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Abstract

We consider the problem of approximately counting/sampling weighted independent sets of

a graph G with activity λ, i.e., where the weight of an independent set I is λ|I|. We present
a novel analysis yielding a deterministic approximation scheme which runs in polynomial time

for any graph of maximum degree ∆ and λ < λc = (∆ − 1)∆−1/(∆ − 2)∆. This improves on
the previously known general bound of λ ≤ 2

∆−2
. The new regime includes the interesting

case of λ = 1 (uniform weights) and ∆ ≤ 5. The previous bound required ∆ ≤ 4 for uniform

approximate counting and there is evidence that for ∆ ≥ 6 the problem is hard. Note that λc

is the critical activity for uniqueness of the Gibbs measure on the regular tree of degree ∆, i.e.,

for λ ≤ λc the probability that the root is in the independent set is asymptotically independent

of the configuration on the leaves far below. Indeed, our analysis is focused on establishing
decay of correlations with distance in the above weighted distribution. We show that on any

graph of maximum degree ∆ correlations decay with distance at least as fast as they do on
the regular tree of the same degree. This resolves an open conjecture in statistical physics.

Our comparison of a general graph with the tree uses an algorithmic argument yielding the

approximation scheme mentioned above. Also, by existing arguments, establishing decay of
correlations for all graphs and λ < λc gives that the Glauber dynamics is rapidly mixing in this

regime. However, the implication from decay of correlations to rapid mixing of the dynamics is

only known to hold for graphs of subexponential growth, and hence, our result regarding the
Glauber dynamics is limited to this class of graphs.
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1 Introduction

Counting (or sampling) independent sets of a graph G is a problem that has been widely studied

both in computer science and statistical physics. The problem usually includes an additional pa-

rameter λ, and the goal is to count/sample weighted independent sets such that the weight of an

independent set I is proportional to λ|I|. In statistical physics this model is referred to as the hard-

core model with activity λ. Intuitively, we expect the problem to become harder as λ increases (i.e.,

as the weight shifts to the larger independent sets). Indeed, an algorithm for sampling independent

sets with λ arbitrarily large can be used to find a maximum independent set, an NP-hard problem.

Based on this intuition, it was shown [15] that for any ∆ ≥ 4, it is NP-hard to approximate the

above sum, even to within a polynomial factor, for graphs of maximum degree ∆ and λ > c
∆ ,

where c is a (large enough) absolute constant.

In this paper we are interested in the regime for which an efficient approximation scheme does

exist. The best known [7, 23] general bound on λ for which there exists an FPRAS (Fully Poly-

nomial Randomized Approximation Scheme) for counting independent sets is λ ≤ 2
∆−2 , where ∆

is the maximum degree of the graph G. This algorithm is based on approximately sampling from

the desired distribution using the Glauber dynamics, a well-known Markov chain where in each

step a vertex is chosen uniformly at random and its value (occupied or unoccupied) is updated

conditioned on the current values of its neighbors. The argument in [7, 23] establishes a certain

local contraction of the dynamics’ operator, one that implies fast convergence of the chain. The

same local contraction also implies that the stationary distribution exhibits decay of correlations

with distance, i.e., the probability that a vertex v is occupied is asymptotically independent from

the configuration of vertices far away from v. This is in line with a general correspondence be-

tween rapid mixing of this chain and decay of correlations with distance in the stationary distribu-

tion [22, 16, 4, 8, 24]. We note that establishing decay of correlations in distance is of independent

importance (in fact, one of the main interests) for statistical physicists because it means that the

Gibbs measure associated with the model is unique, i.e., there is a unique macroscopic equilibrium.

Arguments of the kind used in [7, 23] have a known limit. Specifically, it is known that any

argument that works for general graphs and which establishes decay of correlations with distance

as a byproduct is bound to fail for λ > λc ≡ λc(∆) = (∆ − 1)∆−1/(∆ − 2)∆. The reason for

this is that λc is the critical activity for decay of correlations on the infinite regular tree in which

every vertex has degree ∆, i.e., for λ > λc the probability that the root of this tree is occupied

has non-negligible dependence on the configuration ℓ levels below for arbitrarily large ℓ. (Notice

that counting independent sets of the tree is easy — can be done in linear time — for arbitrary λ.

Nevertheless, the fact that correlations persist over arbitrarily long distances in the tree for λ > λc

forbids any argument that works for general graphs and implies decay of correlation with distance.)

It has been conjectured [20] that the above limit imposed by the regular tree can be matched,

i.e., that the regular tree is the worst-case graph in terms of decay of correlations and that for any

graph of maximum degree ∆ correlations decay with distance throughout the regime λ ≤ λc. The

algorithmic version of this conjecture states that there exists an FPRAS for counting independent

sets for any graph of maximum degree ∆ and λ ≤ λc. In this paper we prove both versions of the

above conjecture. (For the algorithmic result we require a strict inequality.) Specifically, we present

a novel tree representation for a general graph G, one that allows us to show that correlations on G
decay with distance at least as fast as they do on the regular tree. Our analysis is algorithmic in

nature, yielding a novel, tree-like, deterministic algorithm for counting independent sets. We show
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that if correlations on the regular tree decay exponentially fast with distance then for any graph of

the same maximum degree, the above algorithm gives a (1 + ǫ) approximation of the number of

independent sets in time polynomial in n
ǫ , where n is the size of G. The fact that we establish decay

of correlations for any graph and λ < λc also implies [22, 16, 4, 8, 24] rapid mixing of the Glauber

dynamics in this regime. However, the latter implication is only known to hold in graphs whose

growth is subexponential. (The volume of balls of radius r around a vertex v grow subexponentially

in r.) Thus, we establish rapid mixing of the Glauber dynamics for any graph in this class and any

λ < λc. It is worth mentioning here that rapid mixing of the Glauber dynamics for λ < λc was

already established in [12] for graphs of girth at least 6 and large degree (∆ = Ω(log n)). Thus,

our algorithmic results can also be viewed as eliminating the girth and large degree requirements

imposed in [12].

While our results extend the regime of λ for which we can approximately count independent sets

in general graphs and in which decay of correlations in known to hold, the new regime also includes

improvements for the following two interesting specific cases. The first is when λ = 1, i.e., when

all the independent sets are equally weighted. The previously known bound [7, 23] gives efficient

approximate counting of uniformly weighted independent sets for graphs of maximum degree 4.

Our bound extends this to graphs of maximum degree 5. Notice that in some respect this is tight

since there are graphs [6] of maximum degree 6 for which any “local” algorithm for approximately

sampling a uniform independent set must take exponential time. ([6] also establishes NP-hardness

of approximation for graphs of maximum degree 25.) Notice also that counting independent sets

of graphs of maximum degree 4 (exactly) is #P-complete, and to the best of our knowledge, our

algorithm is the first to give a deterministic fully polynomial approximation scheme (FPTAS) for

a “natural” #P-complete problem. (See [11] for another recent example, where a deterministic

FPTAS is established for a different #P-hard problem).

The second important example affected by our results is the integer lattice Z
2, which is probably

the most interesting graph to statistical physicists. Simulations suggest that the critical activity for

decay of correlations on Z
2 is around 3.79. However, the rigorously known bounds are far from that.

