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Abstrat

We prove that the Glauber dynamis on the C-olourings of a

graph G on n verties with girth g and maximum degree � mixes

rapidly if (i) C = q� and q > q

�

where q

�

= 1:4890::: is the root

of (1 � e

�1=q

)

2

+ qe

�1=q

= 1; and (ii) � � D log n and g � D log�

for some onstant D = D(q). This improves the bound of roughly

1:763� obtained by Dyer and Frieze [2℄ for the same lass of graphs.

Our bound on this lass of graphs is lower than the bound of 11�=6 �

1:833� obtained by Vigoda [13℄ for general graphs.

For a given graph G and integer C whih is at least the hromati number

of G, we de�ne the Glauber dynamis on the C-olourings of G to be the

Markov hain desribed as follows. We start with an arbitrary C-olouring,

and at eah step we hoose a uniformly random vertex v, and a uniformly

random olour  from L(v), the list of olours whih do not appear on any

�
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neighbours of v. Then we hange the olour of v to . (If L(v) is empty then

we do not hoose a olour; note that L(v) is never empty if C > �.)

Unless spei�ed otherwise, we onsider all olourings to be proper, i.e.

no two adjaent verties an have the same olour. In setion 3, it will be

important to note that we an apply this step even to a non-proper olouring

of G. But note that if a olouring is proper, then applying a step of the hain

annot produe an improper olouring.

The main question in this area is: For what values of C does this Markov

hain mix in polytime? Usually this is studied in terms of �, the maximum

degree of G. It is well known that for some graphs, the hain does not mix for

C � �+1. (In fat, there are some graphs and (�+1)-olourings for whih

no olour hanges are possible, and so the hain is not even ergodi.) Jerrum

[7℄ showed that for all graphs, the hain mixes in polytime for C � 2� and

in optimal time, i.e. O(n logn) time, for C � 2� + 1. Salas and Sokal[11℄

independently obtained the latter result. Vigoda [13℄ showed that for all

graphs, a di�erent hain mixes in optimal time for C �

11

6

� and this implies

that for the same values of C, the Glauber dynamis mixes in polytime. Dyer,

Greenhill and Molloy [5℄ showed that the Glauber dynamis mixes in optimal

time for C � (2��)� where � is a small positive onstant (see also [9℄). Some

work has been done on speial lasses of graphs. Dyer et al[3℄ showed that

the Glauber dynamis mixes in optimal time on triangle-free graphs when

C � (2� x)� for a di�erent small positive onstant x. More reently, Dyer

and Frieze[2℄ showed that if the maximum degree, �, of G is at least D logn

and the girth is at least D log� for some suÆiently large onstant D, then

the hain mixes in optimal time for C � q� for any onstant q > � where

� = 1:763::: < 11=6 is the root of �e

�1=�

= 1. Here we improve on this latter

result:

We de�ne q

�

= 1:4890::: to be the root of (1� e

�1=q

)

2

+ qe

�1=q

= 1.

Theorem 1 For any q > q

�

and integer !, there exists D for whih: Suppose

G has n verties, maximum degree � � D logn and no vertex lies in more

than ! yles of length less than D log�. Then the Glauber dynamis mixes

in time O(n logn) for C = q�.

Of ourse, this overs all graphs with girth at least D log�. It also

overs natural models of random graphs suh as G

n;p==n

for  � D logn and
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random �-regular graphs for � = D logn. Dyer and Frieze[2℄ showed that

their theorem also extends to suh graphs.

Throughout the paper, we assume that n is large enough for various

asymptoti bounds to hold. We an also assume that q is suÆiently lose

to q

�

. We use N(v) to denote the neighbourhood of v, i.e. the set of verties

whih are adjaent to v. We de�ne d(v) = jN(v)j to be the degree of v. A

short yle is a yle of length less than D log�.

1 Some intuition

The proofs of all results mentioned above, exept for that of Vigoda [13℄, all

ome from the following idea

1

. Consider two olourings X;W whih di�er

only at one vertex v. We will arry out one step of the proess on eah

olouring, where we ouple these two random steps maximally. Spei�ally,

we �rst hoose a uniform vertex u for both olourings. If L

X

(u) and L

W

(u)

are the sets of allowable olours for u in X;W respetively, then we take two

mappings f

X

: [0; 1℄! L

X

(u); f

W

: [0; 1℄! L

W

(u), suh that

� for eah  2 L

X

(u), jf

�1

X

()j = 1=jL

X

(u)j and similarly for W , and

� fx : f

X

(x) 6= f

W

(x)g is as small as possible.

Then we take a uniform random real x 2 [0; 1℄ and hoose u; f

X

(x) for X and

u; f

W

(x) for W . Note that sine L

X

(u); L

W

(u) di�er in at most one olour

per list, we will have jfx : f

X

(x) 6= f

W

(x)gj � minfjL

X

(u)j

�1

; jL

W

(u)j

�1

g.

Note further that L

X

(u) = L

W

(u) unless u is a neighbour of v.

Using the path-oupling tehnique of Bubley and Dyer [1℄, it suÆes

to show that the probability of X;W onverging after one step is greater

than the probability of them di�ering in a seond vertex after one step (we

elaborate on this in Setion 3). They onverge i� we hoose u = v, whih

ours with probability 1=n. They di�er on a seond vertex i� we hoose

some u 2 N(v) and we hoose x 2 fx : f

X

(x) 6= f

W

(x)g. Sine no list an

ever be smaller than C ��, this ours with probability at most

�

n

�

1

C��

whih is less than

1

n

so long as C > 2�.

1

Jerrum's original proof in [7℄ predated this idea, but the idea yields a simpler proof.
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The bound was improved slightly in [3℄ by showing that for triangle-

free graphs, after a relatively short period, most verties will tend to have

many repeated olours in their neighbourhoods. Thus, their lists of available

olours will tend to be somewhat greater than C � �, and this leads to a

gain in the above alulations. The same idea played a key role in [5℄.

In [2℄, Dyer and Frieze showed that for graphs with large girth and max-

imum degree, after O(n logn) steps, with high probability every vertex will

have a list of size at least roughly qe

�1=q

�. If X;W are suh that all verties

have lists of this size, then this yields that the probability of X;W di�ering

on a seond olour is at most

�

n

�

1

qe

�1=q

�

. Sine q is hosen so that qe

�1=q

> 1,

this probability is less than

1

n

.

The key new idea used in this paper is to show that, after O(n logn) steps,

many neighbours u of v will satisfy L

X

(u) = L

W

(u). If we make the simplify-

ing assumption that the graph is �-regular, then with high probability, there

will be roughly (1� e

�1=q

)

2

� suh neighbours. This improves our bound on

the probability ofX;W di�ering on a seond olour to

(1�(1�e

�1=q

)

2

)�

n

�

1

qe

�1=q

�

,

whih is less than

1

n

for q > q

�

.

