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Abstract

We prove that the Glauber dynamics on the C-colourings of a
graph G on n vertices with girth ¢ and maximum degree A mixes
rapidly if (i) C = ¢A and ¢ > ¢* where ¢* = 1.4890... is the root
of (1 —e %92 4 ge=/9 = 1; and (ii) A > Dlogn and g > Dlog A
for some constant D = D(q). This improves the bound of roughly
1.763A obtained by Dyer and Frieze [2] for the same class of graphs.
Our bound on this class of graphs is lower than the bound of 11A /6 ~
1.833A obtained by Vigoda [13] for general graphs.

For a given graph GG and integer C' which is at least the chromatic number
of G, we define the Glauber dynamics on the C-colourings of G to be the
Markov chain described as follows. We start with an arbitrary C-colouring,
and at each step we choose a uniformly random vertex v, and a uniformly
random colour ¢ from L(v), the list of colours which do not appear on any
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neighbours of v. Then we change the colour of v to ¢. (If L(v) is empty then
we do not choose a colour; note that L(v) is never empty if C' > A.)

Unless specified otherwise, we consider all colourings to be proper, i.e.
no two adjacent vertices can have the same colour. In section 3, it will be
important to note that we can apply this step even to a non-proper colouring
of G. But note that if a colouring is proper, then applying a step of the chain
cannot produce an improper colouring.

The main question in this area is: For what values of C' does this Markov
chain mix in polytime? Usually this is studied in terms of A, the maximum
degree of G. It is well known that for some graphs, the chain does not mix for
C < A+1. (In fact, there are some graphs and (A + 1)-colourings for which
no colour changes are possible, and so the chain is not even ergodic.) Jerrum
[7] showed that for all graphs, the chain mixes in polytime for C' > 2A and
in optimal time, i.e. O(nlogn) time, for C' > 2A + 1. Salas and Sokal[11]
independently obtained the latter result. Vigoda [13] showed that for all
graphs, a different chain mixes in optimal time for C' > %A and this implies
that for the same values of C', the Glauber dynamics mixes in polytime. Dyer,
Greenhill and Molloy [5] showed that the Glauber dynamics mixes in optimal
time for C' > (2—¢€)A where € is a small positive constant (see also [9]). Some
work has been done on special classes of graphs. Dyer et al[3] showed that
the Glauber dynamics mixes in optimal time on triangle-free graphs when
C > (2 — z)A for a different small positive constant z. More recently, Dyer
and Frieze[2] showed that if the maximum degree, A, of G is at least Dlogn
and the girth is at least D log A for some sufficiently large constant D, then
the chain mixes in optimal time for C' > ¢A for any constant ¢ > [ where
B = 1.763... < 11/6 is the root of Be~'/# = 1. Here we improve on this latter
result:

We define ¢* = 1.4890... to be the root of (1 —e~/9)2 4 ge= /7 = 1.

Theorem 1 For anyq > ¢* and integer w, there exists D for which: Suppose
G has n vertices, mazximum degree A > Dlogn and no vertex lies in more
than w cycles of length less than Dlog A. Then the Glauber dynamics mizes
in time O(nlogn) for C' = ¢A.

Of course, this covers all graphs with girth at least DlogA. It also
covers natural models of random graphs such as G, ,—./, for c & Dlogn and
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random A-regular graphs for A = Dlogn. Dyer and Frieze[2] showed that
their theorem also extends to such graphs.

Throughout the paper, we assume that n is large enough for various
asymptotic bounds to hold. We can also assume that ¢ is sufficiently close
to ¢*. We use N(v) to denote the neighbourhood of v, i.e. the set of vertices
which are adjacent to v. We define d(v) = |N(v)| to be the degree of v. A
short cycle is a cycle of length less than D log A.

1 Some intuition

The proofs of all results mentioned above, except for that of Vigoda [13], all
come from the following idea!. Consider two colourings X, W which differ
only at one vertex v. We will carry out one step of the process on each
colouring, where we couple these two random steps maximally. Specifically,
we first choose a uniform vertex w for both colourings. If Lx(u) and Ly (u)
are the sets of allowable colours for u in X, W respectively, then we take two
mappings fx : [0,1] = Lx(u), fw : [0,1] = Ly (u), such that

e for each c € Lx(u), |fx'(c)| = 1/|Lx(u)| and similarly for W, and

e {z: fx(x)# fw(z)} is as small as possible.

Then we take a uniform random real = € [0, 1] and choose u, fx (z) for X and
u, fw(x) for W. Note that since Ly (u), Ly (u) differ in at most one colour
per list, we will have |{z : fx(z) # fw(2)}| < min{|Lx(u)|™*, |[Lw(u)]™'}.
Note further that Lx(u) = Ly (u) unless u is a neighbour of v.

Using the path-coupling technique of Bubley and Dyer [1], it suffices
to show that the probability of X, W converging after one step is greater
than the probability of them differing in a second vertex after one step (we
elaborate on this in Section 3). They converge iff we choose u = v, which
occurs with probability 1/n. They differ on a second vertex iff we choose
some u € N(v) and we choose € {z : fx(x) # fw(x)}. Since no list can
ever be smaller than C' — A, this occurs with probability at most % X

C-A
which is less than % so long as C' > 2A.

! Jerrum’s original proof in [7] predated this idea, but the idea yields a simpler proof.
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The bound was improved slightly in [3] by showing that for triangle-
free graphs, after a relatively short period, most vertices will tend to have
many repeated colours in their neighbourhoods. Thus, their lists of available
colours will tend to be somewhat greater than C' — A, and this leads to a
gain in the above calculations. The same idea played a key role in [5].