The previous general bound [7, 23] gives decay of correlations and efficient approximate counting

(by counting independent sets of Z
2 we mean counting independent sets of finite sub-squares of

Z
2) for λ ≤ 1. A better bound (for Z

2) is achieved by a percolation argument [2] yielding decay

of correlations and hence rapid mixing of the Glauber dynamics for λ < pc

1−pc
, where pc is the

critical probability for site percolation. Plugging in the best rigorous bound [1] on pc for Z
2 gives

the regime λ < 1.255. A different approach specific to Z
2 is based on calculating whether the

Dobrushin-Shlosman condition holds, a condition on the distribution in a finite subset that implies

decay of correlations on the infinite lattice. A series of results [5, 14, 18] improved the bound

on λ by calculating the Dobrushin-Shlosman condition for larger and larger rectangles, yielding the

previously best known bound of λ < 1.508, resulting from a calculation of the distribution on a

6 × 6 rectangle. Our results significantly improve on all the above bounds for Z
2 and extend the

regime to λ < 27/16 = 1.6875.

Another important implication of our results is that since they match the limit imposed by the

tree, any further improvement on the regime of λ for which approximate counting is known to

be contractible must either not imply decay of correlations (i.e., cannot only rely on arguments of

“local” nature), or be specific to a certain graph (or class of graphs) making use of some structural

properties other than just the maximum degree of the graph. Finally, we stress that the main

argument in which we compare a general graph to a tree is based on an elegant (and rather simple)

recursive procedure, i.e., it is an argument natural to computer scientists. Thus, this work serves
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as another example where techniques from theoretical computer science are used to solve open

problems in other mathematical fields (in this case, statistical physics).

2 Preliminaries and statement of results

Let G = (V,E) be a graph and λ > 0 an activity parameter. We are interested in counting (or

sampling) independent sets of G where the weight of each independent set I ⊂ V is λ|I|. Specif-

ically, letting Z ≡ Zλ
G =

∑
I λ|I|, where the summation is over independent sets I of G, we are

interested in calculating Z or sampling from the distribution in which the probability of outputting

the independent set I is λ|I|

Z . In statistical physics the above is referred to as the hard-core model

with activity λ and Z is called the partition function. Notice that if we set λ = 1 then Z simply

counts the number of independent sets of G (the weight of each independent set is 1).

Most of our analysis will be concerned with the marginals of the above distribution at a single

vertex, i.e., the probability that a vertex v is in the chosen independent set. We refer to the latter

event as v being occupied and denote its probability by

pv ≡ pλ
G,v =

∑
I∋v λ|I|

Zλ
G

.

As mentioned in the introduction and as we shall further see below, efficiently approximating Z
is closely related to the distribution over independent sets exhibiting decay of correlations with

distance, where by the latter we mean that conditioning on whether a subset of vertices Λ is in

the independent set or not has little influence on pv when v and Λ are far from each other. Let

Λ ⊂ V be a subset of V and σΛ ∈ {0, 1}Λ a configuration over the vertices in Λ, i.e., for u ∈ Λ,

σΛ(u) = 1 indicates that u is occupied and σΛ(u) = 0 indicates that it is not. We write pσΛ
v for

the probability that v is occupied conditioned on the configuration in Λ being fixed as specified

by σΛ. We will only consider configurations σΛ which specify independent sets of Λ so the above

conditional probability is well defined. Notice that since the distribution is over independent sets

then the above conditional probability is the same as the unconditional probability on a smaller

graph, the one resulting from deleting all the vertices in Λ as well as the neighbors of u for every u
such that σΛ(u) = 1. We are now ready to define the notions of decay of correlations we will use.

Definition 2.1 Let δ : N → R
+. We say that the distribution over independent sets of G = (V,E) with

activity parameter λ exhibits weak spatial mixing with rate δ(·) if and only if for every v ∈ V , Λ ⊂ V ,

and any two configurations σΛ, τΛ specifying independent sets of Λ,

|pσΛ
v − pτΛ

v | ≤ δ(dist(v,Λ)),

where dist(v,Λ) stands for the graph distance (the length of the shortest path) between the vertex v
and the subset Λ.

In statistical physics the graph G is usually an infinite graph (such as the square integer lattice Z
2)

and weak mixing with rate δ that goes to zero is equivalent to the uniqueness of the Gibbs measure,

i.e., to the existence of a unique macroscopic equilibrium.
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Definition 2.2 Let δ : N → R
+. We say that the distribution over independent sets of G = (V,E) with

activity parameter λ exhibits strong spatial mixing with rate δ(·) if and only if for every v ∈ V , Λ ⊂ V
and any two configurations σΛ, τΛ specifying independent sets of Λ,

|pσΛ
v − pτΛ

v | ≤ δ(dist(v,∆)),

where ∆ ⊆ Λ stands for the subset on which σΛ and τΛ differ.

Let us briefly discuss the difference between the two kinds of spatial mixing. First, notice that by

definition strong spatial mixing is indeed stronger, i.e., strong spatial mixing with rate δ implies

weak spatial mixing with rate δ. The difference between the two is that in the strong mixing

definition we are allowed to fix vertices that are close to v as long as we fix them to the same value

in both σ and τ . One might be tempted to conclude that weak spatial mixing implies strong spatial

mixing since fixing additional vertices to the same value in both σ and τ should only decrease

the influence of vertices in ∆. However, this intuition is not generally true and the prime counter

example is the ferromagnetic Ising model at appropriate temperature and positive external field on

appropriate graphs. Roughly speaking, the reason for these counter examples is that fixing vertices

close to v may shift pv to a regime where it is more sensitive to the configuration in ∆.

Remark: In the literature, strong spatial mixing is usually referred to as what we call strong spatial mixing

with exponential decay, i.e., with δ(ℓ) = C exp(−αℓ) for some positive constants C and α. Also, it is often

the case in those definitions that ∆ is required to consist of a single vertex. The single-vertex definition with
exponential decay is equivalent to the one with ∆ of arbitrary size when the graph grows sub-exponentially

(as integer lattices, for example), but is less meaningful otherwise (the single-vertex definition of strong

spatial mixing does not even imply weak spatial mixing in exponentially-growing graphs). We take the same
approach as in the author’s thesis [24] by allowing ∆ to be of arbitrary size, an approach which defines a

stronger yet more useful condition when considering general graphs.

Our analysis is concentrated on comparing the sensitivity of the value at a vertex v in a general

graph G (to conditions on other vertices in G, as in the spatial-mixing definitions above) with the

sensitivity of the value at the root of the regular tree (to conditions on other vertices in the tree).

Let T̂
b be the infinite regular tree where each vertex has degree b + 1. Notice that if we root this

tree at any particular vertex then the root has b + 1 children, while the rest of the vertices have b
children each. This graph is usually referred to as the Bethe lattice or Cayley tree. (Later on we

will also need to refer to the rooted infinite regular tree in which the root has b children as do the

rest of the vertices. The latter tree will be denoted as T
b.) Our two main technical results are the

following.

