since |P − P ′|tv ≤ ε1 and (vTx)2 ≤ (n + 1)2. This proves (22).

Next we prove that with probability at least 1 − η/2, we have for all unit vectors v

|vT(Z − EZ)v| ≤ ϑ

4
. (23)

To prove (23), we use that

‖Z − EZ‖2 ≤ Tr((Z − EZ)2)

Let us compute the expectation of this trace. We have

m2(Z − EZ)2 =

(

m
∑

i=1

(yiy
T

i − E(yiy
T

i ))

)2

(24)

=
m
∑

i=1

(

yiy
T

i − E(yiy
T

i )
)2

+
∑

i6=j

(

yiy
T

i − E(yiy
T

i )
)(

yjy
T

j − E(yjy
T

j )
)

The first term is handled as follows : fix any i, then

E

(

yiy
T

i − E(yiy
T

i )
)2

= E((yiy
T

i )2) − (E(yiy
T

i ))2

and hence

ETr
((

yiy
T

i − E(yiy
T

i )
)2)

≤ ETr
(

(yiy
T

i )2
)

= E(‖yi‖4).

Since |Pi − P |tv < ε1, we can construct a random variable zi distributed according to P such

that zi = yi with probability 1 − ε1. Then,

E(‖yi‖4) = E(‖zi‖4) + E(‖yi‖4 − ‖zi‖4).
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The first term is bounded above by (1 + α)
∫

K ‖x‖4dx/vol(K) which is at most 8(1 +

α)(
∫

K ‖x‖2/vol(K))2 = 8(1 + α)n2, by the assumption that P ≤ (1 + α)Q and the fact that

EQ(‖x‖4) ≤ 8(EQ(‖x‖2))2 by a Theorem of Gromov and Milman (1984). The second term is

at most ε1(n + 1)4. Hence

m
∑

i=1

ETr
((

yiy
T

i − E(yiy
T

i )
)2)

≤ 8(1 + α)mn2 + mε1(n + 1)4.

The second term in (24) can be estimated using the “almost independence” of the sample

points. We can write its trace as

∑

i6=j

Tr
(

yiy
T

i − E(yiy
T

i )
)(

yjy
T

j − E(yjy
T

j )
)

=
∑

i6=j

∑

k

∑

r

(

yikyir − E(yikyir)
)(

yjkyjr − E(yjkyjr)
)

.

Invoking Lemma 2.7, we get that the expectation of each term here is bounded by 4ε1(n+1)4,

and hence the expectation of the whole sum is bounded by 4ε1m(m − 1)(n + 1)4.

Summing up, we get that

E(‖Z − EZ‖)2 ≤ E(‖Z − EZ‖2) ≤ 8(1 + α)
1

m
n2 +

1

m
ε1(n + 1)4 + 4ε1(n + 1)4 <

η2ϑ2

4
,

and hence with probability at least 1 − η, ‖Z − EZ‖ ≤ ϑ/4. This proves (23).

Finally we remark that by Theorem 5.9, with probability at least 1 − η/2,

‖y‖ ≤ ϑ

4
, (25)

and hence (vTy)2 < ϑ2/16.

Combining these inequalities, we have

vTZv = vTAv + vT(EZ − A)v + vT(Z − EZ)v ≤
(

1 +
ϑ

4

)

+
ϑ

4
+

ϑ

4

<
1

1 − ϑ
+ (vTy)2,

and similarly,

vTZv = vTAv + vT(EZ − A)v + vT(Z − EZ)v ≥
(

1 − ϑ

4

)

− ϑ

4
− ϑ

4

>
1

1 + ϑ
+ (vTy)2.

This proves (19).
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To complete the proof, it suffices to remark that b(K ′) = −Y 1/2y and hence if (19) and

(25) hold, then

‖b(K ′)‖ =
√

yTY y ≤
√

ϑ2

16

1

1 − ϑ
< ϑ. 2

5.3. Improving local conductance

In this section we describe an algorithm to find an affine transformation that increases the

local conductance while keeping the second moment of the body bounded.

First we describe a simple linear transformation that brings a convex body “closer” to its

isotropic position. Throughout this section, let K be a convex body in IR
n for which

(i) the center of gravity b(K) ∈ (− 1
10)K and

(ii) EK(‖x‖2) ≤ n.