In [2], Dyer and Frieze showed that for graphs with large girth and max-
imum degree, after O(nlogn) steps, with high probability every vertex will
have a list of size at least roughly ge~'/9A. If X, W are such that all vertices
have lists of this size, then this yields that the probability of X, W differing
on a second colour is at most % X m. Since ¢ is chosen so that ge /¢ > 1,
this probability is less than %

The key new idea used in this paper is to show that, after O(nlogn) steps,
many neighbours u of v will satisty Ly (u) = Ly (u). If we make the simplify-
ing assumption that the graph is A-regular, then with high probability, there

will be roughly (1 —e~/9)2A such neighbours. This improves our bound on
(1-(1—e"M9)*)A 1
n ge—1l/aA?

the probability of X, W differing on a second colour to
which is less than % for ¢ > q¢*.

1.1 Uniform-like colour sets

Suppose that G is A-regular and that every vertex in N(v) is assigned an
independent uniform colour from {1,...,C'}. Then the probability that some
colour ¢ does not appear on any neighbour of v is (1 —1/C)2 = e /7 4+ 0(1).
Thus we would expect that each list would have size roughly C' x e /¢ =
ge~9A. This explains, at least intuitively, the lower bound that Dyer and
Frieze obtain.

Now suppose that every vertex of distance 2 from v is also assigned an
independent uniform colour from {1, ...,C}. Suppose further that we change
the colour of v in our colouring X to obtain another colouring W. For each
u € N(v), Lx(u) = Ly (u) iff the colours X (v) and W (v) both appear on
N(u) —v. The probability that this occurs is (1 —e~1/9)? + 0(1), and so this
explains the result in this paper.

Of course, the colours appearing on the neighbours of v are far from
independent. But intuitively, since there are few short cycles near v, after



O(nlogn) steps the colours on vertices close to v are “close enough” to being
independent. Much of the work in this paper can be viewed as proving this
statement.

1.2 A recursive analysis

Our situation is somewhat more complicated than that in [2]. To illus-
trate this, suppose that N(v) = wy,..., wa and consider any assignment of
colours to the vertices in N(wy), ..., N(wa). Now, assign to each w; a uni-
form colour from amongst those not appearing on N(w;), independently of
the choice for any other w;. It turns out, that for any assignment of colours
to N(wy), ..., N(wa), the expected number of colours not appearing on N (v)
is at least ge " 9A — o(A). Thus, Dyer and Frieze did not have to ensure
that the random colours appearing on N(wy), ..., N(wa) are close to uniform.
Unfortunately, when analyzing our other parameter, we do not have this ad-
vantage, and we need to prove rather tight results on the distributions of the
colours appearing at distance 2 and 3 from wv.

To do this, we require a complicated iterative analysis. We’ll introduce
that analysis now, in an oversimplified setting, before formalizing it in the
next section. First, it will be much simpler to assume that G is regular and
so every vertex has degree A. We will also pretend that the time steps are
partitioned into a series of epochs, Wy, ¥y, W, ... and that every vertex is
recoloured at least exactly once during each epoch.

We will be interested in two parameters. The first is the number of colours
available to each vertex. We will create a sequence Ly > L, > Ly > ... such
that during epoch U;, the set L(v) of colours available to vertex v satisfies

1 L(v)| < Li,

for every v. Furthermore, the same analysis as in [2] will yield that for i > 1,
at any time during epoch ¥; we have:

[L(v)] 2 (e /7~ 0(1))C = ge V1A —o(A).

The second parameter has to do with the probability that a particular



colour c is in L,. For any colour ¢ and vertex v, we define

1
|L(w)[

T(v,c) = >

weN (v),ceL(w)

Thus, if we were to choose a random colour for each neighbour of v in turn,
then T'(v, ¢) would be the expected number of neighbours which are assigned
c. Furthermore, if we assume as in subsection 1.1 that these choices are
independent, then the probability that no neighbours are assigned c, i.e.

that at the end of these choices we have ¢ € L(v) is roughly e,

Of course, we need to be a bit careful here, because the sets L(w) vary
with time and we are actually interested in their values at different time
steps. But we will overlook such details now as we are just providing an
intuitive overview.

We will introduce sequences Ay < A; < Ay < ... and By > B; > By, > ...
such that during epoch V;, we have for every pair v, c:

Ai S T(U,C) S BZ

We start with our recursive equation for A;. Suppose that we are in epoch
W, .1 and for each neighbour w of v, let’s pretend that the neighbours of w
were most recently coloured during epoch ¥;. At that time we had T'(w, ¢) <
B; and so the probability that ¢ is now in L(w) is at least roughly e=%i. We
also have |L(w)| < L;. This inspires us to define:

Ai+1 =AX e*Bi/Li.

Similarly, we obtain
Bi-l—l = A X e*A"/(efl/qC).

Finally, we consider L;,;. Exp(|L(v)]) is roughly >, e~ 79 Also, note

that
C 1

ZT(Uac): Z Z IL(w)]

c=1 wEN (v) c€L(w)

= A.

Thus, our expression for Exp(|L(v)|) is minimized when each T'(v, ¢) is equal
to A/C, which yields a non-recursive lower bound of C' x e /¢ = C' x e/,
as obtained in [2]. Furthermore, the expression is maximized when the values



of T'(v, ¢) are as disparate as possible. Since each T'(v, c) is between A; and
B;, we get a recursive upper bound by assuming that every T'(v, ¢) is either
A; or B;. Since they sum to A, we must have (A — CB;)/(A; — B;) of them
equal to A; and (A — CA;)/(B; — 4;) of them equal to B;. That gives an
upper bound of:

After choosing appropriate initial values, it is straightforward to show
that these recursive equations have a limit of A; = B; = 1/¢ and L; =
C x e '/4. Therefore, by running our Markov chain for enough epochs, we
can guarantee that for every v, c we have L(v) arbitrarily close to e™'/¢ and
T'(v,c) arbitrarily close to A/C. This goes a long way towards allowing us
to show that the intuitive analysis outlined in subsection 1.1 holds.