Theorem 2.3 For every positive integer b and any λ, if T̂
b with activity λ exhibits strong spatial mixing

with rate δ then, with the same activity λ, every graph of maximum degree b+1 exhibits strong spatial

mixing with rate δ.

Theorem 2.4 For every positive integer b and any λ, if T̂
b with activity λ exhibits weak spatial mixing

with rate δ(·) then it also exhibits strong spatial mixing with rate
(1+λ)(λ+(1+λ)b+1)

λ δ(·) .

Remark: Theorem 2.3 is not specific to the independent-sets model. As will be apparent from its proof

below, it applies to any model in which each vertex is assigned one of two values (or spins), e.g., Ising
models. On the other hand, Theorem 2.4 is not as general since, for example, the ferromagnetic Ising model
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on the regular tree at appropriate temperature and positive external field exhibits weak spatial mixing with

a decaying rate but not strong spatial mixing. However, the crucial property for Theorem 2.4 seems to be the
antiferromagnetic nature of the interaction between neighboring vertices. Indeed, in the full version of the

paper we show that the analogous version of Theorem 2.4 also holds for the antiferromagnetic Ising model
(with any external field).

The regime of λ for which T̂
b exhibits weak spatial mixing with a rate that goes to zero (unique-

ness of the Gibbs measure) is well known [13, 21]:

Proposition 2.5 For every positive integer b, T̂
b with activity parameter λ exhibits weak spatial mixing

with a rate δ that goes to zero if and only if λ ≤ λc(b) = bb

(b−1)b+1 . If the inequality is strict then the

rate δ can be taken to go to zero exponentially fast (with constants that depend on b and λ).

Corollary 2.6 For every positive integer b and any λ ≤ λc(b) there exists a decaying rate δ such that

for every graph G of maximum degree b+1, G with activity λ exhibits strong spatial mixing with rate δ.

(In particular, for any graph of maximum degree b + 1, the Gibbs measure is unique for λ ≤ λc(b).)
Furthermore, the rate δ can be taken to decay exponentially fast (with constants that depend on b
and λ) if λ < λc(b).

Notice that the threshold for decay of correlations given in Corollary 2.6 is tight since, as mentioned

in Proposition 2.5, T̂
b is an example of a graph that does not exhibit spatial mixing with any

decaying rate when λ > λc(b). Also, the corollary proves Conjecture 2.1 in [20]. (This conjecture

considers a model in which each vertex is associated with its own activity parameter and the regime

asserted is the one in which the maximum activity is ≤ λc(b). It can easily be seen from our proofs

below that Corollary 2.6 holds in this scenario as well.)

As already mentioned, establishing strong spatial mixing has algorithmic implications. The

reason for this is that then the distribution over independent sets is very local in nature and this

suggests that local algorithms that approximate the partition function should work well. In fact,

the proof of Theorem 2.3 implicitly includes an algorithm of this kind.

Theorem 2.7 There exists a deterministic algorithm such that for every integer b and any λ, if T̂
b with

activity λ exhibits strong spatial mixing with rate δ(ℓ) = O(exp(−αℓ)) for some α > 0 then on input of

any graph G of maximum degree b+1 the algorithm approximates the partition function Zλ
G to within

a factor (1 + ǫ) in time O(( (1+ǫ)n
ǫ )1+(ln b)/α), where n = |V |. (The algorithm outputs two numbers

Z1, Z2 such that Z1 ≤ Zλ
G ≤ Z2 and Z2 ≤ (1 + ǫ)Z1.) Similarly, there is a randomized algorithm that

under the same condition (and with the same running time) generates independent sets of G where for

every independent set I, the probability that the algorithm outputs I is within a factor (1 ± ǫ) from
λ|I|

Zλ

G

.

Notice that Theorem 2.7 requires that T̂
b exhibits strong spatial mixing rather than the graph G, the

independent sets of which the algorithm counts. (Strong spatial mixing on T̂
b may be a stronger

condition than strong spatial mixing on G.)

Corollary 2.8 There exists a deterministic algorithm such that for every positive integer b and any

λ < λc(b), on input of any graph G of maximum degree b + 1, the algorithm approximates the

partition function Zλ
G to within a factor (1 + ǫ) in time polynomial in

(1+ǫ)n
ǫ , where the exponent
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depends on b and λ. Similarly, there is a randomized algorithm that for the same choice of parameters

(and with the same running time) generates independent sets of G where for every independent set I,

the probability that the algorithm outputs I is within a factor (1 ± ǫ) from λ|I|

Zλ

G

.

An existing and well-known algorithm for sampling independent sets (and by a standard re-

duction, for approximating the partition function Z) is the Glauber dynamics. This dynamics is a

local Markov chain over independent sets of G where in each time step a vertex v of G is chosen

uniformly at random and its value it updated conditioned on its neighbors, i.e., if one or more of

its neighbors is occupied then v is deterministically set to be unoccupied while if all the neighbors

are unoccupied then v is set to be occupied with probability λ
1+λ and unoccupied otherwise. It is

straightforward to see that this chain indeed converges to the desired distribution over independent

sets of G, but for some graphs and values of λ the mixing time (the number of steps required before

the chain is within a “small” variation distance from the stationary distribution) is exponential [6]

in the size of G. However, it is generally believed that if strong spatial mixing with exponential de-

cay holds for G and λ then the Glauber dynamics should mix in polynomial time. Indeed, the latter

implication is known to hold when the graph G grows “slowly enough”, with the prime example

of such graphs being the integer lattices Z
d. Connections as above between strong spatial mixing

and the rate of convergence of the Glauber dynamics were the subject of a number of papers in

Statistical Physics [22, 16, 4] as well as in Computer Science [8, 24]. The following is a partial

summary that is sufficient for the discussion here.

Theorem 2.9 If G is a graph that grows subexponentially and if G with activity parameter λ ex-

hibits strong spatial mixing with exponential decay then the mixing time of the Glauber dynamics for

sampling independent sets of G with activity λ is O(n2).

Corollary 2.10 If G is a graph that grows subexponentially and has maximum degree b + 1 then the

Glauber dynamics on G mixes in time O(n2) for any λ < λc(b).

Remark: In stating Theorem 2.9 we allowed ourselves a minor inaccuracy. Strictly speaking, the arguments

in [8] and [24] require that the graph grows polynomially. To get rapid mixing for graphs that grow with any
subexponential rate we need to establish a slightly stronger property than strong spatial mixing involving

the existence of a coupling with certain properties (see [10] for an example). However, an extension of our

results above shows that this stronger property holds throughout the regime λ < λc(b). We do not delve
on these details because our main focus in this paper is establishing an efficient approximation scheme for

counting independent sets for general graphs and λ < λc(b), which we did in Corollary 2.8, rather than

an exact analysis of the performance of the Glauber dynamics. Nevertheless, since the performance of the
Glauber dynamics is interesting in its own right we do mention the implications of our results on it.