1.1 Uniform-like olour sets

Suppose that G is �-regular and that every vertex in N(v) is assigned an

independent uniform olour from f1; :::; Cg. Then the probability that some

olour  does not appear on any neighbour of v is (1� 1=C)

�

= e

�1=q

+ o(1).

Thus we would expet that eah list would have size roughly C � e

�1=q

=

qe

�1=q

�. This explains, at least intuitively, the lower bound that Dyer and

Frieze obtain.

Now suppose that every vertex of distane 2 from v is also assigned an

independent uniform olour from f1; :::; Cg. Suppose further that we hange

the olour of v in our olouring X to obtain another olouring W . For eah

u 2 N(v), L

X

(u) = L

W

(u) i� the olours X(v) and W (v) both appear on

N(u)� v. The probability that this ours is (1� e

�1=q

)

2

+ o(1), and so this

explains the result in this paper.

Of ourse, the olours appearing on the neighbours of v are far from

independent. But intuitively, sine there are few short yles near v, after
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O(n logn) steps the olours on verties lose to v are \lose enough" to being

independent. Muh of the work in this paper an be viewed as proving this

statement.

1.2 A reursive analysis

Our situation is somewhat more ompliated than that in [2℄. To illus-

trate this, suppose that N(v) = w

1

; :::; w

�

and onsider any assignment of

olours to the verties in N(w

1

); :::; N(w

�

). Now, assign to eah w

i

a uni-

form olour from amongst those not appearing on N(w

i

), independently of

the hoie for any other w

j

. It turns out, that for any assignment of olours

to N(w

1

); :::; N(w

�

), the expeted number of olours not appearing on N(v)

is at least qe

�1=q

� � o(�). Thus, Dyer and Frieze did not have to ensure

that the random olours appearing on N(w

1

); :::; N(w

�

) are lose to uniform.

Unfortunately, when analyzing our other parameter, we do not have this ad-

vantage, and we need to prove rather tight results on the distributions of the

olours appearing at distane 2 and 3 from v.

To do this, we require a ompliated iterative analysis. We'll introdue

that analysis now, in an oversimpli�ed setting, before formalizing it in the

next setion. First, it will be muh simpler to assume that G is regular and

so every vertex has degree �. We will also pretend that the time steps are

partitioned into a series of epohs, 	

0

;	

1

;	

2

; ::: and that every vertex is

reoloured at least exatly one during eah epoh.

We will be interested in two parameters. The �rst is the number of olours

available to eah vertex. We will reate a sequene L

0

> L

1

> L

2

> ::: suh

that during epoh 	

i

, the set L(v) of olours available to vertex v satis�es

jL(v)j � L

i

;

for every v. Furthermore, the same analysis as in [2℄ will yield that for i � 1,

at any time during epoh 	

i

we have:

jL(v)j � (e

�1=q

� o(1))C = qe

�1=q

�� o(�):

The seond parameter has to do with the probability that a partiular
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olour  is in L

v

. For any olour  and vertex v, we de�ne

T (v; ) =

X

w2N(v);2L(w)

1

jL(w)j

:

Thus, if we were to hoose a random olour for eah neighbour of v in turn,

then T (v; ) would be the expeted number of neighbours whih are assigned

. Furthermore, if we assume as in subsetion 1.1 that these hoies are

independent, then the probability that no neighbours are assigned , i.e.

that at the end of these hoies we have  2 L(v) is roughly e

�T (v;)

.

Of ourse, we need to be a bit areful here, beause the sets L(w) vary

with time and we are atually interested in their values at di�erent time

steps. But we will overlook suh details now as we are just providing an

intuitive overview.

We will introdue sequenes A

0

< A

1

< A

2

< ::: and B

0

> B

1

> B

2

> :::

suh that during epoh 	

i

, we have for every pair v; :

A

i

� T (v; ) � B

i

:

We start with our reursive equation for A

i

. Suppose that we are in epoh

	

i+1

and for eah neighbour w of v, let's pretend that the neighbours of w

were most reently oloured during epoh 	

i

. At that time we had T (w; ) �

B

i

and so the probability that  is now in L(w) is at least roughly e

�B

i

. We

also have jL(w)j � L

i

. This inspires us to de�ne:

A

i+1

= �� e

�B

i

=L

i

:

Similarly, we obtain

B

i+1

= �� e

�A

i

=(e

�1=q

C):

Finally, we onsider L

i+1

. Exp(jL(v)j) is roughly

P

C

=1

e

�T (v;)

. Also, note

that

C

X

=1

T (v; ) =

X

w2N(v)

X

2L(w)

1

jL(w)j

= �:

Thus, our expression for Exp(jL(v)j) is minimized when eah T (v; ) is equal

to �=C, whih yields a non-reursive lower bound of C� e

��=C

= C� e

�1=q

,

as obtained in [2℄. Furthermore, the expression is maximized when the values
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of T (v; ) are as disparate as possible. Sine eah T (v; ) is between A

i

and

B

i

, we get a reursive upper bound by assuming that every T (v; ) is either

A

i

or B

i

. Sine they sum to �, we must have (�� CB

i

)=(A

i

�B

i

) of them

equal to A

i

and (� � CA

i

)=(B

i

� A

i

) of them equal to B

i

. That gives an

upper bound of:

L

i+1

=

�� CB

i

A

i

�B

i

� e

�A

i

+

�� CA

i

B

i

� A

i

� e

�B

i

:

After hoosing appropriate initial values, it is straightforward to show

that these reursive equations have a limit of A

i

= B

i

= 1=q and L

i

=

C � e

�1=q

. Therefore, by running our Markov hain for enough epohs, we

an guarantee that for every v;  we have L(v) arbitrarily lose to e

�1=q

and

T (v; ) arbitrarily lose to �=C. This goes a long way towards allowing us

to show that the intuitive analysis outlined in subsetion 1.1 holds.

To transform this intuition into a proof, we need to be muh more preise.

For one thing, we have to be areful about speifying the time steps at whih

we are measuring L(v) in some of these quantities. We also an't assume

that every vertex is seleted exatly one per epoh; it turns out that at

least one per epoh will do, and we an ahieve that by taking eah epoh

to be of length O(n logn). Also, these reursive equations were obtained by

(impliitly) assuming that in eah epoh, every quantity will be equal to its

expeted value. In order to allow for the possibility that some quantities

di�er slightly from their expeted values, we derease eah A

i

and inrease

eah B

i

; L

i

by a small amount; we also apply a onentration inequality to

show that they don't di�er more-than-slightly from their expeted values.

