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Abstract. Let y be a random vector in R

n

, satisfying

E y 
 y = id:

LetM be a natural number and let y

1

; : : : ; y

M

be independent copies of y. We prove

that for some absolute constant C
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provided that the last expression is smaller than 1.

We apply this estimate to obtain a new proof of a result of Bourgain concerning

the number of random points needed to bring a convex body into a nearly isotropic

position.

1. Introduction

The problem we consider has arisen from a question in Computer Science.

R. Kannan, L. Lov�asz and M. Simonovits [1] studied the problem of construct-

ing a fast algorithm for calculating the volume of a convex body, To make this

algorithm work they needed to bring the body into a certain "symmetric" position.

More precisely, letK be a convex body in R

n

. We shall say that it is in the isotropic

position if for any x 2 R

n

1

vol (K)

Z

K

hx; yi

2

dy = kxk

2

By k�k we denote the standard Euclidean norm.

The notion of isotropic position was extensively studied by V. Milman and A. Pa-

jor [2]. Note that our de�nition is consistent with [1]. The normalization in [2] is

slightly di�erent.

If the information about the body K is uncomplete it is impossible to bring it

exactly to the isotropic position. So, the de�nition of the isotropic position has to
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be modi�ed to allow a small error. We shall say that the body K is in "-isotropic

position if for any x 2 R

n

(1� ") � kxk

2

�

1

vol (K)

Z

K

hx; yi

2

dy � (1 + ") � kxk

2

:

Let " > 0 be given. ConsiderM random points y

1

; : : : ; y

M

independently uniformly

distributed in K and put

T =

1

M

M

X

i=1

y

i


 y

i

:

If M is su�ciently large, than with high probability













T �

1

vol(K)

Z

K

y 
 y













will be small, so the body T

�1=2

K will be in "-isotropic position. R. Kannan,

L. Lov�asz and M. Simonovits ([1]) proved that it is enough to take

M = c

n

2

"

for some absolute constant c. This estimate was signi�cantly improved by J. Bour-

gain [3]. Using rather delicate geometric considerations he has shown that one can

take

M = C(")n log

3

n:

Since the situation is invariant under a linear transformation, we may assume that

the body K is in the isotropic position. Then the result of Bourgain may be

reformulated as follows:

Theorem 0. [3] Let K be a convex body in R

n

in the isotropic position. Fix " > 0

and choose independently M random points x

1

; : : : ; x

M

2 K,

M � C(")n log

3

n:

Then with probability at least 1� " for any x 2 R

n

one has

(1� ") kxk

2

�

1

M

M

X

i=1

hx; yi

2

� (1 + ") kxk

2

:

We shall show that this theorem follows from a general result about random

vectors in R

n

. Let y be a random vector. Denote by E X the expectation of a

random variable X. We say that y is in the isotropic position if

E y 
 y = id: (1.1)

If y is uniformly distributed in a convex body K, then this is equivalent to the fact

that K is in the isotropic position.

We prove the following
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Theorem 1. Let y 2 R

n

be a random vector in the isotropic position. Let M be a

natural number and let y

1

; : : : ; y

M

be independent copies of y. Then
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� C �

p

logn

p

M

�

�

E kyk

logM

�

1= logM

; (1.2)

provided that the last expression is smaller than 1.

Here and later C; c, etc. denote absolute constants whose values may vary from

line to line.

Remark. Taking the trace of (1.1) we obtain that E kyk

2

= n, so to make the right

hand side of (1.2) smaller than 1, we have to assume that M � cn logn.

The proof of Theorem 1 is based upon the estimate of a certain vector valued

Rademacher series (the Lemma below). The author's proof of this estimate used

the construction of a majorizing measure for a subgaussian process. After the �rst

variant of this paper [4] was written, G. Pisier [5] found an alternative simpler proof

based on the non{commutative Khinchine inequalities due to F. Lust-Piquard and

himself [6]. We present this proof below. During the preparation of this paper the

author was informed by G. Pisier that he included the proof of the Lemma in the

upcoming book [7]. The original probabilistic proof can be found in [4].

Using Theorem 1 we prove a better estimate of the length of approximate John's

decompositions [8] and thus improve the results about approximating a convex body

by another one having a small number of contact points, obtained in [9]. Estimating

the moment of the norm of random vector in a convex body, we obtain a di�erent

proof of Theorem 0 which gives also a better estimate.

Acknowledgment. I would like to thank Joram Lindenstrauss for helpful discussions

and Gilles Pisier for the permission to present his proof of the Lemma.

2. Proof of the Theorem.

The proof of Theorem 1 consists of two steps. First we introduce a Rademacher

series that majorizes the expectation of the norm in (1.2). Then we use the the

Khinchine inequality in the Banach space C

p

to obtain a bound for it.