To transform this intuition into a proof, we need to be much more precise.
For one thing, we have to be careful about specifying the time steps at which
we are measuring L(v) in some of these quantities. We also can’t assume
that every vertex is selected exactly once per epoch; it turns out that at
least once per epoch will do, and we can achieve that by taking each epoch
to be of length O(nlogn). Also, these recursive equations were obtained by
(implicitly) assuming that in each epoch, every quantity will be equal to its
expected value. In order to allow for the possibility that some quantities
differ slightly from their expected values, we decrease each A; and increase
each B;, L; by a small amount; we also apply a concentration inequality to
show that they don’t differ more-than-slightly from their expected values.
Finally, we can’t assume that every vertex has degree exactly A, and so we
have to allow our bounds on |L(v)| to be functions of the degree of v.

All of the adjustments outlined in the preceding paragraph are straight-
forward, but tedious if we assume, as in subsection 1.1, that the random
colours assigned to the neighbours of a vertex are independent. Of course,
this assumption is not valid and so we need to prove that they are, in some
sense, close to being independent. We do this by focussing on “long-paths-
of-disagreement”, which will be described further in later sections.



2 The main lemmas

As described in the opening part of Section 1, our goal is essentially to show
that after O(nlogn) steps, many neighbours u of v will satisfy Ly(u) =
Ly (u). We must complicate this condition somewhat. First, for technical
reasons, we wish to make this hold independently of our choice of the colours
v has in XY and so we make a statement that holds for every pair of
colours ¢, 3. Also, we have to adjust our goal somewhat to deal with the
case where v has neighbours of degree less than A. In fact, neighbours of very
small degree, less than pA for some small positive constant p are particularly
problematic and so have to be dealt with separately. Our main lemma is:

Lemma 2 For every €,p > 0, there exist constants D, such that with
probability at least 1 — O(n~%), for every vertex v, colours cy,cy and time
mnlogn < t < n?, we have the following: Define § = 6., .,(v) to be the
set of neighbours w of v with d(w) > pA and with at least one of ¢y, ¢y not
appearing in N(w) — v, and define:

1
Rq,Cz (U) =
2 1]
Th
- 1—(1—e V92  d(v)
Re,ep(v) < =y X A +e.

Note that, under the notation of Section 1, if v has ¢; in X and ¢ in
Y, and if d(w) > pA and Ly(w) = Ly(w) then w € 6., ,(v). Thus, if the
graph is A-regular, then this lemma implies what we said our goal was in
the opening part of Section 1.

In section 3, we will strengthen this lemma and then show how it implies
Theorem 1. For ease of presentation, we first prove Lemma 2 and then show
how to adapt the proof to yield the stronger lemma.

We begin with a recursive definition. This is along the same lines as that
described in subsection 1.2, but modifed somewhat to facilitate a formal
proof. For each 0 < d < A:

e a1 =0, =1/(g—1),2\" = ¢



o appr = e /AR,

® Bpi1=e % /(ge 1/9);

o M\ = Bu-Lond/A 4 100 o=Bid/A,
Lemma 3 limy_, o o = limyg_,00 B = 1 /¢, limy_ 0 )\,(Cd) = qe YA,

We postpone the proof of Lemma 3 until later. But for now, we require
the following simple observation:

Lemma 4 Forallk >1 and 0 < d < A:

(a) ap <1/q < Py, and

(b) ge P/ < N < gemendla,

Proof (b) follows since )\,(;21 is a linear combination of ge=%+¥/4 and
ge~“%/% (a) follows from a simple induction. O

In subsection 1.2 we said that we have to adjust our sequences by a small
amount, in order to allow for the possibility that some terms differ slightly
from their expected values. We do so now:

Fix some small 6 to be named later, and choose £* such that oy« > %—5/2,
B < %—1-5/2 and \;- < ge '/946/2 (such an k* exists by Lemma 3). Choose

a sufficiently small constant ¢ and constants aq, ..., axg, by, ..., bk*,ﬁgo), e Egﬁ)

such that
(i) a =y, b = ﬂl:ggd) = )\gd);

@) o o <o/l
° bk+1 > e_ak/(qe_(l'i‘o/lI) +(;

(d) _ gbp—1 _—(1-C)ard/A | 1— —(1=C)brd/A
o€k+1—ﬁe( Qaxd/ +F(T;e( Qbrd/

(iv) ag- > ¢ =8, b < ¢ + 0.



The existence of such constants follows easily from the continuity of the
relevant functions over the region a # b.

Note that we can assume that p is as small as we wish, as if Lemma 2
holds with p = p; then it clearly holds with p = py for any ps > p;. In
particular, we will assume that

o 1/(q—p) <ellte=u)/4/q; and

o o P/a=1) 5 ol/q¢—bp~

We define L;(v) to be the set of colours available for v at time ¢; we
sometimes omit the subscript ¢ when it is not necessary. For any vertex u
and time ¢, we define Z(u,t) to be the last time before ¢ that u is selected.
To be precise, we define #(u,t) to be zero in the event that w is not selected
before time ¢. This notation allows us to define a more careful refinement of
the vague quantity 7T'(v, ¢) from subsection 1.2:

Ti(v,c) = Z

wEN(v),cELy

1
(w) |Li(w,t)(w) i

(w,t)

Note that
c 1

Y Ty(v,e)= > >

c=1 weN (v) cELE(w,t)(w) |Lf(w,t) (’LU)|

=d(v).

We will prove inductively that

Lemma 5 For each 1 < k < k*, with probability at least 1 — n=%, for every
v with d(v) > pA, colour ¢ and 30knlogn <t < n?, we have:

(a) qef(1+()d(v)/CA < |Ly(v)| < géd(v))A;
(b) apd(v)/A < Ti(v,c) < brd(v)/A.

The lower bound in Part (a) is essentially Lemma 4.1 and (7) of Dyer and
Frieze[2], and our proof is similar to theirs.

