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Abstract 

This paper examines the problem of sampling (almost) uniformly from the set of linear ex- 
tensions of a partial order, a classic problem in the theory of approximate sampling. Previous 
techniques have relied on deep geometric arguments, or have not worked in full generality. Re- 
cently, focus has centred on the Karzanov and Khachiyan Markov chain. In this paper, we define 
a slightly different Markov chain, and present a very simple proof of its rapid mixing, using the 
method of path coupling. We show that this chain has mixing time O(n 3 logn), which signifi- 
cantly improves the previous best bound for this problem, which was a bound of O(n 5 logn), 
for the Karzanov and Khachiyan chain. 

We also show how a classical metric, Spearman's footrule, may be reformulated in terms of 
transpositions. (~) 1999 Elsevier Science B.V. All rights reserved 

1. Introduction 

Let N =  {1,2 . . . . .  n}, and P = ( N , < )  be a partial order. A linear extension of  P is 

a total order X = (N, E )  which respects P,  i.e. for all i, j E N, i <~j implies i U j .  Let 

O = f2(P) denote the set o f  all linear extensions of  P. 

Being able to sample from 12 has a variety o f  applications, since various other 

combinatorial structures exhibit a natural isomorphism to f2 for a particular family o f  

partial orders, e.g. multiset permutations. In addition there are more direct applications 

to near-optimal sorting, and to decision theory. 

There has been much research on the problem of  listing all linear extensions; in 

fact, Pruesse and Ruskey [16] have shown that this may be accomplished in constant 

amortized time. 

Brightwell and Winkler [3] showed that determining If21 is #P-complete. The exis- 

tence of  a fully polynomial randomized approximation scheme (fpras) for I~1 followed 

from the work of  Dyer et al. [9] on volume approximation. Their method is based on the 
rapid mixin9 of  a particular geometric Markov chain. See Jerrum and Sinclair [12] for a 
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recent survey of  this approach to approximation problems. Subsequently, Matthews [14] 
gave a somewhat different geometric approach. 

Using geometric and conductance arguments [17], Karzanov and Khachiyan [13] 
showed the rapid mixing of  a combinatorial Markov chain on (2. Dyer and Frieze [8] 
improved the conductance estimate, and hence the bound on the mixing time, of this 
chain. These results all rely on a relationship between f2 and the geometry of a certain 
polytope in Nn. 

Felsner and Wernisch [11] showed how the Karzanov-Khachiyan chain may be used 
to sample exactly from I2 in the very restricted case of two-dimensional partial orders, 
using the technique of coupling from the past [15]. 

In this paper, we significantly reduce the generation time for random linear exten- 
sions. We achieve this via the first non-geometric proof of rapid mixing of  a Markov 
chain on I2, employing the method of path couplin 9 [4]. We define a new Markov 
chain on I2, and show that this has a mixing rate of O(n  3 log ne-  1 ), which significantly 
improves the best bound previously known for this problem (a bound on the Karzanov 
and Khachiyan chain of O ( n  4 log iI21e -1 ) = O(n 5 log n + n 4 log e -1 ) [8]). As a conse- 

quence, we note that the mixing rate for the Karzanov and Khachiyan chain can, in 
fact, be reduced to O(n 4 log 2 n q- n 3 log n log e -  l ). 

2. Notation and preliminaries 

Let a(i , j)  (1 <<.i<j<<.n) denote the transposition operators on total orders of N. 
Thus, if Y = a( i , j )X,  we have 

X = ( a l a 2 . . . a i _ l a i . . . a j a j + l  ""an),  Y - - ( a l a 2 . " a i - l a j ' . . a i a j + l  ""an).  

If j =  i +  1, we will call a(i , j)  a close transposition. The integer ( j -  i) will be called 
the width of  the transposition a(i,j).  Thus close transpositions have unit width. 

For a concave probability distribution, f ,  on { 1,2 . . . . .  n -  1 }, define the Markov chain 
.//¢'f, on f2(P): if the current state is s t  E I2, then the next state, st+l,  is determined by 
the following experiment. 
1. Choose p E { 1, 2 . . . . .  n - 1 } according to the distribution f ,  and c E {0, 1 } uniformly 

at random. 
2. If c --- 0 or tr(p, p + 1 ) X  t ~ ~'~, then S t +  1 = S  t. Otherwise St+ 1 = a(p, p + 1 )St. 
The symmetry of the transitions implies that the equilibrium distribution, re, is the 
uniform distribution. We show below, by using the method of path coupling [4], that 
J//f is rapidly mixing, i.e. #t, the distribution of  St, 'quickly' approaches zc. 