Lemma 5.12. Let h be a unit vector for which

hTx <
1

2

for every x ∈ K. Define the linear transformation

Uh =

(

1 − 1

2n

)

(I + hhT).

Then

(a) if K satisfies (i) and (ii), then so does UhK;

(b) the volume of UhK is at least 9/8 times the volume of K.

The geometric meaning of Uh is the following: if the tangent plane is too near to the origin,

then we stretch K by a factor of about 2 in the direction of the normal vector of the tangent

plane, and then shrink in all directions by a factor of
(

1 − 1
2n

)

.

Proof. The center of gravity is affine invariant, so (i) is trivially preserved. Lemma 5.4 implies

that

EK((hTx)2) <
1

3
,

and hence

EUhK(‖x‖2) = EK(‖Uhx‖2) =

(

1 − 1

2n

)2

EK(‖x + (xTh)h‖2)

≤
(

1 − 1

2n

)2

EK(‖x‖2 + 3(xTh)2) =

(

1 − 1

2n

)2

(n + 1) < n.
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This concludes the proof of (a).

Since

det Uh = 2

(

1 − 1

2n

)n

≥ 9

8
,

we have (b). 2

From now on, we assume that, in addition to (i) and (ii) above,

(iii) K contains a ball with radius 1/
√

n centered at the origin.

Definition 5.13. [Flat steps] Let v ∈ K but u /∈ K. Find, using binary search, a point u′ on

the segment [u, v] such that u′ /∈ K but u′ ∈ 21/nK. The separation oracle called for u′ returns

a separating hyperplane H. If H is closer to the origin than 1/2, we call the pair (u, v) a flat

step.

Remark. We shall apply the above definitions to random walks where ‖v − u‖ < δ < 1√
n
. If

(iii) holds, then 2 log n oracle calls will find u′.

Lemma 5.14. Let K be a convex body containing the origin and let v be a uniformly dis-

tributed random point in K. Make one step of a lazy random walk starting from v. Then the

probability that this step is a non-flat improper step is at most 4δ
√

n.

Proof. Put K1 = conv(K ∪ 1
2B). Assume that the attempted step [v, u] is non-flat improper.

Then trivially u /∈ K1. We prove that the (2n)-dimensional measure of the set S of pairs [v, u]

with v ∈ K, u ∈ IR
n \ K1 and ‖u − v‖ ≤ δ is at most 4δ

√
nvol(K)vol(B′); this will prove the

lemma.

Let q′ be the point of intersection of the segment [v, u] and ∂K1. Then clearly q′ belongs

to

F ′ = ∂K1 ∩ (21/nK).

Applying Lemma 4.3 to K1, we get that

vol2n(S) ≤ δvoln−1(F
′)

πn−1

(n + 1)πn
vol(B′) <

δ√
n

voln−1(F
′)vol(B′).

The hyperplane supporting K1 at any point of F ′ has distance at least 1/2 from the origin.

Hence the union U of segments connecting 0 to F ′ has volume at least voln−1(F
′)/(2n). On

the other hand, clearly U ⊆ 21/nK. This implies that

voln−1(F
′) ≤ 4nvol(K),
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and so

vol2n(S) < 4δ
√

nvol(K)vol(δB). 2

Lemma 5.15. Let K ⊆ dB (d ≥ 1) be a convex body with average local conductance λ with

respect to δ-moves where 0 < δ < d/32 . Let u ∈ K. Starting from u, do a lazy random walk

in K with step size δ until at least

T =

⌈

1600n2
(

d

δ

)2

ln
d

δ

⌉

proper steps were made. Then the probability that no flat steps were attempted is at most

λ + 6δ
√

n.

Proof. We may assume that δ < 1/(6
√

n). Consider a random walk in the body K1 =

conv(K ∪ 1
2B), starting at u. Until this walk hits K1 \ K, it can be considered a random

walk in K. Conversely, a random walk in K can be considered a random walk in K1 until

the first flat step is attempted because until then, any time we attempt to step out of K, we

are actually stepping out of K1. Hence the probability that a random walk of length T in K

attempts a flat step is at least as large as the probability that a random walk in K1 of length

T hits K1 \ K.