Proof The proof is by induction on k. The base case £k = 1 holds
trivially. So assume that it holds for some £ and consider k£ + 1.
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Let the neighbours of v be wy, ..., wqy) and for each i let t; = #(w;,t)
be the last time before ¢ that w; is selected. For each i, let N,, —v =
{wir, ..., Wigw,)—1} and let ¢; j = t(w; j, t;) be the last time before ¢; that w; ;
is selected. Similarly, for each i, j let Ny, ; —w; = {wij1, -, Wijd(w; ;)-1} and
let ¢; j,» = t(wi s, ti;) be the last time before ¢; ; that w;;, is selected. (If v
lies in some cycles of length at most 6, then some vertices will receive more
than one label, but this does not create a problem.)

The idea of focussing on the colours assigned at these times was used by
Dyer and Frieze [2].

With high probability, each t; > t — 10nlogn. Indeed, the probability
that this is not true is at most A(1— £)'0"1°¢" < = The same calculations
give the same bound on the probability that some ?; ; is less than ¢ —20nlogn
or that some ¢; ;, is less than ¢ — 30n logn.

We start by proving part (a). Expose the values of ¢, ..., taw), t1,1, -+ ta(v),d(waguy)~1-

It would be nice if we could say that the colours assigned to wy, ..., wq)
were independent, as that would greatly simplify our calculations. However,
this is clearly not the case, since the colour assigned to w; has an effect on
the next colour assigned to a neighbour of w;, and this effect can propagate
along a path which eventually leads to some w;. This can be a very short
path, if it goes through v; we will deal with such paths later. Otherwise,
unless w; is one of the at most O(1) vertices lying on a short cycle through
v, the path must have length at least Dlog A — 2. Our first concern will be
such long paths.

Consider the following procedure: GLAUB(I). It follows the usual Glauber
dynamics, but after step ¢;, all neighbours of w; ignore w;. More specifically,
for each uw € N(w;), L(u) is the set of colours which do not appear on
N(u) — w;, and whenever u is selected, u is assigned a uniformly random
colour from L(u). Thus, for example, w; might have the same colour as some
of its neighbours.

We use GLAUB to denote the usual Glauber dynamics, and we consider
the two procedures to be coupled in that each has the same initial state and
chooses the same vertex at each step. The color choice at each step is coupled
maximally.
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A long path of disagreement from w; is a path P of length at least ¢ =
(D/3)log A beginning at w; and not going through v, such that the colour of
each vertex in the path differs between GLAUB and GLAUB(i). (Such paths
were used in a slightly different way by Dyer and Frieze [2] and earlier, in a
different setting, by van den Berg and Steif[12].) We say that w; is influential
if there is a long path of disagreement from w; or if by changing the colour
assigned to w; at time ¢;, and not changing any future colour/vertex choices
in GLAUB(i), it is possible to create a long path of disagreement from w;.

We define B to be the set of neighbours w; such that either w; lies in a
cycle through v of length less than Dlog A or w; is influential.

Lemma 6 With probability at least 1 —n'% |B| < A/log A.

Proof The set of neighbours which lie on a short cycle through v is
at most 2w. Therefore, we only have to count the influential vertices which
do not lie on any short cycle through v. Consider such a vertex w;; we will
bound the probability that it is influential.

We will bound this probability by the probability that either w; is influen-
tial, or t; < t —20nlog A. The probability of the latter is (1 — 1/n)?"le4 <
LA

If w; is influential and ¢; > t — 20nlog A, then there is a path P : w; =
Do, P1, .-, Pe, @ colour ¢ to assign to w; at time t;, and time steps t—20nlog A <

s1 < ... < sp < t such that at step s,, p, is selected and assigned different
colours in the two procedures.

Suppose that P is the lexicographically first such path formed. Thus, at
each step s,, if the colours of some neighbour u of p, disagree in the two
procedures, then there is a path of disagreement from u to w; which does
not go through p,. Since that path has length less than ¢, then p, and u lie
in a cycle of length less than Dlog A. Since p, lies in at most w such cycles,
there can be at most 2w such neighbours. Thus, since |L(p,)| is always at
least C' — A = (¢ — 1)A, the probability that p, chooses a different colour
for each procedure, under the maximal coupling, is less than 2w/((q — 1)A).
Therefore, the probability that such a path is formed is at most:

20n log A 2w\ 100ew\* 1.
A x (A= 1Y ) oA ( ) “an
x ( )x( 0 >X<(q—1)A>< = <3 ,
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for D sufficiently large and ¢ near ¢*. Thus, after adding the probability that
t; <t —20nlog A, the probability that w; is influential is at most A~1%.

Now consider any collection w,, ..., w; of m = A/log A — 2w neighbours
which don’t lie in short cycles through v. Using the fact that long paths of
disagreement from any two such neighbours must be disjoint, similar calcu-
lations yield that the probability of all m neighbours being influential is at
most (A7), Therefore, the probability that at least m such neighbours of
v are influential is at most

<A> X Afllm < Aflﬁm < nflo

m

for D > 1. O

Now, for each 1, j, we expose the colour assigned to u;; at time ¢; ;. We
also expose the set B. We denote this set of information, along with the
values of 1, ...¢840), t1,1, - La(v),d(wag)) 1> by H. We say that H is good if every
ti,ti; >t —30nlogn, if the sets of colour assignments satisfy the conditions
of Lemma 5 for k and if |B| < A/log A. We will show by induction that the
probability of H not being good is at most O(n~?).

Lemma 7 For any good H, the conditional probability that, at a particular
time t > 30(k + 1)nlogn during MOD-GLAUB, |L(v)| < ge~(1+¢/2)d0)/C A
or |L(v)| > Egﬁg))A — (/2 is at most n~7.

Proof Rather than analyzing | L(v)| directly, we will focus on |L*(v)],
the set of colours which do not appear on any w; € N(v) — B. Note that
1L ()] = |L(v)] = [L*(v)| = |B] = [L*(v)] = o(A).