Finally, we an't assume that every vertex has degree exatly �, and so we

have to allow our bounds on jL(v)j to be funtions of the degree of v.

All of the adjustments outlined in the preeding paragraph are straight-

forward, but tedious if we assume, as in subsetion 1.1, that the random

olours assigned to the neighbours of a vertex are independent. Of ourse,

this assumption is not valid and so we need to prove that they are, in some

sense, lose to being independent. We do this by foussing on \long-paths-

of-disagreement", whih will be desribed further in later setions.
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2 The main lemmas

As desribed in the opening part of Setion 1, our goal is essentially to show

that after O(n logn) steps, many neighbours u of v will satisfy L

X

(u) =

L

Y

(u). We must ompliate this ondition somewhat. First, for tehnial

reasons, we wish to make this hold independently of our hoie of the olours

v has in X; Y and so we make a statement that holds for every pair of

olours 

1

; 

2

. Also, we have to adjust our goal somewhat to deal with the

ase where v has neighbours of degree less than �. In fat, neighbours of very

small degree, less than �� for some small positive onstant � are partiularly

problemati and so have to be dealt with separately. Our main lemma is:

Lemma 2 For every �; � > 0, there exist onstants D; � suh that with

probability at least 1 � O(n

�6

), for every vertex v, olours 

1

; 

2

and time

�n logn � t � n

2

, we have the following: De�ne � = �



1

;

2

(v) to be the

set of neighbours w of v with d(w) � �� and with at least one of 

1

; 

2

not

appearing in N(w)� v, and de�ne:

R



1

;

2

(v) =

X

w2�

1

jL(w)j

Then

R



1

;

2

(v) �

1� (1� e

�1=q

)

2

qe

�1=q

�

d(v)

�

+ �:

Note that, under the notation of Setion 1, if v has 

1

in X and 

2

in

Y , and if d(w) > �� and L

X

(w) = L

Y

(w) then w 2 �



1

;

2

(v). Thus, if the

graph is �-regular, then this lemma implies what we said our goal was in

the opening part of Setion 1.

In setion 3, we will strengthen this lemma and then show how it implies

Theorem 1. For ease of presentation, we �rst prove Lemma 2 and then show

how to adapt the proof to yield the stronger lemma.

We begin with a reursive de�nition. This is along the same lines as that

desribed in subsetion 1.2, but modifed somewhat to failitate a formal

proof. For eah 0 � d � �:

� �

1

= 0; �

1

= 1=(q � 1); �

(d)

1

= q;
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� �

k+1

= e

��

k

=�

(�)

k

;

� �

k+1

= e

��

k

=(qe

�1=q

);

� �

(d)

k+1

=

q�

k

�1

�

k

��

k

e

��

k

d=�

+

1�q�

k

�

k

��

k

e

��

k

d=�

.

Lemma 3 lim

k!1

�

k

= lim

k!1

�

k

= 1=q; lim

k!1

�

(d)

k

= qe

�d=q�

.

We postpone the proof of Lemma 3 until later. But for now, we require

the following simple observation:

Lemma 4 For all k � 1 and 0 � d � �:

(a) �

k

< 1=q < �

k

, and

(b) qe

��

k

d=�

� �

(d)

k+1

� qe

��

k

d=�

.

Proof (b) follows sine �

(d)

k+1

is a linear ombination of qe

��

k

d=�

and

qe

��

k

d=�

. (a) follows from a simple indution. 2

In subsetion 1.2 we said that we have to adjust our sequenes by a small

amount, in order to allow for the possibility that some terms di�er slightly

from their expeted values. We do so now:

Fix some small Æ to be named later, and hoose k

�

suh that �

k

�

>

1

q

�Æ=2,

�

k

�

<

1

q

+Æ=2 and �

k

�

< qe

�1=q

+Æ=2 (suh an k

�

exists by Lemma 3). Choose

a suÆiently small onstant � and onstants a

1

; :::; a

k

�

; b

1

; :::; b

k

�

; `

(0)

1

; :::; `

(�)

k

�

suh that

(i) a

1

= �

1

; b

1

= �

1

; `

(d)

1

= �

(d)

1

;

(ii) � a

k+1

< e

�b

k

=`

(�)

k

� �;

� b

k+1

> e

�a

k

=(qe

�(1+�)=q

) + �;

� `

(d)

k+1

=

qb

k

�1

b

k

�a

k

e

�(1��)a

k

d=�

+

1�qa

k

b

k

�a

k

e

�(1��)b

k

d=�

(iv) a

k

�

>

1

q

� Æ; b

k

�

<

1

q

+ Æ:
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The existene of suh onstants follows easily from the ontinuity of the

relevant funtions over the region a 6= b.

Note that we an assume that � is as small as we wish, as if Lemma 2

holds with � = �

1

then it learly holds with � = �

2

for any �

2

> �

1

. In

partiular, we will assume that

� 1=(q � �) < e

(1+��a

k

�
)=q

=q; and

� e

��=(q�1)

> e

1=q�b

k

�

.

We de�ne L

t

(v) to be the set of olours available for v at time t; we

sometimes omit the subsript t when it is not neessary. For any vertex u

and time t, we de�ne t(u; t) to be the last time before t that u is seleted.

To be preise, we de�ne t(u; t) to be zero in the event that u is not seleted

before time t. This notation allows us to de�ne a more areful re�nement of

the vague quantity T (v; ) from subsetion 1.2:

T

t

(v; ) =

X

w2N(v);2L

t(w;t)

(w)

1

jL

t(w;t)

(w)j

:

Note that

C

X

=1

T

t

(v; ) =

X

w2N(v)

X

2L

t(w;t)

(w)

1

jL

t(w;t)

(w)j

= d(v):

We will prove indutively that

Lemma 5 For eah 1 � k � k

�

, with probability at least 1� n

�6

, for every

v with d(v) > ��, olour  and 30kn logn � t � n

2

, we have:

(a) qe

�(1+�)d(v)=C

� � jL

t

(v)j � `

(d(v))

k

�;

(b) a

k

d(v)=� � T

t

(v; ) � b

k

d(v)=�.

The lower bound in Part (a) is essentially Lemma 4.1 and (7) of Dyer and

Frieze[2℄, and our proof is similar to theirs.