When f is the uniform distribution, we shall abbreviate dgf to de'. Observe that 
is simply the original Karzanov-Khachiyan Markov chain. 

For notational convenience we shall assume that f is also defined on 0 and n, and 

that f ( 0 )  = f ( n )  = O. 
Let a transposition sequence from X to Y, for any X, Y C S'2, be any sequence 

Zo,Z1,...,Zr, where X = Z o  and Y=Zr ,  such that Zk El2 and Zk =a(ik , jk)Zk-i  ( k =  1, 
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2 . . . . .  r). The integer r is the length of the sequence, and its weight is its total 
width, ~ = l ( J k  - i k ) .  The transposition distance 6(X, Y) is then the least weight of  
any transposition sequence from X to Y. Clearly 6 is a metric on £2. The diameter 
D = maxx.y~Q 6(X, Y) is bounded above by the number of incomparable pairs in P, 
since there is a sequence of close transpositions of at most this length, and thus D ~< nC2. 

It transpires that we may, in fact, find a tighter upper bound on D than this, since 
it turns out that the transposition distance metric is equivalent to a classical metric 
on total orders: Spearman's footrule [18]. Suppose X is a total order; we shall use 
the notation X(i) to denote the ith element of the total order, X. Then Spearman's 
footrule, 6s(X, Y)=  ½ )--~i~l IX(i) - Y(i)I. We prove in Appendix A that 6s = 6. It is 
well known that 6s(X, Y)<~ [nZ/4J (see, for example, [6]), and thus D~< LnZ/4J. 

The basic technique we employ is known as coupling. We use the following 
'Coupling Lemma'. (See, for example, [1].) 

Lemma 1 (Coupling). Let (X, Y) be a random process (the coupling) such that, 
marginally, X and Y are both copies of JOy. Moreover, suppose Yo is chosen from 
7z, and lzt is the distribution of  Xt. Then 

dTv(#,, :r) <<. P(Xt # Yt ), 

where dTv is the total variation distance metric on measures. 

When Xt = Yt, we say that X and Y have coupled. 

3. The coupling 

Let X and Y be two copies of J//f as in the Coupling Lemrna. At time t, let 
Xt = Zo, Z1,... ,Zr = Yt be a transposition sequence of minimal weight, dt. We let the 
Zk evolve for a single time step as coupled copies of ~ ' f .  Let Z~ be the state to which 
Zk evolves. We couple the Zk as follows. 
(1) Choose p E { 1,2 . . . . .  n - 1 } according to the distribution f ,  and co E {0, 1 } uni- 

formly at random. 
(2) For each k E { 1,2 . . . . .  r}: if j k -  ik = 1 and p = ik, then let ck = 1 - e k - t ,  otherwise 

let C k = Ck-- 1. 

(3) For each kE{0 ,1  . . . . .  r}: if ck--0 or a ( p , p +  1)Zk ~ I2, Z~--Zk. Otherwise Z~= 
a( p, p + 1)Zk. 

We will show that Edt+l <dr, for a suitable choice of f (and in fact that Edt+l 
<~ dt for an arbitrary concave f ) .  For notational simplicity, let us write A = Zk-1, B = Zk 
and (i,j)=(ik,jk). Thus B----tr(i,j)A, i.e. 

A=(al  a2" " a i - i  a i"  . . a j a j + l  . .  "an) ,  B = ( a l  a 2 "  "a i -1  a j . . . a i a j + l  . .  "an) .  

If p ~ { i -  1 , i , j -  1,j} then 6(A',B')= ( j -  i)= 6(A,B), since either we do nothing 
in both A and B, or a ( p , p +  1) can be successfully applied in both A and B. 
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I f  p =  i -  1, then either we do nothing in both A and B with probability ½, or 

we attempt to make the transposition, tr(i - 1, i), in both A and B. I f  this trans- 
position is successful in neither, we will have 6(A~,B ' )=6(A,B) ;  if  it is successful 

in both, then we will have 6 ( A ' , B ' ) = 6 ( A , B ) +  1, since A' and B' will differ by a 
transposition of  width ( j  - i + 1). I f  it is successful in only one o f  A and B then 

6(At,B ')  = 6s(A' ,B ~) = 6 ( A , B ) +  1. Thus, conditional on p = i -  1, or similarly, p = j ,  
1 we have Ef (A ' ,B ' )<~6(A ,B)  + ~. 