Rather than dealing with GLAUB directly, we consider the procedure

MOD-GLAUB, whereby after time ¢ — 30n logn, neighbours of v ignore the
colour on v.

The advantage of focussing on |L*(v)| and MOD-GLAUB is that the
colour assignments to the vertices in N(v) — B are independent. This is
because no combination of assignments to these vertices can produce a long
path of disagreement from one such vertex to another, and, since the vertices
ignore the colour on v and no two lie on a short cycle through v, there are
no short paths of disagreement between these vertices.
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Furthermore, exposing the fact that w; ¢ B, only exposes that w; is
not influential. Since the definition of “influential” does not depend on the
particular colour assigned to w;, this does not expose anything about that
choice of colour.

So each w; receives a uniformly random colour from amongst those colours
which H dictates to not appear on N(w;) — v at time ¢;, and the choices for
wi, ..., wa are independent. Thus, for any colour ¢ the conditional probability
that ¢ belongs to L*(v) at time ¢ is

11 1- Ty = exp(—T1'(v,c)) + o(1),

wEN (v)—B,ceL(w) L( )

since every L(w) has size at least C' — A = (¢ — 1)A, and since |B| = o(A).
Therefore, the expected size of L*(v) at time ¢ is equal to 3, exp(—=1'(v,¢)) +
o(A).

Recall that >, T'(v,¢) = d(v). Furthermore, since H is good, each T'(v, ¢)
lies between agd(v)/A and byd(v)/A. Subject to these constraints, Y-, exp(—1'(v, ¢))
is easily seen to be minimized when every T'(v, c¢) = d(v)/C, and maximized
when every T'(v, ¢) is either axd(v)/A or bpd(v)/A. In the latter case, the fact
that there are C' = ¢A different T'(v, ¢) terms and they sum to d(v) implies
that A(gby — 1)/(br, — ay) of them are equal to axd(v)/A and the remaining
A(1 = qag)/ (b, — ag) of them are equal to byd(v)/A. This yields

ge~W/CA < Exp(|L*(v)]) < A x @k =1 _apdw)/a 4 L% ayn
bk — Qg bk — Qg

Note that these calculations can be used to show that for all d, &,

09 > ge~dla, (1)

Since the colour choice for w; can affect |L*(v)| by at most 1, Azuma’s
Inequality implies that |L*(v)| is highly concentrated and, in particular, that
the probability of it differing from its expected value by ©(A) is e=®®). Since
d(v) > pA, this proves our bound on |L*(v)| in MOD-GLAUB.

Now we extend this bound to GLAUB. If the colour of w; differs in the two
procedures, then at some step after t — 30n logn, w; is assigned a colour that
appears on v and on no other neighbour of w;. Since |L(w;)]| is always greater

14



than C — A = (¢ — 1)A, this occurs with probability at most ((¢ — 1)nA) !
at any one time step, so the probability that it occurs at least once is at most
30nlogn/((¢ — 1)nA) < 100/D.

So the expected number of vertices in N (v) which are affected in this way
is at most 100A/D = O(logn). A simple application of the Chernoff Bounds
shows that this number is highly concentrated, and so the probability that
it is higher than ©(A) is at most e=®®) < n=1% for A > Dlogn where D is
sufficiently large in terms of v. This proves the lemma. ]

Adding the probability of n='% + O(n~?) that H is not good, and multi-
plying by the n x n? choices for v, t establishes part (a) of Lemma 5.

Part (b) follows in the same manner. We define B* in a similar way to
B, with the exception that a neighbour w; is in B* if (i) w; € B, (ii) it is
possible, by changing the colour assigned to a neighbour u of w;, to form
a long path of disagreement from u not passing through w;, or (iii) some
neighbour u of w; lies in a short cycle through w;. The same analysis shows
that Pr(|B*| > A/logA) < n~ . (An extra factor of A appears in the
expected number calculation, and this is not enough to raise that expected
number significantly.) We then restrict our attention to

Ty (v, ) = > !

wEN(v)fB*,CELE(w,t)(w) |Lf(w,t) (U))|

H exposes B*, all times t;,¢; ;,t; j, and the colours assigned to each u; j,
at time ¢; ;,. Then we modify our procedure as follows: All vertices ignore
the colours on v, wy, ..., wa, and after time ¢; ;, the neighbours of w; ; ignore
the colour of w; ;. If some w;; is adjacent to wy j, then they ignore each
other’s colours. We refer to this modified procedure as MOD-GLAUB2.

Consider any w; ¢ B* and let I(w;,c¢) be the indicator variable that
¢ € L(w;) at time t;. Suppose that d(w;) > pA. As in the proof of part (a),
Pr(/(w;,c¢) = 1) = exp(=T3,(w;, ¢)) + o(1). Therefore, using the bounds on
T}, (w;, ¢) and the list sizes from the fact that H is good, the expected value
of I(w;,c)/| L, (w;)| is at most
1

—apd(w; 1 —a -
(eer B + o(1)) o—rOdw) /o S A X #4 ) (qem () 4 o(1),

since the fact that a;, < 1/¢ implies that the LHS is maximized at d(w;) = A.
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We must take more care in proving our lower bound. We use L to denote
|L(w;)| at time ¢;, we let R be the event that L < Egﬁg))A, and we let I be the
indicator variable for R. In part (a), we proved that Pr(Iz = 0) = O(n™?).
Therefore,

I(w;, c I(w;, c
Exp((29) > pxp(l9 g,
Pr(/(w;,c¢) =1) — Pr(l, =0)
- d(v
A
~ Pr(I(w;,c))
= W + O(I/A).
k+1
Furthermore, we have
1
gz_l_l — ((qbk _ 1)6—(1—C)akd/A +(1- qak)e—(l—()bkd/A)
by — ax
< ((gbe — 1)e179% 4 (1 — gag)e™ (=) x el1=Obu(1=d/D)
bk — Qg

= () x ol1=Qbk(1=d/D)

Thus, the expected value of I(w;, ¢)/|L(w;)| at time ¢ is at least

1

_— >
d(w -
TR

(e brdwid/A 4 (1)) x x 0= (1=0b)(I=d(wi)/A) 4 (1)

(A)
k+1
—by,

) +o(1)
k1
—by,

e

N

@

X

Y
Bl= Ble Bl
S

vV
®

X

+o(1).