Now (1/2)B ⊆ K1 ⊆ dB. Corollary 4.6 implies that the average local conductance of K1

is at least 1 − δ
√

n. Let Q̂1 be the speedy distribution on K1, then Corollary 4.2 implies that

for the distribution Qj of the point wj at the (T − 1)th proper step we have M(Qj , Q̂1) ≤
(δ/d)n ≤ δ

√
n and therefore, if w is the last point before the T th proper step, then

P (w ∈ A) − vol(A)

vol(K1)
≤ Q̂1(A) + δ

√
n − Q̂1(A)(1 − δ

√
n) ≤ 2δ

√
n

for every A ⊆ K1 and so the variational distance between the distribution of w and the uniform

distribution on K1 is at most 2δ
√

n. For convenience, consider a uniformly distributed random

point v of K that agrees with w with probability 1 − 2δ
√

n, and make a step from v. If the

walk in K attempted no flat step during the first T steps, then either v 6= w, or v ∈ K and the

step made from v was not flat. By Lemma 5.14, this latter probability is at most 4δ
√

n + λ;

thus the probability that no flat step was attempted is at most λ + 6δ
√

n. 2

Next we describe the key algorithm to improve the local conductance.
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Algorithm 5.16. Let K be a convex body in IR
n, and let 0 < ϑ, η < 1 be given.

(0) Let

δ =
min{ϑ, η}

24
√

n
, d =

√

2n

ϑ
,

M =

⌈

32

ϑ
n log n

⌉

, T =

⌈

1600n2
(

d

δ

)2

ln
d

δ

⌉

.

Select a random integer N uniformly from {0, . . . , M − 1}.

(1) Generate a point u in K whose distribution is closer than η/6 to the uniform (in total

variation distance).

(2) Let K0 = K. For i = 0, 1, . . . , N − 1, do the following. Starting from u, do a lazy

random walk in K ′
i = Ki ∩ dB until either T proper steps were made, or a flat step was made,

whichever comes first.

If we end with T proper steps, we go to the next i. If we end with a flat step (with respect

to Ki), then let H be the separating hyperplane whose distance from the origin is at most

1/2. Let h be the normal of H of unit length, directed away from the origin. Apply the linear

transformation Uh of Lemma 5.12 to Ki to get Ki+1 = UhKi.

(3) Output the body KN .

Remarks. 1. The random choice of N is certainly an artifact of the proof below. M = N

should do.

2. The random choice of u may also be unnecessary; any point sufficiently far away from

the corners (in particular, the origin) should be just as good.

Note that we use uniform distribution for u instead of the speedy distribution Q̂. One

reason of this is that the body K keeps changing during the algorithm and the uniform dis-

tribution is invariant while Q̂ is not under linear transformations.

3. Intersecting Ki with dB is probably another artifact. We could walk inside Ki if we could

prove a version of the isoperimetric inequality (Theorem 3.1), with the diameter d replaced

by the square root of the second moment. Theorem 5.1 of Kannan, Lovász and Simonovits

(1995) is of this nature; however, it would not be directly applicable here.

4. We assume that we have a subroutine to generate the “almost uniform” point u. How

this is actually done will be discussed when the main algorithm is used.
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Theorem 5.17. Assume that K satisfies (i), (ii) and (iii). Then algorithm 5.16 produces a

convex body KN satisfying (i) and (ii). The expectation of the average local conductance of

the output body is at least 1 − ϑ. With probability at least 1 − η, the number of oracle calls it

uses is at most

3MT = O

(

n5

η2ϑ3
lnn ln

n

ηϑ

)

= O∗(n5).

Proof. The first assertion is clear by Lemma 5.12. This also implies that the volume of K

never exceeds the volume of the isotropic ball, which is (n+2)n/2πn. By (iii), the volume of the

original body is at least n−n/2πn. Thus vol(K) can increase by at most a factor (n(n+2))n/2 <

(n + 1)n. Since the volume of K increases by a factor of at least 9/8 (by Lemma 5.12) after

the linear transformation is carried out at the end of such a walk, at most 8n log n flat step

transformations can occur.