Proof The proof is by indution on k. The base ase k = 1 holds

trivially. So assume that it holds for some k and onsider k + 1.
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Let the neighbours of v be w

1

; :::; w

d(v)

and for eah i let t

i

= t(w

i

; t)

be the last time before t that w

i

is seleted. For eah i, let N

w

i

� v =

fw

i;1

; :::; w

i;d(w

i

)�1

g and let t

i;j

= t(w

i;j

; t

i

) be the last time before t

i

that w

i;j

is seleted. Similarly, for eah i; j let N

w

i;j

�w

i

= fw

i;j;1

; :::; w

i;j;d(w

i;j

)�1

g and

let t

i;j;r

= t(w

i;j;r

; t

i;j

) be the last time before t

i;j

that w

i;j;r

is seleted. (If v

lies in some yles of length at most 6, then some verties will reeive more

than one label, but this does not reate a problem.)

The idea of foussing on the olours assigned at these times was used by

Dyer and Frieze [2℄.

With high probability, eah t

i

� t � 10n logn. Indeed, the probability

that this is not true is at most �(1�

1

n

)

10n logn

< n

�9

. The same alulations

give the same bound on the probability that some t

i;j

is less than t�20n logn

or that some t

i;j;r

is less than t� 30n logn.

We start by proving part (a). Expose the values of t

1

; :::; t

d(v)

; t

1;1

; :::; t

d(v);d(w

d(v)

)�1

.

It would be nie if we ould say that the olours assigned to w

1

; :::; w

d(v)

were independent, as that would greatly simplify our alulations. However,

this is learly not the ase, sine the olour assigned to w

i

has an e�et on

the next olour assigned to a neighbour of w

i

, and this e�et an propagate

along a path whih eventually leads to some w

j

. This an be a very short

path, if it goes through v; we will deal with suh paths later. Otherwise,

unless w

i

is one of the at most O(1) verties lying on a short yle through

v, the path must have length at least D log�� 2. Our �rst onern will be

suh long paths.

Consider the following proedure: GLAUB(i). It follows the usual Glauber

dynamis, but after step t

i

, all neighbours of w

i

ignore w

i

. More spei�ally,

for eah u 2 N(w

i

), L(u) is the set of olours whih do not appear on

N(u) � w

i

, and whenever u is seleted, u is assigned a uniformly random

olour from L(u). Thus, for example, w

i

might have the same olour as some

of its neighbours.

We use GLAUB to denote the usual Glauber dynamis, and we onsider

the two proedures to be oupled in that eah has the same initial state and

hooses the same vertex at eah step. The olor hoie at eah step is oupled

maximally.
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A long path of disagreement from w

i

is a path P of length at least ` =

(D=3) log� beginning at w

i

and not going through v, suh that the olour of

eah vertex in the path di�ers between GLAUB and GLAUB(i). (Suh paths

were used in a slightly di�erent way by Dyer and Frieze [2℄ and earlier, in a

di�erent setting, by van den Berg and Steif[12℄.) We say that w

i

is inuential

if there is a long path of disagreement from w

i

or if by hanging the olour

assigned to w

i

at time t

i

, and not hanging any future olour/vertex hoies

in GLAUB(i), it is possible to reate a long path of disagreement from w

i

.

We de�ne B to be the set of neighbours w

i

suh that either w

i

lies in a

yle through v of length less than D log� or w

i

is inuential.

Lemma 6 With probability at least 1� n

�10

, jBj < �= log�.

Proof The set of neighbours whih lie on a short yle through v is

at most 2!. Therefore, we only have to ount the inuential verties whih

do not lie on any short yle through v. Consider suh a vertex w

i

; we will

bound the probability that it is inuential.

We will bound this probability by the probability that either w

i

is inuen-

tial, or t

i

< t� 20n log�. The probability of the latter is (1� 1=n)

20n log�

<

1

2

�

�11

.

If w

i

is inuential and t

i

� t � 20n log�, then there is a path P : w

j

=

p

0

; p

1

; :::; p

`

, a olour  to assign to w

i

at time t

i

, and time steps t�20n log� <

s

1

< ::: < s

`

� t suh that at step s

r

, p

r

is seleted and assigned di�erent

olours in the two proedures.

Suppose that P is the lexiographially �rst suh path formed. Thus, at

eah step s

r

, if the olours of some neighbour u of p

r

disagree in the two

proedures, then there is a path of disagreement from u to w

j

whih does

not go through p

r

. Sine that path has length less than `, then p

r

and u lie

in a yle of length less than D log�. Sine p

r

lies in at most ! suh yles,

there an be at most 2! suh neighbours. Thus, sine jL(p

r

)j is always at

least C � � = (q � 1)�, the probability that p

r

hooses a di�erent olour

for eah proedure, under the maximal oupling, is less than 2!=((q� 1)�).

Therefore, the probability that suh a path is formed is at most:

�� (�� 1)

`

�

 

20n log�

`

!

�

 

2!

(q � 1)�

!

`

< ��

�

100e!

D

�

`

<

1

2

�

�11

;

12



for D suÆiently large and q near q

�

. Thus, after adding the probability that

t

i

< t� 20n log�, the probability that w

i

is inuential is at most �

�11

.

Now onsider any olletion w

i

1

; :::; w

i

m

of m = �= log��2! neighbours

whih don't lie in short yles through v. Using the fat that long paths of

disagreement from any two suh neighbours must be disjoint, similar alu-

lations yield that the probability of all m neighbours being inuential is at

most (�

�11

)

m

. Therefore, the probability that at least m suh neighbours of

v are inuential is at most

 

�

m

!

��

�11m

< �

�10m

< n

�10

;

for D > 1. 2

Now, for eah i; j, we expose the olour assigned to u

i;j

at time t

i;j

. We

also expose the set B. We denote this set of information, along with the

values of t

1

; :::t

d(v)

; t

1;1

; :::t

d(v);d(w

d(v)

)�1

, by H. We say that H is good if every

t

i

; t

i;j

� t� 30n logn, if the sets of olour assignments satisfy the onditions

of Lemma 5 for k and if jBj � �= log�. We will show by indution that the

probability of H not being good is at most O(n

�9

).

Lemma 7 For any good H, the onditional probability that, at a partiular

time t � 30(k + 1)n logn during MOD-GLAUB, jL(v)j � qe

�(1+�=2)d(v)=C

�

or jL(v)j � `

(d(v))

k+1

�� �=2 is at most n

�9

.

Proof Rather than analyzing jL(v)j diretly, we will fous on jL

�

(v)j,

the set of olours whih do not appear on any w

i

2 N(v) � B. Note that

jL

�

(v)j � jL(v)j � jL

�

(v)j � jBj = jL

�

(v)j � o(�).

Rather than dealing with GLAUB diretly, we onsider the proedure

MOD-GLAUB, whereby after time t� 30n logn, neighbours of v ignore the

olour on v.