If d(w;) < pA, then |L(w;)| is never less than C' — pA = (¢ — p)A.
Therefore, by our assumptions on how small p is, the expected value of
I(w;, ¢)/|L(w;)| is at most

1 1 L .
m < X X e k/‘Z/(qe (1+C)/q)_
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Furthermore, since no list is ever smaller than (¢ — 1)A, Pr(I(w;,¢)) >

(1-— m)m which, by (1) and our assumptions on the size of p, is greater

than § x e /é,(cA). Therefore, the expected value of I(w;, ¢)/|L(w;)| is again
at least + X e=br /02

This implies that the expected value of T} (v, ¢) is at most (ag+1—¢)d(v)/A
and at least (by11—C)d(v)/A. By viewing the colour assignments to wj 1, ..., w; A—1
as one single random choice, we have A choices, each of which can affect
Ti(v,c) by at most 1/((¢ — 1)A), since no L(u) can have size less than
(¢ — 1)A. Therefore by Azuma’s Inequality, the probability that, under the
procedure MOD-GLAUB2, T, . differs from its expected value by more than
(¢/2)d(v)/A is at most e=®A) < n=1% for D sufficiently large in terms of (.
(Again, we use the fact that d(v) > pA.)

Virtually the same argument as that used for Part (a) proves that with
sufficiently high probability, 7 (v, ¢) in GLAUB is within ({/4)d(v)/C of its
value in MOD-GLAUB2. Furthermore, if # is good then |1} (v, ¢) =T (v, ¢)| <
(A/logA) x (1/(qg — 1)A) = o(1). This proves part (b).

9

Finally, we need to note that, since with probability at least 1 — n™" we
have each ¢;,%; ; > t —30nlogn > 30knlogn, then we have by induction that
the probability H is not good is at most 2n 7. O

We now show that Lemma 2 follows from Lemma 5, upon taking ¢ suf-
ficiently small when specifying k* and thus obtaining ay, by, £%. sufficiently
close to 1/¢,1/q, qe~%C.

Proof of Lemma 2 We prove Lemma 2 in the same way as the inductive
step for Lemma 5(b). We consider the procedure MOD-GLAUB2. We expose
‘H and, by taking 7 > 30k*, we can assume it is (with probability at least
1 — O(n®)) such that for each w; with d(w;) > pA,

(3 — §)d(w) /A < T(ws, 1), Tw;, ¢3) < (é + 8)d(w:) /A,

and
|L(w¢)| > qe—(1+C)d(v)/0A,

and that |B*| < A/logA. This last assumption, along with the fact that
|L(u)| > C — g for every vertex u, implies that ¥, cp- |L(w;)]™" = o(1).
Thus we can restrict our attention to N(v) — B*.
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Now consider any w; € N(v) — B* with d(w;) > pA. Let E; (resp. E»)
be the event that ¢; (resp. ¢;) appears on N(w;) —v. Thus E; N E, is the
event that w; ¢ 0. We will estimate Pr(E; N Ey) = 1 — Pr(E;) — Pr(E,) +
Pr(E, N E,). By our assumption on H, each Pr(E,) is at most

exp( =T (1)) < exp(—(; = 8)d(w:)/A)

Also, Pr(E; N Ey) is at least

1 U)o 2L U )
uweN (w;);c1 €L(u);ea ¢ L(u) |L(U) uEN (w; );e2€L(u);ca¢ L(u) |L(U)|

2
u€N (w;);c1,e2€L(u) |L(U’)|
= exp(—T(wj, c1) — T(wi, c2)) + 0(1)

> exp(=2(5 + O)d(wi)/A) +o1).

For § sufficiently small in terms of e, this yields Pr(E|NEy) > (1—e~4wi)/a2)2
€/2. Setting y = e~ 4w/44 note that (1 — (1 —y)?)/(yqA) = (2 — y)/(¢A)
increases as y decreases and so is maximized at d(w;) = A. Therefore, for ¢
sufficiently small in terms of ¢, we have:

(1 _ (1 _ e_d(wi)/qA)Z) + 6/2
qe*(1+<)d(wi)/cA

Exp(Re,e,(v)) < o(1)+ Y

weN (v)
(1—(1— e—d(wi)/qA)Z)
< 2
< €/2+ wEEN:(U) goAwI/OA
(1-(1—eV9?) d)
< €2+ preyr X

It follows as in the proof of Lemma 5(b) that this sum is highly concentrated
and so the probability that it differs from its expected value by more than
€/4 is at most n~1Y for D sufficiently large.

It follows again as in the proof of Lemma 5(b) that the probability of it
differing by more than €¢/4 from GLAUB to MOD-GLAUB is at most n™'°
for D sufficiently large. This proves Lemma 2. O
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We close this section with the proof of Lemma 3, thus completing the
proof of Lemma 2.

Proof of Lemma 3 Recall that we can assume that ¢ > ¢* is sufficiently
small, and so we will take ¢ < 1.49.

It is straightforward to show that a4 is strictly increasing and [ is
strictly decreasing, and so by Lemma 4, oo = limg_,o g, 8 = limy 00 B, A =
limy, oo )\,(CA) exist. They must satisfy

a = e /)

e */(qe” ")

ab = le_a + . g% o-b

f—a f—a

We will prove that this system has no roots for 0 < « < 1/¢. This, along
with Lemma 4, implies Lemma 3.

Rearranging the first equation of our system, we get f(a) = aA—e? = 0.
We will bound the derivative of f with respect to a. We start by bounding

gla)=1—Pq+ B —afq.