Consider the algorithm going on for M , rather than N , iterations. Let Li be the aver-

age local conductance of Ki and L′
i, the average local conductance of K ′

i (these are random

variables!). Since EKi
(‖x‖2) ≤ n is preserved, and K ′

i ⊆ dB, we have (by Markov inequality),

vol(K ′
i)

vol(Ki)
≥ 1 − ϑ

2
.

So,

Li ≥ L′
i

vol(K ′
i)

vol(Ki)
≥ L′

i

(

1 − ϑ

2

)

.

Let λi be the expectation of Li.

Let Xi be the indicator variable of the event that the i-th random walk ended with a flat

step. Then
∑

i Xi is the number of such walks, and hence,

∑

i

Xi ≤ 8n log n. (26)

On the other hand, from Lemma 5.15 we get that

P(Xi+1 = 1 | previous events) ≥ 1 − 6δ
√

n − L′
i ≥ 1 − ϑ

4
− 1

1 − ϑ/2
Li.

Therefore
M−1
∑

i=0

E(Xi) ≥
M−1
∑

i=0

(

1 − ϑ

4
− 1

1 − ϑ/2
λi

)

and hence by (26),

1

M

M−1
∑

i=0

λi ≥
(

1 − ϑ

2

)(

1 − 8n log n

M
− ϑ

4

)

≥ 1 − ϑ.
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Recall that N is a random element of {0, . . . , M − 1}. Thus

E(LN ) = E(λN ) ≥ 1 − ϑ.

To estimate the number of oracle calls, we count different kinds of steps. The number of

proper steps is at most MT ; the number of flat improper steps is at most 8n log n ≤ MT . We

show that the probability that the number of non-flat improper steps is larger than MT is less

than η.

For simplicity, imagine that the last walk goes on, if necessary, until a total of at least

3MT steps are made. If the number of non-flat improper steps during the algorithm is larger

than MT then their number among the first 3MT steps is larger than MT . Since u, and

therefore every given point in the sequence, has a distribution that is closer to uniform than

η/6 (in total variation distance), the probability that a given step is non-flat improper is at

most η/6+4δ
√

n < η/3 by Lemma 5.14. Thus the expected number of non-flat improper steps

is at most ηMT . By Markov’s inequality, the probability that there are more than MT such

steps is at most η. 2

5.4 Isotropy for rounded bodies

Assume that we are given a convex body K and a ϑ, η > 0 (later ϑ and η will be fixed

constants); we wish to bring K into ϑ-nearly isotropic position, with probability at least 1−η.

In this section we treat the special case when K already satisfies the conditions

B ⊆ K ⊆ 10nB

(the general case will be treated in the next section). The basic tool is Algorithm 5.10, but

to implement it, we have to describe how to generate a sample of size 80n2/(ϑη). This can be

done using O∗(n5) oracle calls, by combining our previous results.

Step 1. Let Q be the uniform distribution on K. We apply Algorithm 4.15 with Algorithm

4.11 as A to get a single random point in K from a distribution Q∗ satisfying |Q∗−Q̂|tv < η/30.

By Theorems 4.16 and 4.14 this takes an expected

O

(

n5
(

ln
n

η

)2

lnn

)

oracle calls.
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Step 2. Next, we can scale down K so as to satisfy

1√
n

B ⊆ K ⊆ 10
√

nB.

and then apply Algorithm 5.16. (As the result of Step 1, we have an η/30-good sample point to

start from.) We get a convex body satisfying (i) and (ii) and having average local conductance

at least .999. By Theorem 5.17, with probability at least 1 − η/5, we use

O

(

n5

ϑ3η2
ln

1

ϑη
ln2 n

)

= O∗(n5).

oracle calls.

Step 3. This allows us to use Algorithm 4.7 with δ as in Step 2 repeatedly (starting with a

point generated by Step 1) to generate an ε1-good sample of m = ⌈80n2/(ϑη)2⌉ points where

ε1 = η2ϑ2/(32(n + 1)4). This takes

O

(

n5

ϑ6
· ln

1

ϑη
lnn

)

= O∗(n5)

calls to the oracle.

Step 4. We use this ε1-good sample of m points in Algorithm 5.10 to bring K into near

isotropic position. This does not use the oracle; it uses only matrix arithmetic; finding the

square root of a matrix Y .