Now consider p = i. Suppose first that i C j -  1, i.e. ( j - i )  > 1. Then the transposition, 
a(i, i + 1 ), must succeed in both A and B - -  for suppose to the contrary that it fails, in 

A, say. Then ai <~ ai+l, but ai follows ai+l in B, so B ~ f2, establishing a contradiction. 
Thus with probability ½ we have 6(A~,B ~) = 6(A,B)  - 1, since A',  B' will differ by a 
transposition of  width ( j -  i -  1). Thus conditional on p = i, or similarly, p = j -  1, 

1 Therefore, if  i C j -  1, we have E6(A',B')<~ 6(A, B ) -  ~. 

E f ( A ' , B ' )  - O(A,B) <~ ½( f ( i  - 1) - f ( i )  - f ( j  - 1) + f ( j ) ) .  

It remains only to consider the case p = i = j -  1. Clearly, we can apply a(i, i +  1) in 

both A,B,  since B = or(i, i + 1)A. Moreover, the coupling c ( B ) =  1 - c ( A )  ensures that 
we do nothing in one and transpose in the other. Thus B ~ = A  ~ with unit probability, 
and 6 ( A ' , B ' ) =  6 ( A , B ) -  1. Therefore, if  i = j -  1, 

E 6 ( A ' , f f )  - 6(A,B)  <~ ½( f ( i  - 1) ÷ f ( j ) )  - f ( i )  

= ½ ( f ( i -  1 ) -  f ( i ) -  f ( j -  1) + f ( j ) ) .  

So, in all cases, we have that the unconditioned expectation, E6(A~,B~)<~6(A,B)+ 

½( f ( i  - 1) - f ( i )  - f ( j  - 1) ÷ f ( j ) ) .  
Note that this shows that the transposition distance does not increase in expectation 

under this coupling for any concave probability distribution f .  It is possible to prove 
rapid mixing in this general setting, resulting in a mixing time of  O(n 5), however we 
do not do this here. Instead, we fix on a particular choice of  f and show that, for this 
f ,  J/gf has a mixing time of  O(n 3 logn).  

Our choice of  concave probability distribution is F( i )  = i(n - i ) /K,  where K is the 
normalizing constant. It is easy to verify that K = ~ (n 3 - n). We choose F as quadratic, 

since we observe that to minimize maxi <j { ( f ( i  - 1 ) - f ( i )  - f ( j  - 1 ) + f ( j ) ) / ( j -  i)}, 
we should use a function with a constant second difference. 

Then, for all i, F ( i )  - F( i  - 1 ) = ( n  ÷ 1 - 2i)/K,  and thus ½(F(i - 1) - 
F( i )  - F ( j  - 1 ) + F ( j ) )  = (i - j ) / K .  

Now recall that 6 ( A , B ) = j -  i, and thus E(6(A' ,B'))<~(1 - ( 1 / K ) ) 6 ( A , B ) .  

Following [4] we have 

Thus d t ~ < ( 1 -  (1/K)) tD,  and since d¢ is a non-negative integer valued variable, 
P(Xt • Yt)<~ (1 - (1/K))tD.  Applying the Coupling Lemma,  we see that d-rv(Xt ¢ ~)~< 



R. Bubley, M. Dyer/Discrete Mathematics 201 (1999) 81~88 85 

(1 - (1/K))tD. Taking logarithms, and rearranging, we see that in order to ensure that 
dTv(Xt ~ Yt)<<,e we need only simulate J /F  for K In De -l steps. 

Recalling that D ~< Ln2/4j, we see that this shows that the mixing rate of ~¢¢F is 
bounded above by [~(n 3 -n ) ln (n2e - l / 4 ) l ,  establishing the claimed result. 

4. Lower bounds and related chains 

It is well-known (see e.g. Aldous [1]), that for the Karzanov and Khachiyan chain 
on the set of all total orders, the mixing time is ~2(n3), and O(n 3 logn), and thus the 
mixing time for J / ,  is in general g2(n 3), based on experimental data. 