The advantage of foussing on jL

�

(v)j and MOD-GLAUB is that the

olour assignments to the verties in N(v) � B are independent. This is

beause no ombination of assignments to these verties an produe a long

path of disagreement from one suh vertex to another, and, sine the verties

ignore the olour on v and no two lie on a short yle through v, there are

no short paths of disagreement between these verties.

13



Furthermore, exposing the fat that w

i

=2 B, only exposes that w

i

is

not inuential. Sine the de�nition of \inuential" does not depend on the

partiular olour assigned to w

i

, this does not expose anything about that

hoie of olour.

So eah w

i

reeives a uniformly random olour from amongst those olours

whih H ditates to not appear on N(w

i

)� v at time t

i

, and the hoies for

w

1

; :::; w

�

are independent. Thus, for any olour  the onditional probability

that  belongs to L

�

(v) at time t is

Y

w2N(v)�B;2L(w)

1�

1

L(w)

= exp(�T (v; )) + o(1);

sine every L(w) has size at least C �� = (q � 1)�, and sine jBj = o(�).

Therefore, the expeted size of L

�

(v) at time t is equal to

P



exp(�T (v; ))+

o(�).

Reall that

P



T (v; ) = d(v). Furthermore, sine H is good, eah T (v; )

lies between a

k

d(v)=� and b

k

d(v)=�. Subjet to these onstraints,

P



exp(�T (v; ))

is easily seen to be minimized when every T (v; ) = d(v)=C, and maximized

when every T (v; ) is either a

k

d(v)=� or b

k

d(v)=�. In the latter ase, the fat

that there are C = q� di�erent T (v; ) terms and they sum to d(v) implies

that �(qb

k

� 1)=(b

k

� a

k

) of them are equal to a

k

d(v)=� and the remaining

�(1� qa

k

)=(b

k

� a

k

) of them are equal to b

k

d(v)=�. This yields

qe

�d(v)=C

� � Exp(jL

�

(v)j) � ��

 

qb

k

� 1

b

k

� a

k

e

�a

k

d(v)=�

+

1� qa

k

b

k

� a

k

e

�b

k

d(v)=�

!

:

Note that these alulations an be used to show that for all d; k,

`

(d)

k

> qe

�d=q

: (1)

Sine the olour hoie for w

i

an a�et jL

�

(v)j by at most 1, Azuma's

Inequality implies that jL

�

(v)j is highly onentrated and, in partiular, that

the probability of it di�ering from its expeted value by �(�) is e

��(�)

. Sine

d(v) > ��, this proves our bound on jL

�

(v)j in MOD-GLAUB.

Now we extend this bound to GLAUB. If the olour of w

i

di�ers in the two

proedures, then at some step after t�30n logn, w

i

is assigned a olour that

appears on v and on no other neighbour of w

i

. Sine jL(w

i

)j is always greater

14



than C �� = (q � 1)�, this ours with probability at most ((q � 1)n�)

�1

at any one time step, so the probability that it ours at least one is at most

30n logn=((q � 1)n�) < 100=D.

So the expeted number of verties in N(v) whih are a�eted in this way

is at most 100�=D = O(logn). A simple appliation of the Cherno� Bounds

shows that this number is highly onentrated, and so the probability that

it is higher than �(�) is at most e

��(�)

< n

�10

, for � � D logn where D is

suÆiently large in terms of �. This proves the lemma. 2

Adding the probability of n

�10

+O(n

�9

) that H is not good, and multi-

plying by the n� n

2

hoies for v; t establishes part (a) of Lemma 5.

Part (b) follows in the same manner. We de�ne B

�

in a similar way to

B, with the exeption that a neighbour w

i

is in B

�

if (i) w

i

2 B, (ii) it is

possible, by hanging the olour assigned to a neighbour u of w

i

, to form

a long path of disagreement from u not passing through w

i

, or (iii) some

neighbour u of w

i

lies in a short yle through w

i

. The same analysis shows

that Pr(jB

�

j > �= log�) < n

�11

. (An extra fator of � appears in the

expeted number alulation, and this is not enough to raise that expeted

number signi�antly.) We then restrit our attention to

T

�

t

(v; ) =

X

w2N(v)�B�;2L

t(w;t)

(w)

1

jL

t(w;t)

(w)j

:

H exposes B

�

, all times t

i

; t

i;j

; t

i;j;r

and the olours assigned to eah u

i;j;r

at time t

i;j;r

. Then we modify our proedure as follows: All verties ignore

the olours on v; w

1

; :::; w

�

, and after time t

i;j

, the neighbours of w

i;j

ignore

the olour of w

i;j

. If some w

i;j

is adjaent to w

i

0

;j

0

, then they ignore eah

other's olours. We refer to this modi�ed proedure as MOD-GLAUB2.

Consider any w

i

=2 B

�

and let I(w

i

; ) be the indiator variable that

 2 L(w

i

) at time t

i

. Suppose that d(w

i

) > ��. As in the proof of part (a),

Pr(I(w

i

; ) = 1) = exp(�T

t

i

(w

i

; )) + o(1): Therefore, using the bounds on

T

t

i

(w

i

; ) and the list sizes from the fat that H is good, the expeted value

of I(w

i

; )=jL

t

i

(w

i

)j is at most

(e

�a

k

d(w

i

)=�

+ o(1))�

1

qe

�(1+�)d(w

i

)=C

�

�

1

�

� e

�a

k

=q

=(qe

�(1+�)=q

) + o(1);

sine the fat that a

k

< 1=q implies that the LHS is maximized at d(w

i

) = �.
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We must take more are in proving our lower bound. We use L to denote

jL(w

i

)j at time t

i

, we letR be the event that L � `

(d(v))

k+1

�, and we let I

R

be the

indiator variable for R. In part (a), we proved that Pr(I

R

= 0) = O(n

�9

).

Therefore,

Exp(

I(w

i

; )

L

) � Exp(

I(w

i

; )

L

� I

R

)

�

Pr(I(w

i

; ) = 1)�Pr(I

r

= 0)

`

(d(v))

k+1

�

=

Pr(I(w

i

; ))

`

(d(v))

k+1

�

+ o(1=�):

Furthermore, we have

`

d

k+1

=

1

b

k

� a

k

�

(qb

k

� 1)e

�(1��)a

k

d=�

+ (1� qa

k

)e

�(1��)b

k

d=�

�

<

1

b

k

� a

k

�

(qb

k

� 1)e

�(1��)a

k

+ (1� qa

k

)e

�(1��)b

k

�

� e

(1��)b

k

(1�d=D)

= `

(�)

k+1

� e

(1��)b

k

(1�d=D)

:

Thus, the expeted value of I(w

i

; )=jL(w

i

)j at time t is at least

(e

�b

k

d(w

i

)=�

+ o(1))�

1

`

(d(w))

k+1

�

�

1

�

�

e

�b

k

`

(�)

k+1

� e

(b

k

�(1��)b

k

)(1�d(w

i

)=�)

+ o(1)

�

1

�

�

e

�b

k

`

(�)

k+1

+ o(1)

�

1

�

�

e

�b

k

`

(�)

k

+ o(1):

If d(w

i

) � ��, then jL(w

i

)j is never less than C � �� = (q � �)�.