As mentioned in the introduction, the previously best bound [7, 23] on λ for which approximate

counting is known to be contractible is λ ≤ 2
b−1 , where rapid mixing of the Glauber dynamics

is established for arbitrary graphs of maximum degree b + 1 and any λ in this regime. Thus,

Corollary 2.8 extends the regime for which efficient approximate counting is known to exist for

arbitrary graphs. In addition, Corollary 2.10 extends the previous regime for which the Glauber

dynamics is known to mix in polynomial time, but only for graphs with subexponential growth.
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3 A (self-avoiding-walk) tree representation: proof of Theorem 2.3

In this section we present a novel procedure for calculating the probability pv that a vertex v ∈ G is

occupied. As we show below, the calculation carried out by this procedure is exactly the same as the

one carried out when calculating the probability that the root of an appropriate tree is occupied.

Thus, the probability that v is occupied equals the probability that the root of this tree is occupied,

and this fact will immediately prove Theorem 2.3.

In order the describe the tree corresponding to G = (V,E) and v ∈ V we need to refer to an

ordering on the neighbors of each vertex in G. Thus, for every vertex u ∈ V we fix an (arbitrary)

enumeration of the edges incident to u. From here onwards, whenever we say that an edge {u,w}
(or a neighbor w of u) is larger than {u, x} (or a neighbor x of u) we interpret this according to the

enumeration of the edges incident to u that we fixed here. The description of the tree corresponding

to (G, v) includes the tree (as a graph) together with a specification of a subset of its leaves that

are fixed to specific values (occupied or unoccupied). As we mentioned before, fixing the values

of certain vertices is equivalent to considering a smaller tree with no fixed vertices, but the first

description will be more convenient to work with in the proofs below.

We denote the tree corresponding to (G, v) as Tsaw(G, v). This tree is essentially the tree of

self-avoiding walks originating at v except that the vertices closing a cycle are also included in the

tree and are fixed to be either occupied or unoccupied. Specifically, Tsaw(G, v) is defined as the

tree of all paths originating at v, except that whenever a path closes a cycle the copy (in the tree)

of the vertex closing the cycle (in G) is fixed to occupied if the edge closing the cycle is larger

than the edge starting the cycle and unoccupied otherwise, with the rest of the path ignored. See

Figure 1 for an example of a small graph and its corresponding tree Tsaw(G, v). We note that trees

of self-avoiding walks have appeared before (explicitly or implicitly) in arguments for establishing

decay of correlations (see, e.g., [9] and [10]), and our construction was partially inspired by these

references. Also, after completing this manuscript the author has learned that a tree equivalent

to Tsaw(G, v) has already appeared in [19], though in a somewhat different context and without

suggesting the kind of result established in Theorem 2.3.

The crucial point of the correspondence we establish below between the probability pv that v
is occupied and the probability that the root of Tsaw(G, v) is occupied is that it continues to hold

when we impose an arbitrary condition on any subset of the vertices of G (and the corresponding

condition on the tree). Notice that there is a natural way to correspond a condition on G with

a condition on Tsaw(G, v). Specifically, since every vertex in the tree Tsaw(G, v) corresponds to a

vertex in G in a natural way, if a condition on G fixes the vertex u to a certain value, the corre-

sponding condition on Tsaw(G, v) fixes all the copies of u to the same value. Whenever we fix a

condition on Tsaw(G, v) that corresponds to a condition on G as above then for each fixed vertex x
in Tsaw(G, v) we also erase the subtree underneath x in order to make sure the resulting condition

is well defined. (Notice that in any case, conditioned on the value at x, the value at the root is

independent of the configuration on the subtree underneath x.) An alternative description of the

resulting tree is to first fix the condition on G and then construct the corresponding tree of paths

Tsaw(G, v) so that whenever a path visits a fixed vertex, the value of that vertex is copied to the tree

and the path is not continued further, i.e., the corresponding fixed vertex in the tree is a leaf.

Theorem 3.1 For every graph G = (V,E), any λ, every Λ ⊂ V and any configuration σΛ,

pσΛ
v = P

σΛ
v ,
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Figure 1: The construction of Tsaw. The tree on the left is Tsaw(G, a), where G is the graph on the

right and where the order on the neighbors of each vertex in G is lexicographic. In order to better

illustrate the construction we labeled each vertex in the tree with the name of its corresponding

vertex in G. Notice that vertices that close cycles are fixed to be either occupied or unoccupied. For

example, the bottom-left copy of d is fixed to be occupied because the edge {d, f} that closes the

cycle is larger than the edge {d, e} that starts it.

where P
σΛ
v ≡ P

σΛ

G,v(λ) stands for the probability that the root of Tsaw(G, v) is occupied when imposing

the condition corresponding to σΛ as described above.

Remark: Notice that Tsaw(G, v) has two types of fixed vertices. The first type is a “structural” one: these
fixed vertices arise from the cycle structure of the graph G (can be thought of as expressing the influence

a vertex has on itself through the cycle), and both their composition and values are independent of the

condition imposed on G. Fixed vertices of the second type are those that correspond to fixed vertices in G
and the values they are fixed to are simply copied from their corresponding vertices in G. Also, although it

may seem that a fixed vertex in Tsaw(G, v) may be assigned two conflicting values (if it is of both types), this

is cannot happen since a structural fixed vertex that corresponds to a vertex u in G always has an ancestor
that also corresponds to u, and therefore, if u is fixed in G then the ancestor is fixed in Tsaw(G, v), and thus

the subtree underneath the ancestor is erased. (An alternative way to see this is that a fixed vertex in G can
never be part of a cycle since in the construction of the tree of paths, the path ends whenever visiting a fixed

vertex.)

Before going on to prove Theorem 3.1, we note that Theorem 2.3 follows almost immediately

from it. To see this, we simply observe that Theorem 3.1 gives that |pσΛ
v − pτΛ

v | = |PσΛ
v − P

τΛ
v |,

and that for any subset ∆ of vertices of G, dist(v,∆) is exactly the same as the distance between

the root of Tsaw(G, v) and the subset of vertices of the tree composed of the copies of vertices

in ∆. (This is because paths in the tree correspond to paths in G.) Thus, when we impose the two

conditions corresponding to σΛ and τΛ respectively, we in fact impose two conditions that differ

on a subset of the vertices of Tsaw(G, v) whose distance from the root is exactly dist(v,∆), where

∆ is the subset of vertices of G on which σΛ and τΛ differ, and where we used the fact that the

values of the structural fixed vertices of Tsaw(G, v) do not depend on the condition we impose of G.

The only remaining gap from the statement of Theorem 2.3 is that the latter considers the regular

infinite tree T̂
b, while we consider Tsaw(G, v). Notice, however, that Tsaw(G, v) is a subtree of T̂

b

since the degree of every vertex in Tsaw(G, v) is at most the degree of the corresponding vertex

in G. Furthermore, since fixing a vertex in the tree to be unoccupied has the same effect (on the

probability of occupation at the root) as erasing the subtree rooted at this vertex, Tsaw(G, v) can be

considered as T̂
b with additional vertices being fixed to be unoccupied. This completes the proof of

Theorem 2.3 assuming Theorem 3.1, and we thus continue with the proof of the latter.
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Proof of Theorem 3.1: As we already mentioned, the proof of the theorem is based on a novel

procedure for calculating pv, one that is essentially the same as a procedure to calculate the prob-

ability of occupation at the root of Tsaw(G, v). In order to describe these procedures, it will be

convenient to make a change of variable and work with ratios of probabilities rather than the prob-

ability of occupation itself. We thus write Rv ≡ RG,v(λ) = pv/(1 − pv) for the ratio between the

probabilities that v is occupied and unoccupied, respectively. (This notation also applies when we

impose conditions, i.e., RσΛ
v stands for the ratio of the two probabilities under the condition σΛ.)