Clearly g(a) — 0 as a« — 1/q. Also, noting that the derivative of 5 with
respect to v is —f3, we have ¢'(a) = ¢S — f — ¢ + qaff = qaf — 3 < 0 for
a < 1/q. Therefore, g(a) > 0 for v < 1/gq.

Now, using the fact that by (1) ge™%/7 < X < ge™®, we have:

Fll@) = A=Be?+—"—((1-2Bg)e *+ (8 —q—aBge”+(B+1)))

b —«
-B
> A= fe o (1= 26+ B~ aby+af +a)
e™ —eF
+6_7a(0£ - 2a[3q)
—a 7ﬁ
> A= el —(a—20)
—a _ -8
> ge V1 —pBe7f —(em® —eF) — 5u

b —«
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—(a=p) _q
> ge? — e ¥ —(e7* —e ) — ﬁe_ﬂie o

> g - e - (- o) P+ L (8- a)
= (@20’ —(e"—e )= (F-a)se’.

As a — 1/q, we get @ — [ and so the latter two terms tend to 0. So this
allows us to bound f'(a) away from 0 when « is close to the discontinuity
at « = 1/¢. In particular, for 1.489 < ¢ < 1.49 we have f'(ar) > .01 when
64 < a < 1/q and so f(«) has no roots in that range. Having dealt with
this discontinuity, it is straightforward to check that for the same range of ¢,
f (@) has no roots in 0 < « < .58, thus proving the lemma. O

3 Path coupling and the proof of Theorem 1

Here, we prove Theorem 1. We consider a fixed small €, p to be named
later. We begin with a burn-in period of 7nlogn steps where 7 > 30 is as
in Lemma 2. All of our analysis will assume that 7nlogn < t < n%. For
now, we assume that for every vertex v, and pair of colours ¢y, ¢5, we have
(i) |L(v)] > Ce=¥™/C — A and (ii) v has fewer than vd(v) — €A neighbours
w with d(w) > pA and ¢, ¢y ¢ L(w). Later we will account for the O(n™?)
probability that this is not the case.

We use the path coupling technique of Bubley and Dyer[1]. To do so, we
couple two chains Xy, X, ... and Wy, Wy, ... with arbitrary initial colourings
Xo, Wy, and show that, with high probability, they coincide within O(n logn)
steps. To prove this fact using path coupling, at any time ¢, we consider a
“path” of possibly improper colourings X; = Zy, Z1, ..., Z;, = W;. We define
this path as follows. Consider an arbitrary ordering of the vertices vy, ..., v,.
To form Z, from Z,, we change the colour of the first vertex on which X;
and W, differ from its colour in X; to its colour in W;. To form Z, from 7,
we change the colour of the second vertex on which X;, W, differ, and so on.
Thus, A is the Hamming distance between X;, Wy, i.e. the number of vertices
on which they differ. (If X, = W, then h =0 and X; = Z, = W,.)

We couple the chains as follows: We carry out a step of Zy = X; thus
obtaining Z;, = X,4;. Then we maximally couple a random choice for Z; to
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the choice for Z;, thus obtaining Z,. (Recall that, even though Z, may not
be a proper colouring, we can apply a step of our process to it.) Repeatedly,
we maximally couple Z; to Z; ; obtaining Z;, finally yielding W, ,, = Z,'Z.

Recall that in our key Lemma 2, vertices of degree less than pA are not
included in the sum R, ., (v). Because of this, we need to modify the notion
of Hamming distance as follows.

Suppose that we are given a particular p > 0. For any two (not neces-
sarily proper) colourings X, W, we define their weighted Hamming distance
H'(X,W) to be the number of vertices v with d(v) > pA and X (v) # W (v)
plus 3p times the number of vertices v with d(v) < pA and X (v) # W (v).
Note that H' (X, W;) = "= H'(Z;, Z;;1). Note further that H (X; 1, Wyy1) <
Sy H (Z;, Z;.,), since if Xpp1(v) # Wiga(v) then Z;(v) # Z;,,(v) for at

least one <.

We will prove that, after an O(nlogn) burn-in period, the expected value
of the change of the weighted Hamming distance between any pair Z,, Z, 1
is at most —¢/n for some constant ¢» > 0. Thus, the expected value of
the change of the weighted Hamming distance between X, W is at most
—h x¢/n < =/n.

To prove this, we need to know that, with high probability, the bound in
Lemma 2 applies to each Z,.. So for each 0 < s < n and step t, we define
M7 to be the (possibly improper) colouring in which vertices vy, ..., vs have
their colour from W; and v, ..., v, have their colours from X;. Note that,
at time ¢, each Z, is equal to M} for at least one value of s. At time ¢, for
each vertex v and for each 0 < s < n, we define L*(v) to be the set of colours
which do not appear in M} on the neighbourhood of v. L* (v) = L°(v) is the
set of colours which do not appear in X on N(v), and L" (v) = L"(v) is the
set of colours which do not appear in W on N(v).

Lemma 8 For every e, p > 0, there exist constants D, T such that with prob-
ability at least 1 — n =5, for every vertex v, colours c¢i,co, 0 < s < n and
time Tnlogn <t < n?, we have the following: Define 0 = 63 ., (v) to be the
set of neighbours w of v with d(w) > pA and with at least one of ¢y, ¢y not

appearing in M7 on N(w) — v, and define:

R ., (0) =3

wel

1
| L(w)|
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Then
] 1—(1—eY9)? d(v)

B, e, (v) < ge—1/4 % A

To prove Lemma 8, we define

1 1
Tw T > X

,(v5) |Li(vj,t) (vﬂ)| UjEN(v);j>s;cEL§§v_7t)(vj) |Li(vj,t) (vj)|

TP (v,c) = Z

e w
ijN(v),jgs,ceLz(vj,t

and we modify Lemma 5 to:

Lemma 9 For each 1 < k < k*, with probability at least 1 —n=°, for every
v with d(v) > pA, colour ¢, 0 < s < n and 30knlogn <t < n?, we have at
time t:

(a) ge"HOUD/CN < |LX ()|, [LW (0)] < 65V A;

(b) apd(v)/A < TF(v,c) < brd(v)/A.