Therefore, by our assumptions on how small � is, the expeted value of

I(w

i

; )=jL(w

i

)j is at most

1

(q � �)�

<

1

�

� e

�a

k

=q

=(qe

�(1+�)=q

):
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Furthermore, sine no list is ever smaller than (q � 1)�, Pr(I(w

i

; )) �

(1�

1

(q�1)�

)

��

whih, by (1) and our assumptions on the size of �, is greater

than

C

�

�e

�b

k

=`

(�)

k

. Therefore, the expeted value of I(w

i

; )=jL(w

i

)j is again

at least

1

�

� e

�b

k

=`

(�)

k

.

This implies that the expeted value of T

�

t

(v; ) is at most (a

k+1

��)d(v)=�

and at least (b

k+1

��)d(v)=�. By viewing the olour assignments to w

i;1

; :::; w

i;��1

as one single random hoie, we have � hoies, eah of whih an a�et

T

�

t

(v; ) by at most 1=((q � 1)�), sine no L(u) an have size less than

(q � 1)�. Therefore by Azuma's Inequality, the probability that, under the

proedure MOD-GLAUB2, T

v;

di�ers from its expeted value by more than

(�=2)d(v)=� is at most e

��(�)

< n

�10

, for D suÆiently large in terms of �.

(Again, we use the fat that d(v) � ��.)

Virtually the same argument as that used for Part (a) proves that with

suÆiently high probability, T

�

t

(v; ) in GLAUB is within (�=4)d(v)=C of its

value in MOD-GLAUB2. Furthermore, ifH is good then jT

�

t

(v; )�T

t

(v; )j <

(�= log�)� (1=(q � 1)�) = o(1). This proves part (b).

Finally, we need to note that, sine with probability at least 1� n

�9

we

have eah t

i

; t

i;j

� t�30n log n � 30kn logn, then we have by indution that

the probability H is not good is at most 2n

�9

. 2

We now show that Lemma 2 follows from Lemma 5, upon taking Æ suf-

�iently small when speifying k

�

and thus obtaining a

k

; b

k

; `

d

k

�

suÆiently

lose to 1=q; 1=q; qe

�d=C

.

Proof of Lemma 2We prove Lemma 2 in the same way as the indutive

step for Lemma 5(b). We onsider the proedure MOD-GLAUB2. We expose

H and, by taking � � 30k

�

, we an assume it is (with probability at least

1�O(n

�6

)) suh that for eah w

i

with d(w

i

) > ��,

(

1

q

� Æ)d(w

i

)=� < T (w

i

; 

1

); T (w

i

; 

2

) < (

1

q

+ Æ)d(w

i

)=�;

and

jL(w

i

)j � qe

�(1+�)d(v)=C

�;

and that jB

�

j < �= log�. This last assumption, along with the fat that

jL(u)j � C � q for every vertex u, implies that

P

w

i

2B

�

jL(w

i

)j

�1

= o(1).

Thus we an restrit our attention to N(v)� B

�

.
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Now onsider any w

i

2 N(v) � B

�

with d(w

i

) > ��. Let E

1

(resp. E

2

)

be the event that 

1

(resp. 

2

) appears on N(w

i

) � v. Thus E

1

\ E

2

is the

event that w

i

=2 �. We will estimate Pr(E

1

\ E

2

) = 1�Pr(E

1

)�Pr(E

2

) +

Pr(E

1

\ E

2

). By our assumption on H, eah Pr(E

r

) is at most

exp(�T (w

i

; 

r

)) � exp(�(

1

q

� Æ)d(w

i

)=�):

Also, Pr(E

1

\ E

2

) is at least

Y

u2N(w

i

);

1

2L(u);

2

=2L(u)

 

1�

1

jL(u)j

!

�

Y

u2N(w

i

);

2

2L(u);

2

=2L(u)

 

1�

1

jL(u)j

!

�

Y

u2N(w

i

);

1

;

2

2L(u)

 

1�

2

jL(u)j

!

= exp(�T (w

i

; 

1

)� T (w

i

; 

2

)) + o(1)

� exp(�2(

1

q

+ Æ)d(w

i

)=�) + o(1):

For Æ suÆiently small in terms of �, this yieldsPr(E

1

\E

2

) > (1�e

�d(w

i

)=q�

)

2

�

�=2. Setting y = e

�d(w

i

)=q�

, note that (1 � (1 � y)

2

)=(yq�) = (2 � y)=(q�)

inreases as y dereases and so is maximized at d(w

i

) = �. Therefore, for �

suÆiently small in terms of �, we have:

Exp(R



1

;

2

(v)) � o(1) +

X

w2N(v)

(1� (1� e

�d(w

i

)=q�

)

2

) + �=2

qe

�(1+�)d(w

i

)=C

�

� �=2 +

X

w2N(v)

(1� (1� e

�d(w

i

)=q�

)

2

)

qe

�d(w

i

)=C

�

� �=2 +

(1� (1� e

�1=q

)

2

)

qe

�1=q

�

d(v)

�

:

It follows as in the proof of Lemma 5(b) that this sum is highly onentrated

and so the probability that it di�ers from its expeted value by more than

�=4 is at most n

�10

for D suÆiently large.

It follows again as in the proof of Lemma 5(b) that the probability of it

di�ering by more than �=4 from GLAUB to MOD-GLAUB is at most n

�10

for D suÆiently large. This proves Lemma 2. 2
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We lose this setion with the proof of Lemma 3, thus ompleting the

proof of Lemma 2.

Proof of Lemma 3 Reall that we an assume that q > q

�

is suÆiently

small, and so we will take q < 1:49.

It is straightforward to show that �

k

is stritly inreasing and �

k

is

stritly dereasing, and so by Lemma 4, � = lim

k!1

�

k

; � = lim

k!1

�

k

; � =

lim

k!1

�

(�)

k

exist. They must satisfy

� = e

��

=�

� = e

��

=(qe

�1=q

)

� =

q� � 1

� � �

e

��

+

1� q�

� � �

e

�b

We will prove that this system has no roots for 0 � � < 1=q. This, along

with Lemma 4, implies Lemma 3.