Notice that we allow pv = 1, in which case we set Rv = ∞.

We now describe a standard procedure for calculating the probability of occupation at the root

of any given tree. Let T be a rooted tree, Λ ⊂ T a subset of its vertices, and σΛ a configuration of Λ.

Write RσΛ

T for the ratios of the probabilities that the root is occupied and unoccupied, respectively,

when imposing the condition σΛ. The lack of cycles on a tree means that once we fix the value

at the root, the configurations of the subtrees rooted at the children of the original root are all

independent of each other. A trivial calculation then gives that

RσΛ

T = λ

d∏

i=1

1

1 + R
σΛi

Ti

, (1)

where d is the number of children of the root, Ti is the subtree rooted at the i-th child, Λi = Λ∩Ti,

and σΛi
is the restriction of σ to Λi. Notice that (1) defines a recursive procedure for calculating

RσΛ

T once we observe that the base cases are either when v ∈ Λ, in which case Rv = ∞ or Rv = 0
(depending on whether v is fixed to be occupied or unoccupied), or when v has no children (and

is not fixed), in which case Rv = λ. Indeed, this simple recursive calculation has been widely used

for analyzing the distribution of independent sets of trees (see, e.g., [13, 17]), and in particular,

Proposition 2.5 is obtained [13] by analyzing the fixed points of (1).

We now go on to describe our novel procedure for calculating the probability of occupation at v
in general graphs. Our goal is to mimic (1), i.e., to write Rv in terms of ratios Rui

, where ui varies

over the neighbors of v. This will give us a recursive procedure to calculate Rv similar to the one

described for trees. The problem is that now the values at the different neighbors ui may depend

on each other even when we fix the value at v, and hence we cannot get a clean product as in (1).

However, by imposing appropriate conditions (in fact, a different condition for the contribution of

each neighbor), we do get a similar product expression. In order to describe the generalization

of (1) to general graphs we need additional notation. With v being the vertex for which we wish

to calculate Rv, let G′ be the same as G except that v is replaced by d vertices v1, . . . , vd, where d
is the degree of v. Each vi has a single edge connecting it to ui, where ui is the i-th neighbor of v
in G, and the order on the neighbors of v is the same as the one used in the definition of Tsaw(G, v).
In addition, we associate with each of the vertices vi the activity λ1/d rather than λ (i.e., when vi is

included in the independent set it contributes a factor λ1/d to the weight rather than λ). Now, it is

easy to see that an independent set in G′ in which all the vi are unoccupied has the same weight

as the corresponding independent set of G (with v unoccupied), and similarly when all the vi are

occupied (with v occupied in G). In particular, RσΛ

G,v is exactly the ratio between the probabilities

in G′ that all the vi are occupied and all are unoccupied, respectively, conditioned on σΛ. Writing

the latter ratio as a telescopic product gives that

RσΛ

G,v =
d∏

i=1

RσΛτi

G′,vi
,
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where σΛτi stands for the concatenation of the two configurations σΛ and τi, and where τi is

the configuration of the vj for j 6= i in which the values are fixed to occupied for j < i and to

unoccupied for j > i. Intuitively, we can think of the above splitting of v to d one-degree copies

as a step that cancels cycles, with the conditions τi expressing the influence of v on itself through

cycles in G. Indeed, if v is not on any cycle then the different copies vi are on different clusters and

thus the condition τi has no influence on the probability that vi is occupied.

Now, since vi is connected only to ui in G′ then it is easy to see that

RσΛτi

G′,vi
=

λ1/d

1 + RσΛτi

(G′\vi),ui

,

and hence,

RσΛ

G,v = λ
d∏

i=1

1

1 + RσΛτi

(G′\vi),ui

. (2)

Notice that (2) defines a recursive procedure for calculating RG,v in the same manner that (1)

defines such a procedure for the tree (the base cases are the same as in the tree). To see that the

procedure for G terminates, observe that although the number of vertices may increase down the

recursion, the number of unfixed vertices reduces by one in each step since in the calculation of

R(G′\vi),ui
all the vj are either fixed (if j 6= i) or erased from the graph (if j = i).

We go on to show that the above procedure for calculating RσΛ

G,v gives exactly the same result

as running the tree procedure for Tsaw(G, v) with the condition corresponding to σΛ imposed on it.

Notice that the calculation carried out (as a function of the values returned by the recursive calls)

is exactly the same in the two recursive equations (1) and (2). Now, since the stopping rules are

the same for both procedures, in order to complete the proof by induction, it is enough to show

that the tree Tsaw(G′ \ vi, ui) with the condition corresponding to σΛτi imposed on it is exactly the

same as the subtree of Tsaw(G, v) rooted at the i-th child of the original root with the condition

corresponding to σΛ imposed on it. Establishing the latter is enough because then, by induction,

the values returned by the recursive calls are the same for both procedures. It is easy to observe

that the two trees are indeed the same since both are in fact the tree of paths in G starting at ui,

except that whenever v is visited, the corresponding vertex in the tree is fixed to either occupied or

unoccupied depending on whether the path reached v from a neighbor smaller or greater than i.
This completes the proof of Theorem 3.1.

4 Monotonicity on trees: proof of Theorem 2.4

In this section we prove that on a regular tree weak spatial mixing implies strong spatial mixing.

In fact, we prove a stronger statement regarding a certain monotonicity in the activity λ. In order

to state this result we need to extend our model and consider the regular tree T̂
b with a vector

of activities ~λ, where each vertex v of T̂
b is associated with its own activity ~λ(v) (so the weight

of an independent set I is
∏

v∈I
~λ(v)). Notice that strong spatial mixing on the regular tree with

activity λ is equivalent to weak spatial mixing on the same tree for all assignments of activities ~λ
in which for every v, ~λ(v) = λ or ~λ(v) = 0. To see this, notice that w.l.o.g. we can assume that

the two configurations σΛ and τΛ in the definition of strong spatial mixing set the configuration in

Λ \ ∆ (the subset on which they agree) to all unoccupied (since fixing a vertex to be occupied is
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the same as fixing its neighbors to be unoccupied). Now, notice that setting ~λ(v) = 0 has the same

effect as fixing v to be unoccupied, so comparing the two conditions σΛ and τΛ is exactly the same

as comparing the two restrictions of these conditions to ∆ when the activities in Λ \ ∆ are set to

zero. Thus, in order to prove Theorem 2.4 is it is enough to show that setting an arbitrary subset of

the activities to zero only decreases the sensitivity to conditioning on ∆. We will in fact show that

any decrease in the activities reduces this sensitivity.