To summarize, in this section, we have shown using the above plus Remark 4.9 :

Lemma 5.18 Let 1 > ϑ, η > 0. If K is a convex body satisfying B ⊆ K ⊆ 10nB, then we

have a randomized algorithm which brings K into ϑ-nearly isotropic position with probability

at least 1 − η. The algorithm never makes more than

O

(

n5

η2ϑ6
(lnn)3(ln(1/ηϑ))2

)

oracle calls.

5.5. Isotropy for general bodies

Now consider a general convex body, satisfying only

B ⊆ K ⊆ dB

for some d. As remarked in the introduction, we may achieve d = n3/2 by a standard appli-

cation of the ellipsoid algorithm; but the order of magnitude of the time complexity of our

algorithm remains the same for any d < nconst.
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Algorithm 5.19. [Isotropy transformation for general convex body] Let a convex body B ⊆
K ⊆ dB and 0 < ϑ, η < 1 be given. Compute p = ⌈log d⌉. Let K0 = K. For i = 0, 1, . . . , p,

do the following: Let K ′
i = Ki ∩ 10nB. Find an affine transformation αi that maps K ′

i to a

ϑ-nearly isotropic position with probability at least 1 − η/(log d). Let Ki+1 be the image of

Ki under this map. Output Kp.

Theorem 5.20. The convex body produced by Algorithm 5.19 is in ϑ-isotropic position with

probability at least 1 − η.

Remark. Algorithm 5.19 could use any algorithm A bringing a sandwiched K into ϑ-near

isotropic position. If A uses T steps (when called with error-bound η/ ln d, then Algorithm

5.19 uses at most (log d)T steps.

Proof of Theorem 5.20. Assume that K ⊆ dB and define for i = 1, . . . , p

di = max

{

d

2i
, 10n

}

.

It suffices to prove (by induction on i) that if all the iterations were successful (which happens

with probability at least 1 − η), then

Ki ⊆ diB. (27)

So (by dp−1 = 10n) Kp−1 ⊆ 10nB and therefore Kp is already in ϑ-nearly isotropic position.

The case i = 0 is trivial. Let i > 0. Let v ∈ Ki, and let v be the image of u ∈ Ki−1

under αi−1. If u ∈ K ′
i−1 then v lies in a ϑ-isotropic body, and hence by Corollary 5.2 ‖v‖ ≤

(1 + 2ϑ)(n + 1) < 2n. So suppose that u ∈ Ki−1 \ K ′
i−1; let q be the point where the segment

[0, u] intersects the boundary of K ′
i−1. Let z = αi−1(0) and s = αi−1(q). Since 0, q ∈ K ′

i−1, we

have ‖z‖ < 2n and ‖s‖ < 2n.

Now u = τq + (1 − τ)0, where τ = ‖u‖/(10n) > 1. Since α is affine, it follows that

v = τs + (1 − τ)z and hence

‖v‖ ≤ τ‖s‖ + |1 − τ |‖z‖ < 4nτ <
1

2
‖u‖ ≤ d

2i
.

This proves (27). The bound on the expected number of oracle calls follows from Lemma

5.18. 2
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6. Estimating the volume

Now we describe how the previous sampling and “rounding”algorithms can be used to estimate

the volume of a convex set K. In Section 5, we have seen that K can be brought into near

isotropic position, using O∗(n5) oracle calls. After this, we intersect K with a ball with radius

2
√

2n log(1/ε); clearly, we loose at most a fraction of ε of its volume.

To conclude, it suffices to describe an algorithm that computes (approximately) the volume

of a convex body K satisfying B ⊆ K ⊆ O∗(
√

n)B, in time O∗(n5). More generally, we show

how to compute the volume of a convex body K satisfying B ⊆ K ⊆ dB in time O∗(n4d2).

Define, as in Section 4, Ki = K∩2i/nB (i = 0, . . . , m = ⌈n log n⌉). We will apply Algorithm

4.11. δ is as defined there. K0 = B and Km = K. Moreover,

1 ≥ vol(Ki−1)

vol(Ki)
≥ 1

2
.