Consider the partial order consisting of a chain of length n - 1, and one independent 
element. This would have only n linear extensions: the chain, with the independent 
element inserted at each point. J//f, would thus in this case be equivalent to a random 
walk on {1, 2 . . . . .  n}, denoting the position of the random element, and moving with 
probabilities given by f .  Since f is a concave probability distribution, its maximum 
is at most 2In. To see this, suppose the maximum is f (k )=h.  Then f(i)>~hi/k for 
i<~k and f(i)>~h(n- i ) / (n-  k) for i>k. Thus 

n--I k n-I  

1 = Z f ( i ) > ~  Z h i / k  + Z h(n-  i ) / (n-  k)=hn/2, 
i=1 i=1 i=k+l 

from which the assertion follows. Thus the expected time before ~¢/f could perform 
a non-null transition is O(n). Since a simple random walk on {1,2 . . . . .  n} has mixing 
time O(n2), we see that for any concave choice of f ,  J / f  has a mixing time that is 
~2(n 3) in the worst ease. 

There is therefore no substantial complexity gap between the mixing time proved 
in this paper and the theoretical optimum for this class of chains. Any significant 
improvement over the results of this paper would have to be made by turning to 
different Markov chains. 

A corollary of the mixing rate proved in this paper, together with some work of 
Dyer and Greenhill [10] on eigenvalue comparisons, is that the mixing rate of the 
Karzanov and Khachiyan chain is worse than that of "//IF by no more than a factor 
of O(log [OI)= O(n log n); i.e. that the mixing rate of J / i s  O(n 3 log n log [f2le -1 ) (an 
improvement on the bound previously known of O(n 4 log [f2[e-l ) [8]), and furthermore, 
that the Karzanov and Khachiyan chain has a relaxation time that is worse than that 
of JgF by no more than a constant factor - -  both are O(n 3) and therefore optimal on 
this criterion. (The relaxation time is essentially the time needed to get second and 
subsequent random samples from f2, see e.g. Aldous and Fill [2].) 

An obvious candidate for an improved chain would be that which performs tran- 
sitions by choosing a random transposition rather that merely a random close trans- 
position. On the set of all total orders this is known to have mixing time of only 
O(n log n) [5]. Currently, the best-known bound on the mixing time of this chain in 
general, is O(n 4 log n log I~k-~), and the relaxation time is O(n4). (This fact is derived 
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from the mixing rate proved in this paper, again together with some work of Dyer and 

Greenhill [10]). This approach cannot succeed however, for the relaxation time (and 
hence the mixing time) of  this chain is in general O(n 4) (consider again the partial 

order than consists of  a chain and an element; here the probability of  a transition being 
non-null is O(1/n2)). 

A more promising candidate is the chain that performs transitions by choosing a ran- 
dom element to delete and a random position for its subsequent reinsertion. This has a 
mixing time of tg(n log n) on the set of  all total orders. Again, the mixing rate proved in 

this paper together with [10] shows an upper bound on the mixing rate of  this chain of  
O(n 4 log n log 1818-1), and relaxation time of O(n 4). In general, however, we may show 

a lower bound of O(n 2) for the mixing time of this chain. Consider the partial order 

that is formed from two independent chains, A and B, each of size 2n + 1. Let a and b, 
respectively, be the middle elements of  the two chains. I f  we were to start this Markov 

chain with the ordering in which all elements of  A are ranked before all elements of  B, 
then the initial distance between a and b is n + 1. Consider how this distance may de- 
crease. In order for it to decrease we would first have to select either the least element 

of  A, or the largest element of B, between a and b. The expected time before this occurs 
is O(n). Since the initial distance between a and b is O(n), the expected time before 
we may have b before a is f2(n 2) - -  but since there are as many linear extensions 

with b before a as b after a, we see that O(n 2) is a lower bound on the mixing time. 
One of the major applications of  the generation of random linear extensions is 

to approximate the number of linear extensions. Calculating this number exactly is 
#P-complete [3]. Brightwell and Winkler [3] illustrate an fpras for approximating this 

number, i.e. an algorithm that approximates the exact number to within a multiplica- 