As before, it will be more convenient to work with ratios of probabilities R = p
1−p . Recall that

we are looking to bound the sensitivity of the ratio Rv to conditions set at distance ℓ from v. First,

w.l.o.g. we will consider T̂
b to be rooted at v and analyze the sensitivity of the root to various

conditions, omitting v from the notation. Notice that, since the tree is a bipartite graph, in order

to bound the sensitivity of the value at the root to conditions on a subset at distance ℓ below

it is enough to consider the two conditions in which all the vertices at level ℓ + 1 are set to all

occupied and all unoccupied, respectively. This is because these are the conditions that minimize

and maximize the probability that the root is occupied, respectively. Let RE
ℓ ≡ RE

ℓ (~λ) stand for the

ratio at the root conditioned on the configuration in which all the vertices at distance ℓ from the

root are set to occupied if ℓ is even and to all unoccupied if ℓ is odd (so RE
ℓ maximizes this ratio

among conditions at distance ℓ from the root). Let RO
ℓ stand for the ratio at the root conditioned on

the negation of the configuration above (so RO
ℓ minimizes this ratio among conditions at distance ℓ

from the root). The main result of this section reads as follows.

Theorem 4.1 Fix an arbitrary λ ≥ 0. Let ~λ be an assignment of activities to the vertices of T̂
b such

that 0 ≤ ~λ(v) ≤ λ for every v ∈ T̂
b. Then, for every ℓ,

RE
ℓ (~λ)

RO
ℓ (~λ)

≤
RE

ℓ (λ)

RO
ℓ (λ)

. (3)

Theorem 2.4 follows from Theorem 4.1 as explained above and once we notice that RE

RO − 1 =
pE−pO

pO(1−pE)
and that for ℓ ≥ 2, pE

ℓ (λ) ≤ λ
1+λ and pO

ℓ (λ) ≥ λ
λ+(1+λ)b+1 .

Theorem 4.1 may come as a bit of a surprise since the monotonicity in ~λ does not hold in

general, i.e., (3) does not necessarily hold if we replace the uniform assignment λ with a general

assignment ~λ′ that dominates ~λ. See [3] for an example of such non-monotone behavior. Indeed,

the proof of Theorem 4.1 requires somewhat delicate arguments that make use of certain monotone

properties of the distribution under a uniform assignment λ.

In order to prove Theorem 4.1 it will be convenient to consider the slightly modified tree T
b,

where the root has b children rather than b + 1. (The rest of the vertices have b children each, as

in T̂
b.) At the end we will establish the theorem for T̂

b as well. Let RE
ℓ and RO

ℓ be defined as above,

except that now they describe the ratios at the root of T
b. We will show the following claim, which

adds on what is claimed in Theorem 4.1. (The addition is needed in order to carry the induction).

Lemma 4.2 For every integer ℓ ≥ 1 and any assignment of activities 0 ≤ ~λ ≤ λ to the vertices of T
b,

the following two inequalities hold:

RE
ℓ (~λ)

RO
ℓ (~λ)

≤
RE

ℓ (λ)

RO
ℓ (λ)

; (4)

1 + RE
ℓ (~λ)

1 + RO
ℓ (~λ)

≤
1 + RE

ℓ (λ)

1 + RO
ℓ (λ)

. (5)
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Proof: We first give some context by noticing that (4) implies (5) when the ratios w.r.t. ~λ are

smaller than those w.r.t. λ and (5) implies (4) when the ratios w.r.t. ~λ are the larger ones. Let us

also clarify two special cases in which one or more of the ratios is zero. If RE
ℓ (~λ) = RO

ℓ (~λ) = 0

(this can only happen if the activity assigned to the root is zero) then we let the ratio
RE

ℓ
(~λ)

RO

ℓ
(~λ)

= 1. If

RO
ℓ (λ) = 0 (this happens only when ℓ = 1, i.e., the fixed vertices are the children of the root) then

RO
ℓ (~λ) = 0 as well. In this case we set

RE

ℓ
(~λ)

RO

ℓ
(~λ)

=
RE

ℓ
(~λ)

RO

ℓ
(~λ)

= ∞. We note that for both cases our choices

are valid since the only way in which we will use the fact that
RE

ℓ
(~λ)

RO

ℓ
(~λ)

≤
RE

ℓ
(~λ)

RO

ℓ
(~λ)

(as an induction

hypothesis) is in that there exists α ≥ 0 such that RO
ℓ (~λ) = αRO

ℓ (λ) and RE
ℓ (~λ) ≤ αRE

ℓ (λ). Indeed,

this holds in the two special cases mentioned above.

The proof of the lemma goes by induction on ℓ. For the base case of ℓ = 1, as we already

noticed, RO
ℓ (~λ) = RO

ℓ (λ) = 0. On the other hand, RE
ℓ (λ) = λ and in the same manner RE

ℓ (~λ) = λ′,

where λ′ is the activity assigned to the root. Since λ′ ≤ λ then the statement of the lemma clearly

holds.

Assume by induction that the lemma holds for ℓ and all assignments 0 ≤ ~λ ≤ λ, and we will

show it holds for ℓ + 1 and an arbitrary assignment 0 ≤ ~λ ≤ λ. We first mention an elementary fact

that we use throughout the proof. For 1 ≤ i ≤ b, let ~λi stand for the restriction of the assignment
~λ to the subtree rooted at the i-th child of the root of T

b, which is again an assignment to the

vertices of T
b. (The subtree is isomorphic to T

b.) Writing (1) with the notation used here gives

that RE
ℓ+1(

~λ) = λ′
∏b

i=1
1

1+RO

ℓ
(~λi)

, where λ′ is the activity that ~λ assigns to the root. Similarly,

RO
ℓ+1(

~λ) = λ′
∏b

i=1
1

1+RE

ℓ
(~λi)

.

Now, it is immediate from the second inequality of the induction hypothesis that

RE
ℓ+1(

~λ)

RO
ℓ+1(

~λ)
=

b∏

i=1

(
1 + RE

ℓ (~λi)

1 + RO
ℓ (~λi)

)

≤

(
1 + RE

ℓ (λ)

1 + RO
ℓ (λ)

)b

=
RE

ℓ+1(λ)

RO
ℓ+1(λ)

.

The remaining (main) part of the proof is to show that
1+RE

ℓ+1
(~λ)

1+RO

ℓ+1
(~λ)

≤
1+RE

ℓ+1
(λ)

1+RO

ℓ+1
(λ)

. An important fact

to keep in mind is that for any non-negative x, x′, y, y′, if x′ ≤ x and 1 ≤ x′

y′ ≤
x
y then 1+x′

1+y′ ≤
1+x
1+y . A

first consequence of this fact is that w.l.o.g. we can assume that the activity at the root λ′ = λ. This

is because the effect of reducing the activity at the root is that the ratios RE
ℓ+1(

~λ) and RO
ℓ+1(

~λ) reduce

both by the same factor, and therefore, if the claim holds for some assignment ~λ in which λ′ = λ
then the claim also holds for the same assignment with a reduced activity at the root. A second

consequence is that if RE
ℓ+1(

~λ) ≤ RE
ℓ+1(λ) then we immediately get that

1+RE

ℓ+1
(~λ)

1+RO

ℓ+1
(~λ)

≤
1+RE

ℓ+1
(λ)

1+RO

ℓ+1
(λ)

because we already showed that
RE

ℓ+1
(~λ)

RO

ℓ+1
(~λ)

≤
RE

ℓ+1
(λ)

RO

ℓ+1
(λ)

.