Rearranging the �rst equation of our system, we get f(�) = ���e

��

= 0.

We will bound the derivative of f with respet to �. We start by bounding

g(�) = 1� �q + � � ��q:

Clearly g(�) ! 0 as � ! 1=q. Also, noting that the derivative of � with

respet to � is ��, we have g

0

(�) = q� � � � q� + q�� = q�� � � < 0 for

� < 1=q. Therefore, g(�) > 0 for � < 1=q.

Now, using the fat that by (1) qe

�1=q

� � � qe

��

, we have:

f

0

(�) = �� �e

��

+

�

� � �

((1� 2�q)e

��

+ (� � q � ��q)e

��

+ (� + 1)�)

� �� �e

��

+

�e

��

� � �

(1� 2�q + � � q � ��q + q� + q)

+

e

��

� e

��

� � �

(�� 2��q)

� �� �e

��

+

e

��

� e

��

� � �

(�� 2�)

� qe

�1=q

� �e

��

� (e

��

� e

��

)� �

e

��

� e

��

� � �
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� qe

��

� �e

��

� (e

��

� e

��

)� �e

��

e

�(���)

� 1

� � �

� qe

��

� �e

��

� (e

��

� e

��

)� �e

��

(1 +

1

2

(� � �))

= (q � 2�)e

��

� (e

��

� e

��

)� (� � �)�e

��

:

As � ! 1=q, we get � ! � and so the latter two terms tend to 0. So this

allows us to bound f

0

(�) away from 0 when � is lose to the disontinuity

at � = 1=q. In partiular, for 1:489 < q < 1:49 we have f

0

(�) > :01 when

:64 � a < 1=q and so f(�) has no roots in that range. Having dealt with

this disontinuity, it is straightforward to hek that for the same range of q,

f(�) has no roots in 0 � � � :58, thus proving the lemma. 2

3 Path oupling and the proof of Theorem 1

Here, we prove Theorem 1. We onsider a �xed small �; � to be named

later. We begin with a burn-in period of �n logn steps where � > 30 is as

in Lemma 2. All of our analysis will assume that �n logn < t < n

2

. For

now, we assume that for every vertex v, and pair of olours 

1

; 

2

, we have

(i) jL(v)j � Ce

�d(v)=C

� �� and (ii) v has fewer than d(v)� �� neighbours

w with d(w) � �� and 

1

; 

2

=2 L(w). Later we will aount for the O(n

�5

)

probability that this is not the ase.

We use the path oupling tehnique of Bubley and Dyer[1℄. To do so, we

ouple two hains X

0

; X

1

; ::: and W

0

;W

1

; ::: with arbitrary initial olourings

X

0

;W

0

, and show that, with high probability, they oinide within O(n logn)

steps. To prove this fat using path oupling, at any time t, we onsider a

\path" of possibly improper olourings X

t

= Z

0

; Z

1

; :::; Z

h

= W

t

. We de�ne

this path as follows. Consider an arbitrary ordering of the verties v

1

; :::; v

n

.

To form Z

1

from Z

0

, we hange the olour of the �rst vertex on whih X

t

and W

t

di�er from its olour in X

t

to its olour in W

t

. To form Z

2

from Z

1

,

we hange the olour of the seond vertex on whih X

t

;W

t

di�er, and so on.

Thus, h is the Hamming distane between X

t

;W

t

, i.e. the number of verties

on whih they di�er. (If X

t

=W

t

then h = 0 and X

t

= Z

0

=W

t

.)

We ouple the hains as follows: We arry out a step of Z

0

= X

t

thus

obtaining Z

0

0

= X

t+1

. Then we maximally ouple a random hoie for Z

1

to
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the hoie for Z

0

, thus obtaining Z

0

1

. (Reall that, even though Z

r

may not

be a proper olouring, we an apply a step of our proess to it.) Repeatedly,

we maximally ouple Z

i

to Z

i�1

obtaining Z

0

i

, �nally yielding W

t+1

= Z

0

h

.

Reall that in our key Lemma 2, verties of degree less than �� are not

inluded in the sum R



1

;

2

(v). Beause of this, we need to modify the notion

of Hamming distane as follows.

Suppose that we are given a partiular � > 0. For any two (not nees-

sarily proper) olourings X;W , we de�ne their weighted Hamming distane

H

0

(X;W ) to be the number of verties v with d(v) > �� and X(v) 6= W (v)

plus 3� times the number of verties v with d(v) � �� and X(v) 6= W (v).

Note thatH

0

(X

t

;W

t

) =

P

h�1

i=0

H

0

(Z

i

; Z

i+1

). Note further thatH

0

(X

t+1

;W

t+1

) �

P

h�1

i=0

H

0

(Z

0

i

; Z

0

i+1

), sine if X

t+1

(v) 6= W

t+1

(v) then Z

0

i

(v) 6= Z

0

i+1

(v) for at

least one i.

We will prove that, after an O(n logn) burn-in period, the expeted value

of the hange of the weighted Hamming distane between any pair Z

r

; Z

r+1

is at most � =n for some onstant  > 0. Thus, the expeted value of

the hange of the weighted Hamming distane between X;W is at most

�h�  =n < � =n.

To prove this, we need to know that, with high probability, the bound in

Lemma 2 applies to eah Z

r

. So for eah 0 � s � n and step t, we de�ne

M

s

t

to be the (possibly improper) olouring in whih verties v

1

; :::; v

s

have

their olour from W

t

and v

s+1

; :::; v

n

have their olours from X

t

. Note that,

at time t, eah Z

r

is equal to M

s

t

for at least one value of s. At time t, for

eah vertex v and for eah 0 � s � n, we de�ne L

s

(v) to be the set of olours

whih do not appear inM

s

t

on the neighbourhood of v. L

X

(v) = L

0

(v) is the

set of olours whih do not appear in X on N(v), and L

W

(v) = L

n

(v) is the

set of olours whih do not appear in W on N(v).

Lemma 8 For every �; � > 0, there exist onstants D; � suh that with prob-

ability at least 1 � n

�5

, for every vertex v, olours 

1

; 

2

, 0 � s � n and

time �n logn � t � n

2

, we have the following: De�ne � = �

s



1

;

2

(v) to be the

set of neighbours w of v with d(w) � �� and with at least one of 

1

; 

2

not

appearing in M

s

t

on N(w)� v, and de�ne:

R

s



1

;

2

(v) =

X

w2�

1

jL(w)j
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Then

R

s



1

;

2

(v) �

1� (1� e

�1=q

)

2

qe

�1=q

�

d(v)

�

+ �:

To prove Lemma 8, we de�ne

T

s

t

(v; ) =

X

v

j

2N(v);j�s;2L

W

t(v

j

;t)

(v

j

)

1

jL

W

t(v

j

;t)

(v

j

)j

+

X

v

j

2N(v);j>s;2L

X

t(v

j

;t)

(v

j

)

1

jL

X

t(v

j

;t)

(v

j

)j

;

and we modify Lemma 5 to:

Lemma 9 For eah 1 � k � k

�

, with probability at least 1� n

�5

, for every

v with d(v) > ��, olour , 0 � s � n and 30kn logn � t � n

2

, we have at

time t:

(a) qe

�(1+�)d(v)=C

� � jL

X

(v)j; jL

W

(v)j � `

(d(v))

k

�;

(b) a

k

d(v)=� � T

s

t

(v; ) � b

k

d(v)=�.