The �rst step is relatively standard. Let "

1

; : : : ; "

M

be independent Bernoulli

variables taking values 1;�1 with probability 1=2 and let y

1

; : : : ; y

M

; �y

1

; : : : ; �y

M

be independent copies of y. Denote E

y

; E

"

the expectation according to y and "

respectively. Since y

i


 y

i

� �y

i


 �y

i

is a symmetric random variable, we have
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:

To estimate the last expectation, we need the following Lemma, which generalizes

Lemma 1 [10].
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Lemma. Let y

1

; : : : ; y

M

be vectors in R

n

and let "

1

; : : : ; "

M

be independent Berno-

ulli variables taking values 1;�1 with probability 1=2. Then

E
















M

X

i=1

"

i

y

i


 y

i
















� C

p

logn � max

i=1;:::;M

ky

i

k �
















M

X

i=1

y

i


 y

i
















1=2

:

We postpone the proof of the Lemma to the next section.

Applying the Lemma, we get
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1=2

:

(2.1)

We have

�

E max

i=1;:::;M

ky

i

k

2

�

1=2

�

0

@
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M

X

i=1
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i

k

logM

!

2= logM

1

A

1=2

�

M

1= logM

�

�

E kyk

logM

�

1= logM

:

Thus, denoting

D = E
















1

M

M

X

i=1

y

i


 y

i

� id
















;

we obtain by (2.1)

D � C �

p

logn

p

M

�

�

E kyk

logM

�

1= logM

� (D + 1)

1=2

:

If

C �

p

logM

p

M

�

�

E kyk

logM

�

1= logM

� 1;

we get

D � 2C �

p

logM

p

M

�

�

E kyk

logM

�

1= logM

;

which completes the proof of Theorem 1.

3. Proof of the Lemma: non{commutative Khinchine inequality.

We present here a short proof of the Lemma found by G. Pisier.

Let 1 � p � 1. Denote by C

n

p

the p-th Schatten class { the Banach space of the

operators in R

n

, equipped with the norm

kuk

C

n

p

=

0

@

n

X

j=1

s

p

j

(u)

1

A

1=p

;
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where s

j

(u) are the singular numbers of the operator u. Also, let Q = f�1; 1g

N

and

let � be the Haar measure on Q. Let "

1

; : : : ; "

M

: Q! f�1; 1g be the Rademacher

functions: for x 2 Q, "

j

(x) is the j-th coordinate of x.

The proof is based on the following

Theorem. (i) Assume 2 � p <1. Then there is a constant B

p

such that for any

�nite sequence fX

j

g in C

n

p

, one has

max

(













�

X

X

�

j

X

j

�

1=2













C

n

p

;













�

X

X

j

X

�

j

�

1=2













C

n

p

)

�










X

"

j

x

j










L

p

(Q;�;C

n

p

)

� B

p

max

(













�

X

X

�

j

X

j

�

1=2













C

n

p

;













�

X

X

j

X

�

j

�

1=2













C

n

p

)

:

(ii) Assume 1 � p � 2. Then there is a constant A

p

such that for any �nite

sequence fX

j

g in C

n

p

, one has

A

p

jkfX

j

gkj

p

�










X

"

j

X

j










L

p

(Q;�;C

n

p

)

� jkfX

j

gkj

p

;

where

jkfx

j

gkj

p

= inf

(













�

X

Y

�

j

Y

j

�

1=2













C

n

p

+













�

X

Z

j

Z

�

j

�

1=2













C

n

p

�

�

�

X

j

= Y

j

+ Z

j

)

:

The inequality (i) was obtained by Lust-Piquard [11]; the inequality (ii) was

obtained later by Lust-Piquard and Pisier [6].

For p = logn we have

kXk

C

n

p

� kXk � e � kXk

C

n

p

:

So, applying (i) for X

j

= y

j


 y

j

, we get

E
















M

X

i=1

"

j

y

j


 y

j
















� e �
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@
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j
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p

C

n

p

1

A

1=p

� e �B
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M

X

i=1
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j

k

2

y

j


 y

j

!

1=2



















C

n

p

� e �B
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M

X

i=1
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j

k

2

y

j


 y

j

!

1=2



















� e �B

p
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j=1;:::;M
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j

k �
















M

X

i=1

y

j


 y

j
















1=2

:

To complete the proof we have to show that

B

p

� C �

p

p: (3.1)
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The proof of (i) in [L-P] does not provide this estimate, so we have to dualize (ii)

in order to get (3.1).