We denote by ℓi(x) the local conductance of Ki at point x; so ℓ(x) = ℓm(x). We define

ℓi(x) = 0 for x /∈ Ki. We also define ℓ̄i =
∫

Ki
ℓi(x) dx. Clearly ℓi(x) ≤ ℓi+1(x). It follows from

Corollary 4.6 that

.95vol(Ki) ≤ ℓ̄i ≤ vol(Ki).

Now we describe the volume algorithm. Roughly speaking, we follow the method of Dyer,

Frieze and Kannan (1989): we generate p = 400ε−2n log n = O∗(n) random points in each Ki

and count how many of them fall in Ki−1; this gives an estimate of the ratio vol(Ki−1)/vol(Ki).

However, our methods are more efficient in generating random points from the distribution

Q̂i, and so we approximate the ratios ℓ̄i−1/ℓ̄i instead. The ratio ℓ̄m/vol(K) is determined by

the same sort of method, but this time we use uniformly distributed points in K. The value

ℓ̄0 is computed easily.

Algorithm 6.1. Let K be a convex body, and let 0 < ε < 1 be given. Compute

p =

⌈

400m

ε2

⌉

, ε0 =
ε2

12000m2
.

Execute p independent runs of Algorithm 4.11, to produce mp points wir, 1 ≤ i ≤ m, 1 ≤ r ≤ p.

For each i, the points wi1, . . . wip are totally independent points in Ki, from a distribution Pi

such that |Pi − Q̂i|tv < ε0, and wir and wjs are ε0-independent for all i, j, r and s. For each i

and r, make a step of the speedy walk from wir , to get a point w′
ir ∈ Ki. Set

air =

{

1, if wir ∈ Ki−1 and w′
ir ∈ Ki−1,

0, otherwise.
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Compute bi = ai1 + . . . + aip.

Execute p further independent runs of Algorithm 4.11 (with the same parameters), followed

by Algorithm 4.15, to get p independent points w1, . . . , wp in K from a distribution P such

that |P − Q|tv < 5ε0. For each 1 ≤ r ≤ p, generate a uniformly distributed random point w′
r

in the ball wr + B′. Set

am+1,r =

{

1, if w′
r ∈ K,

0, otherwise.

Compute bm+1 = am+1,1 + . . . am+1,p and return

ζ =
pm+1ℓ̄0

b1 . . . bm+1

as the estimate of the volume of K.

Theorem 6.2. Assume that K satisfies B ⊆ K ⊆ dB. Then the probability that the value

ζ returned by the algorithm is between (1 − ε)vol(K) and (1 + ε)vol(K) is at least 3/4. With

probability at least 9/10, the total number of oracle calls is

O

(

n4d2

ε2
lnn ln d

(

ln
n

ε

)2
)

.

Proof. Let ρi = ℓ̄i−1/ℓ̄i (1 ≤ i ≤ m), and ρm+1 = ℓ̄m/vol(K). It is easy to check that

2/5 ≤ ρi ≤ 1. The key fact we will use is that for each 1 ≤ i ≤ m,

E(air) = P(wir ∈ Ki−1, w
′
ir ∈ Ki−1)

=

∫

Ki−1

P(w′
ir ∈ Ki−1 | wir = x) dPi(x)

=

∫

Ki−1

ℓi−1(x)

ℓi(x)
dPi(x)

=

∫

Ki−1

ℓi−1(x)

ℓi(x)
dQ̂i(x) + εi,

where |εi| ≤ ‖Pi − Q̂i‖1 < ε0. Here

∫

Ki−1

ℓi−1(x)

ℓi(x)
dQ̂i(x) =

∫

Ki−1
ℓi−1(x) dx

∫

Ki
ℓi(x) dx

= ρi.

Hence

|E(air) − ρi| < ε0. (28)

for 1 ≤ i ≤ m. A similar argument shows that this inequality also holds for i = m + 1. It

follows that E(air) > 1/3 for all i.
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Informally, we see that bi ≈ pℓ̄i−1/ℓ̄i = pρi for 1 ≤ i ≤ m, and similarly, bm+1 ≈
pℓ̄m/vol(K) = pρm+1, whence ζ ≈ vol(K). To analyze the error of the product of the bi,

let βi = E(bi) = pE(air), and consider the random variable

X =
m+1
∑

i=1

(

ln
bi

βi

)

We claim that with probability at least .75,

|X| ≤ ε

2
. (29)

First we remark that bi =
∑

r air, where 0 ≤ air ≤ 1 and, for fixed i, the air are independent.