The proof of part (a) is essentially the same as in Lemma 5. To prove

part (b), for eah w

i

= v

j

, H exposes the olours that w

i;1;1

; :::; w

i;��1;��1

reeive in the hain W if j � s, and exposes the olours they reeive in X

otherwise. The rest of the proof is the same. The exponent of n in the

probability bound hanges from �6 to �5 beause of the extra n hoies for

s.

Then we prove Lemma 8 from Lemma 9 by de�ning H in the same way.

2

For now we assume that for every vertex v, 0 � s � n and pair of olours



1

; 

2

, we have

R

s



1

;

2

(v) �

1� (1� e

�1=q

)

2

qe

�1=q

d(v)

�

+ �:

Later we will aount for the O(n

�5

) probability that this is not the ase.

Now, onsider any Z

r

and Z

r+1

. They di�er on exatly one vertex, say v

whih has olour 

1

in Z

r

and 

2

in Z

r+1

. We apply one step of our proess

to Z

r

and to Z

r+1

, oupled as desribed in the introdution.
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Case 1: d(v) > ��.

The weighted Hamming distane between Z

r

and Z

r+1

dereases by 1 i�

we selet v. This has probability 1=n of ourring. The weighted Hamming

distane inreases i� we hoose a neighbour u of v, and assign it olour 

1

in Z

r

and/or assign it olour 

2

in Z

r+1

. If d(u) > �� then it inreases by

1, otherwise it inreases by 3�. Thus, to inrease by 1, we must hoose a

neighbour u 2 � and so the probability that it inreases by 1 is R



1

;

2

(v)=n.

The probability that it inreases by 3� is at most d(v)=(n(C��)). Therefore,

the expeted hange in the Hamming distane is at most

1

n

�

 

�1 +

1� (1� e

�1=q

)

2

qe

�1=q

� �

+ � +

3�

q � 1

!

whih is negative if we hoose � and � to be suÆiently small in terms of q,

sine we hose q suh that (1� e

�1=q

)

2

+ qe

�1=q

> 1.

Case 2: d(v) � ��.

The weighted Hamming distane dereases by 3� with probability

1

n

and

it inreases with probability at most ��=(n(C��)). Sine it never inreases

by more than 1, the expeted hange in the Hamming distane is at most

1

n

�

 

�3� +

�

q � 1

!

;

whih is negative for � suÆiently small sine q � 1 > 1=3 for q > q

�

.

Thus, in either ase, the expeted hange in the weighted Hamming dis-

tane is less than � =n for some  =  (q) > 0. This implies that with suf-

�iently high probability, the weighted Hamming distane drops to 0 within

O(n logn) steps.

Now we still have to aount for theO(n

�5

) hane that for some v; t; s; 

1

; 

2

,

R

s



1

;

2

(v) is too large. Let t

�

be the �rst time at whih this ours. Con-

sider the random variable H

�

(t) de�ned as follows. Until time t

�

, H

�

(t) =

H

0

(X

t

;W

t

). After time t

�

, if H

�

(t� 1) > 0 then H

�

(t) = H

�

(t� 1)� 1 with

probability

1

n

and H

�

(t) = H

�

(t�1)+1 with probability

1� 

n

; ifH

�

(t�1) = 0

then H

�

(t) = 0. H

�

(t) is a simple random walk with negative drift after time

t = �n logn, and it is straightforward to verify that with high probability,

H

�

(t) = 0 when t = O(n logn). Furthermore, with probability 1 � O(n

�4

),
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H

0

(X

t

;W

t

) = H

�

(t) for eah 1 � t � n

2

. Therefore, with high probability,

H

0

(X

t

;W

t

) = 0 when t = O(n logn). This is enough to prove Theorem 1.

See, for example, [4℄ for the standard argument. 2

4 Some �nal omments

In this setion, we note that this oupling argument annot be used for the

ase C = q� for any q < q

�

. To see this, onsider any polynomial n

x

and

any �-regular graph G with � � D logn and girth at least D log� for some

suÆiently large D in terms of x.

Note that Lemmas 2 to 9 hold for all q > 1:489 (and in fat, if needed,

we ould show that they hold for even smaller q). The only plae where we

required q > q

�

was in the Proof of Theorem 1 in Setion 3. Furthermore,

the upper bound t � n

2

in their statements an be easily inreased to n

x

.

Therefore, if the Glauber dynamis mixes rapidly, then a \typial" olouring

will satisfy that for all v; , jL

v

j is arbitrarily lose to Ce

�1=q

and T (v; ) is

arbitrarily lose to 1=q. Thus, suh a olouring must exist, all it 	.

Suppose that we hoose 	 as our initial olouring. Then for the �rst n

x

steps, with high probability, for all v; , jL

v

j is arbitrarily lose to Ce

�1=q

and

T (v; ) is arbitrarily lose to 1=q. This implies that with high probability, for

any v; 

1

; 

2

, the number of neighbours of v whih have either 

1

or 

2

in their

list is arbitrarily lose to (1� (1� e

�1=q

)

2

)�. So if we ouple the olouring

arising at any time less than n

x

with another olouring whih di�ers in exatly

one vertex, then sine q < q

�

, the expeted hange in their Hamming distane

will be positive.

Furthermore, sine the graph has large girth, we annot apply the teh-

nique from [5℄ and [9℄ where by analyzing the expeted total hange over a

few steps, we were able to get some gain from edges in N(v).

So in an extended abstrat of this paper[10℄ the author raised the following

question:

Question: Is there any q < q

�

and D > 0 suh that the Glauber dynamis

for q�-olourings mixes in polytime on graphs with girth at least D and

maximum degree � at least D logn?
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He noted that a positive answer would require a substantial new idea.

Very reently, Hayes and Vigoda[6℄ provided suh an answer, proving that

any q > 1 will do even when the girth is as small as 9. Their substantial new

idea was to use a \non-Markovian oupling". We refer the reader to their

paper for a further desription.
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