Let (Q

0

; �

0

) be a copy of (Q;�) and let "

0

1

; : : : ; "

0

M

be Rademacher functions on

(Q

0

; �

0

). First, notice that for any �nite sequence fX

j

g � C

n

p










X

"

j

X

j










L

p

(Q;�;C

n

p

)

=










X

"

0

j

"

j

X

j










L

p

(Q

0

;�

0

;L

p

(Q;�;C

n

p

))

:

So, by duality we have

B

p

� A

p

0

�K(L

p

(Q;�;C

n

p

));

where K(E) is the K-convexity constant of a Banach space E [12], and p

0

is the

conjugate of p. Since L

p

(Q;�;C

n

p

) embeds isometrically into C

N

p

for N = n � 2

n

,

we have

K(L

p

(Q;�;C

n

p

)) � K(C

N

p

):

By [13] the K-convexity constant of a Banach space can be estimated by the type

2 constant, so

B

p

� A

p

0

� C � T

2

(C

N

p

) (3.2)

and by [14]

T

2

(C

N

p

) � C

p

p: (3.3)

The estimate (3.1) follows now from the combination of (3.2), (3.3) and the unifor-

mal boudedness of A

p

0

for 1 � p

0

� 2 [6, Cor. III.4].

Remark. Notice that actually we have proved the inequality

 

E
















M

X

i=1

"

i

y

i


 y

i
















p

!

1=p

� Cmaxf

p

logn;

p

pg � max

i=1;:::;M

ky

i

k �
















M

X

i=1

y

i


 y

i
















1=2

(3.4)

which is formally stronger than the Lemma. However, it is easy to show that (3.4)

is equivalent to the Lemma. Indeed, by a theorem of Talagrand [15], for any Banach

space X and any vectors u

1

; : : : ; u

M

2 X one has










X

"

j

u

j










L

p

(Q;�;X)

� C �

�










X

"

j

u

j










L

1

(Q;�;X)

+

p

p � `

w

2

(fu

j

g)

�

;

where

`

w

2

(fu

j

g) = sup

ku

�

k

X

�

�1

�

X

hu

�

; ui

2

�

1=2

:

For u

j

= y

j


 y

j

we have

`

w

2

(fy

j


 y

j

g) = sup

ku

�

k

C

n

1

�1

 

M

X

i=1

hu

�

; y

j


 y

j

i

2

!

1=2

= sup

kxk�1

 

M

X

i=1

hx
 x; y

j


 y

j

i

2

!

1=2

� max

i=1;:::;M

ky

i

k �
















M

X

i=1

y

i


 y

i
















1=2

:

So, the estimate for L

p

-norm of

P

M

i=1

"

i

y

i


 y

i

follows from that for L

1

-norm.
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4. Applications.

We turn now to the applications of Theorem 1. Applying Theorem 1 to the

question of Kannan, Lov�asz and Simonovits, we obtain the following Corollary,

which improves Theorem 0.

Corollary 4.1. Let " > 0 and let K be an n-dimensional convex body in the

isotropic position. Let

M � C �

n

"

2

� log

2

n

"

2

and let y

1

; : : : ; y

M

be independent random vectors uniformly distributed in K. Then

E
















1

M

M

X

i=1

y

i


 y

i

� id
















� ":

Proof. It follows from a result of S. Alesker [16], that

E exp

 

kyk

2

c � n

!

� 2

for some absolute constant c. Then

E kyk

logM

�

�

E e

kyk

2

c�n

�

1=2

�

�

E

�

kyk

2 logM

� e

�

kyk

2

c�n

��

1=2

�

p

2 �

�

max

t�0

t

logM

� e

�

t

c�n

�

1=2

� (C � n � logM)

logM

2

:

Corollary 4.1 follows from this estimate and Theorem 1. �

By a Lemma of Borell [17, Appendix III], most of the volume of a convex body

in the isotropic position is concentrated within the Euclidean ball of radius c

p

n.

So, it might be of interest to consider a random vector uniformly distributed in the

intersection of a convex body and such a ball. In this case the previous estimate

may be improved as follows.

Corollary 4.2. Let "; R > 0 and let K be an n-dimensional convex body in the

isotropic position. Suppose that R � c

p

log 1=" and let

M � C

0

�

R

2

� n

"

2

� logn: (4.2)

Let y

1

; : : : ; y

M

be independent random vectors uniformly distributed in

(K \R

p

n) �B

n

2

. Then

E
















1

M

M

X

i=1

y

i


 y

i

� id
















� ":
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Proof. Denote a = R �

p

n and let z be a random vector uniformly distributed in

K \ aB

n

2

. Then for x 2 B

n

2

E hz; xi

2

=

vol (K)

vol (K \ aB

n

2

)

�

�

1

vol (K)

Z

K

hy; xi

2

dy �

1

vol (K)

Z

K

hy; xi

2

� 1

fu

�

�

kuk�ag

(y) dy

�

:

Since R � c

p

log 1=", it follows from a result of S. Alesker [16] that

vol (K)

vol (K \ aB

n

2

)

� 1 + e

�ca

2

=n

� 1 +

"

4

:

The Khinchine type inequality for convex bodies [2, Sect. 1.4] implies

1

vol (K)

Z

K

hy; xi

2

� 1

fu

�

�

kuk�ag

(y) dy �

�

1

vol (K)

Z

K

hy; xi

4

dy

�

1=2

�

�

1

vol (K)

Z

K

1

fu

�

�

kuk�ag

(y) dy

�

1=2

�

Ce

�ca

2

=2n

�

"

4

:

Thus for any x 2 B

n

2

jE hz; xi

2

� 1j �

"

2

:

De�ne a random vector

y = (E z 
 z)

�1=2

z:

Then y is in the isotropic position and

�

E kyk

logM

�

1= logM

�










(E z 
 z)

�1=2










�

�

E kzk

logM

�

1= logM

� 2a;

so

E
















1

M

M

X

i=1

y

i


 y

i

� id
















� C �

p

logM

p

M

� 2a �

"

2

provided the constant C

0

in (4.2) is large enough. Thus,

E
















1

M

M

X

i=1

z

i


 z

i

� id
















� E
















1

M

M

X

i=1

y

i


 y

i

� id
















� kE z 
 zk+ kE z 
 z � idk � ":

�

The next application is connected to the approximation of a convex body by

another one having a small number of contact points [9]. Let K be a convex

body in R

n

such that the ellipsoid of minimal volume containing it is the standard

Euclidean ball B

n

2

. Then by the theorem of John, there exist N � (n + 3)n=2

8



points z

1

; : : : ; z

N

2 K; kx

i

k = 1 and N positive numbers c

1

; : : : ; c

N

satisfying the

following system of equations

id =

N

X

i=1

c

i

z

i


 z

i

(4.3)

0 =

N

X

i=1

c

i

z

i

: (4.4)

It was shown in [8] for convex symmetric bodies and in [9] in the general case, that

the identity operator can be approximated by a sum of a smaller number of terms

x

i


x

i

. We derive from Theorem 1 the following corollary, which improves Lemma

3.1 [9].

Corollary 4.3. Let " > 0 and let K be a convex body in R

n

, so that the ellipsoid

of minimal volume containing it is B

n

2

. Then there exist

M �

C

"

2

� n � logn (4.5)

contact points x

1

; : : : ; x

M

and a vector u; kuk �

C

p

M

, so that the identity operator

in R

n

has the following representation

id =

n

M

M

X

i=1

(x

i

+ u)
 (x

i

+ u) + S;

where

M

X

i=1

(x

i

+ u) = 0 (4.6)

and

kS : `

n

2

! `

n

2

k < ":

Proof. Let (4.3) be a decomposition of the identity operator. Let y be a random

vector in R

n

, taking values

p

nz

i

with probability c

i

=

p

n. Then, by (4.3), y is in

the isotropic position. Obviously, for all 1 � p <1

(E kyk

p

)

1=p

=

p

n:

So, taking M as in (4.5), we obtain that for su�ciently large C
















1

M

M

X

i=1

y

i


 y

i

� id
















�

"

2

(4.7)
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with probability greater than 3=4. Since by (4.4), E y = 0 and kyk =

p

n, we have
















M

X

i=1

y

i
















� 2

p

M (4.8)

with probability greater than 3=4. Take y

1

; : : : ; y

M

for which (4.7) and (4.8) hold

and put

x

i

=

1

p

n

� y

i

; u = �

1

M

M

X

i=1

x

i

:

Then (4.6) is satis�ed and
















n

M

M

X

i=1

(x

i

+ u)
 (x

i

+ u)� id
















�
















n

M

M

X

i=1

x

i


 x

i

� id
















+ n � ku
 uk �

"

2

+

4n

M

� ": �

Notice that in the previous construction of an approximate John's decomposition

[9] the number of terms M was a random variable and the distribution of contact

points x

1

; : : : ; x

M

was completely untraceable. Unlike that situation, for the de-

composition constructed above M is a constant and x

1

; : : : ; x

M

are independent

identically distributed random vectors, whose distribution is de�ned by the original

John decomposition.

Substituting Lemma 3.1 [9] by Corollary 2.3 in the proof of Theorem 1.1 [9] we

obtain the following

Corollary 4.3. Let B be a convex body in R

n

and let " > 0. There exists a convex

body K � R

n

, so that d(K;B) � 1 + " and the number of contact points of K with

the ellipsoid of minimal volume containing it is less than

M(n; ") =

C

"

2

� n � logn:
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