tive factor of  1 + ¢ with probability at least 3/4: this uses an almost uniform sam- 
pler as a subroutine; the running time of this algorithm, using the original bounds 
on the Karzanov-Khachiyan chain is O(n 9 log 6 n 8 -2 log8 -1 ). Dyer and Frieze [8], as 

well as improving the bound on the mixing rate of  the Karzanov-Khachiyan chain, 
use an improved algorithm for the approximate counting problem that runs in time 
O(n 6 log 2 n 8 -2 log(ne - l ) .  Using what are now standard techniques (see e.g. [2,12]), 

if we have a Markov chain with stationary distribution the uniform distribution on the 
set of  linear extensions, we may use this to generate an algorithm for approximat- 
ing the number of  linear extensions that will run in time O(n 2 log 2 n8 -2 log(n8 -1 ) × 

relaxation time + z ( e /n logn ) ) ,  where z(x)  is a bound on the time for the Markov 

chain to come within a variation distance of x of  the stationary distribution. In par- 
ticular, for J//, or JgF, this translates to an approximation scheme that runs in time 
O(n 5 log 2 n8 -2 log(ne-1)). 

5. Conclusions 

We have shown a significantly improved bound on the mixing rate of  Markov chains 
for generating random linear extensions of  a partial order. We have also indicated that 
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our results are close to optimal for a family of  chains which includes the Karzanov- 
Khachiyan chain as a special case. The convergence proof is non-geometric, in sharp 
contrast to all earlier approaches to this problem, and serves well to illustrate the utility 
of  the path coupling method developed in [4]. 

Appendix A. Equivalence of transposition distance to Spearman's footruie 

Recall that when we refer to a total order (or permutation) this is implicitly on the 
set {1,2 . . . .  ,n}. Furthermore, i f X  is a permutation, then X( i )  denotes the position that 

i is moved to under the permutation. Thus the identity permutation, I ,  could be written 
as I(i)  = i. When we compose permutations, we mean XY(i) =X(Y( i ) ) .  

We defined Spearman's footrule as a metric on total orders: 

6s(S, Y) = ~ IX(i) - Y(i)[. 
i= l  

It should be noted that this definition of Spearman's footrule is in accord with 
Spearman's usage [18], and that recommended by [7]; other authors (e.g. [5]) drop 
the half from the definition. 

Theorem 1. Suppose X and Y are distinct total orders. Suppose further that they 
differ by more than a single transposition (i.e. there is no transposition T, such that 
X = TY), and that both X and Y are linear extensions of  a partial order, P. Then 
there exists a transposition T ~ such that X t = T~X is a linear extension of  P distinct 

from X and Y, and 6s(Y,X')  + 6s (X ' ,X)  = 6s(Y,X). 

Proof. We may assume, without loss of  generality (by relabelling, say), that Y = I .  
Suppose we have i and j ,  such that i<~X(j)<X(i)<<,j. Recall that one can write a 

permutation as the product of  disjoint cycles. In any cycle we may find such an i and 
j .  I f  we have the further condition that for all k such that X ( j ) < k < X ( i ) ,  X ( k ) = k ,  
then we are done, for we may take X '  = a ( X ( i ) , X ( j ) ) X .  

Suppose that we do not have this condition. Then either there is an entire cycle with 
all its elements between X ( j )  and X(i) ,  in which case we may start again with this 

cycle, or there is either an i' such that i I < X ( j )  or i ~ >X(i ) ,  and X ( j ) < X ( i  ~) <X(i ) ,  
in which case we may start again with one of i and i p or j and i'. 

This completes the proof by the classical method of infinite descent. [] 

Corollary 1. Spearman's footrule is identical to transposition distance. 

Proof. Let X and Y be arbitrary linear extensions of  a partial order. I f  X = Y, or 
X and Y differ by exactly one transposition, then the equivalence of the two metrics 
follows easily. If, instead, X and Y differ by more than a single transposition, then we 
may proceed by repeated application of the above theorem. We may use the theorem 
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to construct a transposition sequence. The minimality of 6 then guarantees that 6 ~< 6s. 
Conversely, we may argue by induction on the length of the minimum transposition 
sequence. If Z ¢X,  Y is a member of this sequence, then 

6(Y,x) = ,~(r, z)  + 6 ( z , x ) =  ,~s(r, z)  + 6s(Z,X)>/6s(g,x), 

respectively, by induction and the triangle inequality. Thus 6s ~<6. [] 
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