From the above we learn that the only remaining case is when the ratio at the root is larger

under ~λ than under the uniform assignment λ, or equivalently, when the ratios at the children
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are smaller (in some average way) under ~λ than under λ. In fact, we now show that w.l.o.g.

we can assume that the ratios at the children given the ODD condition under ~λ are all at most

RO
ℓ (λ). Let ~λ be an assignment such that RO

ℓ (~λi) ≥ RO
ℓ (λ) for some 1 ≤ i ≤ b, and let ~λ′ be

the same as ~λ except that ~λ′
i is uniformly equal to λ (i.e., we change the activities at the subtree

rooted at the i-th child to be all λ). Notice that by the induction hypothesis,
1+RE

ℓ
(~λi)

1+RO

ℓ
(~λi)

≤
1+RE

ℓ
(λ)

1+RO

ℓ
(λ)

,

and therefore
RE

ℓ+1
(~λ)

RE

ℓ+1
(~λ)

≤
RE

ℓ+1
(~λ′)

RE

ℓ+1
(~λ′)

because the ratios at the rest of the children are the same under

both assignments. Furthermore, since RO
ℓ (~λi) ≥ RO

ℓ (λ) then RE
ℓ+1(

~λ) ≤ RE
ℓ+1(

~λ′), where again

we used the fact that the ratios at the rest of the children are the same under both assignments.

As discussed above, the fact that both
RE

ℓ+1
(~λ)

RE

ℓ+1
(~λ)

≤
RE

ℓ+1
(~λ′)

RE

ℓ+1
(~λ′)

and RE
ℓ+1(

~λ) ≤ RE
ℓ+1(

~λ′) implies that

1+RE

ℓ+1
(~λ)

1+RE

ℓ+1
(~λ)

≤
1+RE

ℓ+1
(~λ′)

1+RE

ℓ+1
(~λ′)

. Therefore, we can indeed assume w.l.o.g. that RO
ℓ (~λi) ≤ RO

ℓ (λ) for all

1 ≤ i ≤ b.

We now continue with establishing that
1+RE

ℓ+1
(~λ)

1+RO

ℓ+1
(~λ)

≤
1+RE

ℓ+1
(λ)

1+RO

ℓ+1
(λ)

. For 1 ≤ i ≤ b, suppose that

RO
ℓ (~λi) = αiR

O
ℓ (λ) for some αi ≥ 0. From the previous paragraph, we know it is enough to

consider the case where αi ≤ 1 for every i. By the induction hypothesis we know that RE
ℓ (~λi) ≤

αiR
E
ℓ (λ). W.l.o.g. we can assume that RE

ℓ (~λi) = αiR
E
ℓ (λ) because the only effect of increasing

RE
ℓ while holding everything else fixed is decreasing RO

ℓ+1, i.e., increasing the ratio
1+RE

ℓ+1

1+RO

ℓ+1

. Recall

that RE
ℓ+1(

~λ) = λ
Q

b

i=1(1+RO

ℓ
(~λi))

= λ
Q

b

i=1(1+αiRO

ℓ
(λ))

(recalling also that we are under the assumption

that the activity at the root is λ), with a similar expression for RO
ℓ+1(

~λ). (Since from now on all

mentions of R will be of the ratio under of the uniform assignment λ, we drop it from the notation

and simply write RO
ℓ and RE

ℓ to stand for RO
ℓ (λ) and RE

ℓ (λ), respectively.) In order to complete the

proof of the lemma it is now enough to show that for every array of values αi such that 0 ≤ αi ≤ 1
for every 1 ≤ i ≤ b,

1 + λ
Q

b

i=1(1+αiRO

ℓ
)

1 + λ
Q

b

i=1(1+αiRE

ℓ
)

≤
1 + RE

ℓ+1

1 + RO
ℓ+1

,

i.e., that

1 +
λ

∏b
i=1(1 + αiRO

ℓ )
−

1 + RE
ℓ+1

1 + RO
ℓ+1

−
(1 + RE

ℓ+1)λ

(1 + RO
ℓ+1)

∏b
i=1(1 + αiRE

ℓ )
≤ 0. (6)

If αi = 1 for every i then (6) clearly holds (as an equality). It is therefore enough to show that

for every i, the derivative of the l.h.s. of (6) w.r.t. αi is positive for all (α1, . . . , αb) ∈ [0, 1]b. By

symmetry, it is enough to show this for i = 1. Now, the derivative w.r.t. α1 is:

−
λRO

ℓ

(1 + α1RO
ℓ )
∏b

i=1(1 + αiRO
ℓ )

+
λ(1 + RE

ℓ+1)R
E
ℓ

(1 + RO
ℓ+1)(1 + α1RE

ℓ )
∏b

i=1(1 + αiRE
ℓ )

.

Since we wish to show that the last expression is positive, it is enough to show that

(
1 + α1R

E
ℓ

1 + α1RO
ℓ

) b∏

i=1

(
1 + αiR

E
ℓ

1 + αiRO
ℓ

)
≤

(1 + RE
ℓ+1)R

E
ℓ

(1 + RO
ℓ+1)R

O
ℓ

.
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Now, since RO
ℓ is increasing in ℓ and RE

ℓ is decreasing (because placing a condition at level ℓ + 1 is

the same as placing a convex combination of conditions at level ℓ), then

(1 + RE
ℓ+1)R

E
ℓ

(1 + RO
ℓ+1)R

O
ℓ

≥
(1 + RE

ℓ )RE
ℓ+1

(1 + RO
ℓ )RO

ℓ+1

(7)

=

(
1 + RE

ℓ

1 + RO
ℓ

)b+1

≥

(
1 + α1R

E
ℓ

1 + α1RO
ℓ

) b∏

i=1

(
1 + αiR

E
ℓ

1 + αiRO
ℓ

)
,

as required. The equality above follows from the fact that RE
ℓ+1 = λ

(1+RO

ℓ
)b

, while for the last

inequality we used the fact that RE
ℓ ≥ RO

ℓ , and therefore,
1+αRE

ℓ

1+αRO

ℓ

≤
1+RE

ℓ

1+RO

ℓ

for every 0 ≤ α ≤ 1. This

completes the proof of Lemma 4.2.

Remark: As we already mentioned following the statement of Theorem 4.1, the theorem does not hold if
we replace the uniform assignment λ with a general assignment ~λ′ that dominates ~λ. The crucial property

of the uniform assignment used in the above proof is that RO

ℓ
is increasing in ℓ and RE

ℓ
is decreasing, which

allowed us to establish (7). Indeed, the theorem still holds if we replace the uniform assignment λ with ~λ′

that dominates ~λ as long as under ~λ′ the conditional ratios at the root (given the ODD and EVEN conditions)
are sandwiched between the same conditional ratios at the children (for every child).