Hence we may apply the inequality of Chernoff–Hoeffding, and get that with probability at

least .99,

bi ≥ βi√
2

for all i. (30)

Set

A =
∑

i

bi − βi

βi
, C =

∑

i

(

bi − βi

βi

)2

,

and

D =
∑

i<j

(bi − βi)(bj − βj)

βiβj

Using the formula for the variance of the binomial distribution, we get

E(C) =
∑

i

1

βi

(

1 − βi

p

)

≤ 2m

p
<

ε2

200
.

Next we estimate the expectation of D. The expectation of a typical summand can be esti-

mated using ε0-independence and Lemma 2.7:

1

βiβj
E

[

∑

r,s

(air − E(air))(ajs − E(ajs))

]

≤ 4

βiβj
p2ε0 < 36ε0,

and hence

E(D) < 18m2ε0 <
ε2

640
.

We claim that whenever (30) holds, C < ε2/30 and D < ε2/64, then we have |X| < ε/2.

Since A2 = C + 2D, we get that in this case |A| < ε/
√

15. If X ≥ 0, then using the inequality

lnx ≤ x−1, we get that X ≤ A < ε/2. If X < 0, then (using (30)) we can apply the inequality

lnx ≥ x − 1 − (x − 1)2 (for x ≥ 1/
√

2), to get X ≥ A − C ≥ −ε/2. In both cases, the claim
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follows. By Markov’s inequality, the probability that either C > ε2/30 or D > ε2/64 is at

most .15 + .1 = .25. Thus with probability at least 3/4, we have |X| ≤ ε/2.

To prove the first assertion of the theorem, we use that

ζ =
pm+1

b1 . . . bm+1
ℓ̄0

and

vol(K) =
ℓ̄0

ρ1 . . . ρm+1

whence
vol(K)

ζ
=

b1 . . . bm+1

β1 . . . βm+1

β1 . . . βm+1

(pρ1) . . . (pρm+1)
.

Inequality (28) implies that
∣

∣

∣

∣

βi

pρi
− 1

∣

∣

∣

∣

<
ε0

ρi
≤ 5

2
ε0,

and hence
∣

∣

∣

∣

∣

ln
m+1
∏

i=1

βi

pρi

∣

∣

∣

∣

∣

≤
m+1
∑

i=1

∣

∣

∣

∣

ln
βi

pρi

∣

∣

∣

∣

≤ 2
m+1
∑

i=1

∣

∣

∣

∣

βi

pρi
− 1

∣

∣

∣

∣

< 6mε0 <
ε

10
.

Hence whenever (29) holds, we have

∣

∣

∣

∣

ln
ζ

vol(K)

∣

∣

∣

∣

≤
∣

∣

∣

∣

ln
b1 . . . bm+1

β1 . . . βm+1

∣

∣

∣

∣

+

∣

∣

∣

∣

ln
β1 . . . βm+1

(pρ1) . . . (pρm+1)

∣

∣

∣

∣

<
3

5
ε.

This proves the first assertion. The bound on the number of oracle calls follows easily. 2

Proof of Theorem 2.1 : Using Algorithm 5.19, we can bring the given convex body

K into 1/10-nearly isotropic position with probability at least 9/10 in time O(n5(lnn)4)

(see Theorem 5.20). Then we may apply the volume algorithm 6.1 of this section with

d = 2
√

2n/ log(1/ε) and with probability at least 8/10, get a volume estimate within rela-

tive error ε/4 where also, with probability at least 9/10 that the algorithm takes time

O

(

n5

ε2
(lnn)3(ln(1/ε))3

)

.

Applying Remark 4.9, we may again ensure that the algorithm definitely takes time

O

(

n5

ε2
(lnn)3(ln(1/ε))3 ln(1/η)

)

and fails with probability at most (2/10) + η for any η > 0. Repeating the whole process

O(ln(1/η)) times and taking the median (as discussed in the Introduction) gives us an estimate

of volume within realtive error ε and probability of success at least 1−η proving Theorem 2.1.
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