The proof of part (a) is essentially the same as in Lemma 5. To prove
part (b), for each w; = v;, H exposes the colours that wj11,...,wia_1,a-1
receive in the chain W if j < s, and exposes the colours they receive in X
otherwise. The rest of the proof is the same. The exponent of n in the
probability bound changes from —6 to —5 because of the extra n choices for
s.

Then we prove Lemma 8 from Lemma 9 by defining H in the same way.
O

For now we assume that for every vertex v, 0 < s < n and pair of colours
c1, ¢2, we have
1—(1—eY9)2d(v)
qge /4 A

Later we will account for the O(n™) probability that this is not the case.

R . (v) <

C1,C2

+ €.

Now, consider any Z,. and Z,,,. They differ on exactly one vertex, say v
which has colour ¢; in Z, and ¢ in Z,.;. We apply one step of our process
to Z, and to Z,,1, coupled as described in the introduction.
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Case 1: d(v) > pA.

The weighted Hamming distance between Z, and Z,,; decreases by 1 iff
we select v. This has probability 1/n of occurring. The weighted Hamming
distance increases iff we choose a neighbour w of v, and assign it colour ¢;
in Z, and/or assign it colour ¢y in Z,;;. If d(u) > pA then it increases by
1, otherwise it increases by 3p. Thus, to increase by 1, we must choose a
neighbour v € # and so the probability that it increases by 1 is R, ., (v)/n.
The probability that it increases by 3p is at most d(v)/(n(C'—A)). Therefore,
the expected change in the Hamming distance is at most

1 1—(1—e"ta)? 3
- x| -1+ (7 ) —I-e—l-—p
n ge Y1 —¢ qg—1

which is negative if we choose € and p to be sufficiently small in terms of ¢,
since we chose ¢ such that (1 — e /%) 4 ge=1/7 > 1,

Case 2: d(v) < pA.

The weighted Hamming distance decreases by 3p with probability % and
it increases with probability at most pA/(n(C' —A)). Since it never increases
by more than 1, the expected change in the Hamming distance is at most

1
_X<_3p+L>7
n q—1

which is negative for e sufficiently small since ¢ — 1 > 1/3 for ¢ > ¢*.

Thus, in either case, the expected change in the weighted Hamming dis-
tance is less than —1/n for some ¢ = 1)(¢) > 0. This implies that with suf-
ficiently high probability, the weighted Hamming distance drops to 0 within
O(nlogn) steps.

Now we still have to account for the O(n =) chance that for some v, ¢, s, ¢1, o,
R; ., (v) is too large. Let t* be the first time at which this occurs. Con-
sider the random variable H*(t) defined as follows. Until time t*, H*(t) =
H'(X;,W,). After time ¢*, if H*(t — 1) > 0 then H*(t) = H*(t — 1) — 1 with
probability 1 and H*(¢) = H*(t—1)+1 with probability 1-%; if H*(t—1) = 0
then H*(t) = 0. H*(t) is a simple random walk with negative drift after time
t = tnlogn, and it is straightforward to verify that with high probability,

H*(t) = 0 when ¢t = O(nlogn). Furthermore, with probability 1 — O(n™*),
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H'(X;,W,) = H*(t) for each 1 < ¢ < n? Therefore, with high probability,
H'(X;,W,) = 0 when t = O(nlogn). This is enough to prove Theorem 1.
See, for example, [4] for the standard argument. O

4 Some final comments

In this section, we note that this coupling argument cannot be used for the
case C' = ¢A for any ¢ < ¢*. To see this, consider any polynomial n* and
any A-regular graph G with A > Dlogn and girth at least D log A for some
sufficiently large D in terms of x.

Note that Lemmas 2 to 9 hold for all ¢ > 1.489 (and in fact, if needed,
we could show that they hold for even smaller ¢). The only place where we
required ¢ > ¢* was in the Proof of Theorem 1 in Section 3. Furthermore,
the upper bound ¢ < n? in their statements can be easily increased to n®.
Therefore, if the Glauber dynamics mixes rapidly, then a “typical” colouring
will satisfy that for all v, ¢, |L,| is arbitrarily close to Ce™'/? and T'(v, ¢) is
arbitrarily close to 1/¢. Thus, such a colouring must exist, call it W.

Suppose that we choose ¥ as our initial colouring. Then for the first n”
steps, with high probability, for all v, ¢, | L,| is arbitrarily close to Ce™'/? and
T(v,c) is arbitrarily close to 1/¢. This implies that with high probability, for
any v, ¢1, ¢s, the number of neighbours of v which have either ¢; or ¢y in their
list is arbitrarily close to (1 — (1 — e *9)2)A. So if we couple the colouring
arising at any time less than n® with another colouring which differs in exactly
one vertex, then since ¢ < ¢*, the expected change in their Hamming distance
will be positive.

Furthermore, since the graph has large girth, we cannot apply the tech-
nique from [5] and [9] where by analyzing the expected total change over a
few steps, we were able to get some gain from edges in N (v).

So in an extended abstract of this paper[10] the author raised the following
question:

Question: Is there any q < q¢* and D > 0 such that the Glauber dynamics
for qA-colourings mizes in polytime on graphs with girth at least D and
mazximum degree A at least Dlogn?
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He noted that a positive answer would require a substantial new idea.
Very recently, Hayes and Vigoda[6] provided such an answer, proving that
any ¢ > 1 will do even when the girth is as small as 9. Their substantial new
idea was to use a “non-Markovian coupling”. We refer the reader to their
paper for a further description.

Acknowledgements: The author is grateful to Martin Dyer and Alan
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