We end this section by showing that Theorem 4.1 holds for T̂
b (the tree in which the root has b + 1

children), as claimed. Maintaining the notation R for the ratio at the root of T
b and writing R for

the ratio of probabilities at the root of T̂
b, we have

R
E
ℓ (~λ)

RO
ℓ (~λ)

=
b+1∏

i=1

(
1 + RE

ℓ−1(
~λi)

1 + RO
ℓ−1(

~λi)

)

≤

(
1 + RE

ℓ−1(λ)

1 + RO
ℓ−1(λ)

)b+1

=
R

E
ℓ (λ)

RO
ℓ (λ)

,

where the two equalities follow from the fact that the subtree of T̂
b rooted at any given child of

the original root is isomorphic to T
b, while the inequality is an application of the second part of

Lemma 4.2.

5 Algorithmic implications

In this section we describe and analyze the algorithm for approximating the partition function Zλ
G

(or for approximately sampling independent sets of G) claimed in Theorem 2.7. This algorithm is

based on the recursive procedure for calculating pv described in Section 3. Before giving the details

of the algorithm, we note that a standard argument reduces the calculation of Z to the calculation

of pv. To see this, notice that in order to calculate Z it is enough to calculate the probability of
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the empty set since this probability is exactly 1/Z. Now, in order to calculate the probability of the

empty set we first calculate the probability that v is unoccupied (i.e., 1− pv) for some vertex v and

multiply this by the probability of the empty set in G \ v (i.e., conditioned on v being unoccupied),

where the latter is computed recursively. Similarly, in order to generate a random independent set

we can choose v to be occupied with probability pv and unoccupied otherwise, and continue to

generate the rest of the configuration conditioned on the chosen value at v. We thus concentrate

on calculating pv.

In Section 3 we described a recursive procedure for calculating pv that was based on (2). It is

clear from the analysis there that the time complexity of this procedure is O(|Tsaw(G, v)|), which

may be exponential in |G|. (A trivial upper bound on |Tsaw(G, v)| is bℓ, where ℓ is the length of

the longest path in G.) This is in line with the fact that it is NP-hard [6] to calculate (and even

approximate) Zλ
G (and therefore pv) for general G and λ. Nevertheless, when the tree exhibits

strong spatial mixing with exponential decay we can use a slight modification of this algorithm

to approximate pv in polynomial time. Notice that if we can output two numbers p1, p2 such that

p1 ≤ pv ≤ p2 and p2 ≤ (1 + ǫ
(1+ǫ)n)p1, then, by the same reduction as above, we can output two

numbers Z1, Z2 such that Z1 ≤ Z ≤ Z2 and Z2 ≤ (1 + ǫ)Z1, or generate a random independent set

such that the probability of outputting I is within a factor (1 ± ǫ) of the required probability λ|I|

Z .

Now, notice that if we replace the ratio RσΛ,τi

(G′\vi),ui
in (2) with an upper bound on this ratio we

get a lower bound on RσΛ

G,v, and similarly, plugging in a lower bound on the first ratio will result in

an upper bound on the latter. We can thus have the following recursive procedure for calculating

lower and upper bounds on pv. The recursive calls return a lower and an upper bound on RσΛ,τi

(G′\vi),ui

for each i. The lower bounds are then used to compute an upper bound on RσΛ

G,v and vice versa. The

procedure has three stopping rules. The first two are as in the procedure presented in Section 3,

namely, if v is fixed by σΛ or if v has no neighbors then both the lower and upper bounds are set to

the same value as described in Section 3. The third stopping rule is the following. If none of the

first two rules apply and if the stack of the recursion is ℓ levels deep, where ℓ is a parameter of the

algorithm, set the lower and upper bounds on R to 0 and ∞, respectively.

We go on to analyze the above algorithm. First, a trivial induction (already described above)

verifies that the algorithm outputs two numbers p1, p2 such that p1 ≤ pv ≤ p2. What remains

to be analyzed is the size of the interval [p1, p2] and the running time of the algorithm. Notice

that if we run this algorithm for calculating pv with the levels parameter set to ℓ then the upper

bound p2 that we get is exactly the probability that the root of Tsaw(G, v) is occupied conditioned

on all the vertices that are not already fixed at level ℓ below the root being occupied (respectively

unoccupied) if ℓ is even (respectively odd). The lower bound p1 is exactly the probability of the

root being occupied under the negated condition. Now, since we are assuming the tree exhibits

strong spatial mixing with rate δ(ℓ) = O(exp(−αℓ)) for some α > 0, if we run the algorithm with

ℓ = [ln( (1+ǫ)n
ǫ )]/α + O(1) then p2 ≤ (1 + ǫ

(1+ǫ)n )p1, as required. On the other hand, the running

time of the algorithm with parameter ℓ is in the order of the size of Tsaw(G, v) restricted to its first

ℓ levels. A trivial upper bound on the running time is thus O(bℓ) = O(( (1+ǫ)n
ǫ )(ln b)/α), which yields

the bound stated in Theorem 2.7.

Remark: On a first look it seems that one needs to know the rate of decay in the definition of strong spatial
mixing in order to know how to set the parameter ℓ. This can be tackled in two different ways. The first is

that the rate of decay on the regular tree can be calculated efficiently (or at least sufficiently approximated).

An alternative approach is to simply try all settings of ℓ (increasing its value by one in each iteration) until
the interval we get is sufficiently small. This is a valid approach since the bound on the running time that
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we used is exponential in ℓ, and hence trying all settings of ℓ = 1, . . . , m has running time in the same order

as running it only with ℓ = m.

6 Future Research

Notice that the recursive procedure (and hence the tree representation) described in Section 3

is not specific to the independent-sets model. Indeed, it applies to any model of nearest-neighbor

interaction in which each vertex is assigned a binary value (e.g., Ising models). Thus, as we already

mentioned, Theorem 2.3 can be generalized to any model with a binary spin space. An interesting

open question is whether it holds in models with larger spin spaces. Of particular interest is the

model of proper colorings, where the goal is to show that b+2 colors (the threshold for weak spatial

mixing on the regular tree) are enough for spatial mixing on any graph of maximum degree b + 1.

(Notice that it is not even known that the regular tree exhibits strong spatial mixing throughout

this regime.)

Another direction for future research is lowering the bound on λ for which the computational

problem is NP-hard. A particularly interesting question here is whether the problem is hard al-

ready for λ > λc. A positive answer would establish the first rigorous correspondence between

computational complexity and phase transitions in statistical physics.

Acknowledgments

The author would like to thank Elchanan Mossel, Alistair Sinclair and Fabio Martinelli for numerous

fruitful discussions, and for the inspiration to revisit this problem. Thanks also go to Leslie-Ann

Goldberg and Nir Halman for pointing out that the algorithm presented here is the first to give a

deterministic FPTAS for a #P-complete problem.

References

[1] J. VAN DEN BERG and A. ERMAKOV, “A new lower bound for the critical probability of site

percolation on the square lattice,” Random Structures and Algorithms 8 (1996), pp. 199–212.

[2] J. VAN DEN BERG and J. STEIF, “Percolation and the hard-core lattice gas model,” Stochastic

Processes and their Applications 49 (1994), pp. 179–197.
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