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Abstra
t

We prove that the Glauber dynami
s on the C-
olourings of a

graph G on n verti
es with girth g and maximum degree � mixes

rapidly if (i) C = q� and q > q

�

where q

�

= 1:4890::: is the root

of (1 � e

�1=q

)

2

+ qe

�1=q

= 1; and (ii) � � D log n and g � D log�

for some 
onstant D = D(q). This improves the bound of roughly

1:763� obtained by Dyer and Frieze [2℄ for the same 
lass of graphs.

Our bound on this 
lass of graphs is lower than the bound of 11�=6 �

1:833� obtained by Vigoda [13℄ for general graphs.

For a given graph G and integer C whi
h is at least the 
hromati
 number

of G, we de�ne the Glauber dynami
s on the C-
olourings of G to be the

Markov 
hain des
ribed as follows. We start with an arbitrary C-
olouring,

and at ea
h step we 
hoose a uniformly random vertex v, and a uniformly

random 
olour 
 from L(v), the list of 
olours whi
h do not appear on any

�
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neighbours of v. Then we 
hange the 
olour of v to 
. (If L(v) is empty then

we do not 
hoose a 
olour; note that L(v) is never empty if C > �.)

Unless spe
i�ed otherwise, we 
onsider all 
olourings to be proper, i.e.

no two adja
ent verti
es 
an have the same 
olour. In se
tion 3, it will be

important to note that we 
an apply this step even to a non-proper 
olouring

of G. But note that if a 
olouring is proper, then applying a step of the 
hain


annot produ
e an improper 
olouring.

The main question in this area is: For what values of C does this Markov


hain mix in polytime? Usually this is studied in terms of �, the maximum

degree of G. It is well known that for some graphs, the 
hain does not mix for

C � �+1. (In fa
t, there are some graphs and (�+1)-
olourings for whi
h

no 
olour 
hanges are possible, and so the 
hain is not even ergodi
.) Jerrum

[7℄ showed that for all graphs, the 
hain mixes in polytime for C � 2� and

in optimal time, i.e. O(n logn) time, for C � 2� + 1. Salas and Sokal[11℄

independently obtained the latter result. Vigoda [13℄ showed that for all

graphs, a di�erent 
hain mixes in optimal time for C �

11

6

� and this implies

that for the same values of C, the Glauber dynami
s mixes in polytime. Dyer,

Greenhill and Molloy [5℄ showed that the Glauber dynami
s mixes in optimal

time for C � (2��)� where � is a small positive 
onstant (see also [9℄). Some

work has been done on spe
ial 
lasses of graphs. Dyer et al[3℄ showed that

the Glauber dynami
s mixes in optimal time on triangle-free graphs when

C � (2� x)� for a di�erent small positive 
onstant x. More re
ently, Dyer

and Frieze[2℄ showed that if the maximum degree, �, of G is at least D logn

and the girth is at least D log� for some suÆ
iently large 
onstant D, then

the 
hain mixes in optimal time for C � q� for any 
onstant q > � where

� = 1:763::: < 11=6 is the root of �e

�1=�

= 1. Here we improve on this latter

result:

We de�ne q

�

= 1:4890::: to be the root of (1� e

�1=q

)

2

+ qe

�1=q

= 1.

Theorem 1 For any q > q

�

and integer !, there exists D for whi
h: Suppose

G has n verti
es, maximum degree � � D logn and no vertex lies in more

than ! 
y
les of length less than D log�. Then the Glauber dynami
s mixes

in time O(n logn) for C = q�.

Of 
ourse, this 
overs all graphs with girth at least D log�. It also


overs natural models of random graphs su
h as G

n;p=
=n

for 
 � D logn and
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random �-regular graphs for � = D logn. Dyer and Frieze[2℄ showed that

their theorem also extends to su
h graphs.

Throughout the paper, we assume that n is large enough for various

asymptoti
 bounds to hold. We 
an also assume that q is suÆ
iently 
lose

to q

�

. We use N(v) to denote the neighbourhood of v, i.e. the set of verti
es

whi
h are adja
ent to v. We de�ne d(v) = jN(v)j to be the degree of v. A

short 
y
le is a 
y
le of length less than D log�.

1 Some intuition

The proofs of all results mentioned above, ex
ept for that of Vigoda [13℄, all


ome from the following idea

1

. Consider two 
olourings X;W whi
h di�er

only at one vertex v. We will 
arry out one step of the pro
ess on ea
h


olouring, where we 
ouple these two random steps maximally. Spe
i�
ally,

we �rst 
hoose a uniform vertex u for both 
olourings. If L

X

(u) and L

W

(u)

are the sets of allowable 
olours for u in X;W respe
tively, then we take two

mappings f

X

: [0; 1℄! L

X

(u); f

W

: [0; 1℄! L

W

(u), su
h that

� for ea
h 
 2 L

X

(u), jf

�1

X

(
)j = 1=jL

X

(u)j and similarly for W , and

� fx : f

X

(x) 6= f

W

(x)g is as small as possible.

Then we take a uniform random real x 2 [0; 1℄ and 
hoose u; f

X

(x) for X and

u; f

W

(x) for W . Note that sin
e L

X

(u); L

W

(u) di�er in at most one 
olour

per list, we will have jfx : f

X

(x) 6= f

W

(x)gj � minfjL

X

(u)j

�1

; jL

W

(u)j

�1

g.

Note further that L

X

(u) = L

W

(u) unless u is a neighbour of v.

Using the path-
oupling te
hnique of Bubley and Dyer [1℄, it suÆ
es

to show that the probability of X;W 
onverging after one step is greater

than the probability of them di�ering in a se
ond vertex after one step (we

elaborate on this in Se
tion 3). They 
onverge i� we 
hoose u = v, whi
h

o

urs with probability 1=n. They di�er on a se
ond vertex i� we 
hoose

some u 2 N(v) and we 
hoose x 2 fx : f

X

(x) 6= f

W

(x)g. Sin
e no list 
an

ever be smaller than C ��, this o

urs with probability at most

�

n

�

1

C��

whi
h is less than

1

n

so long as C > 2�.

1

Jerrum's original proof in [7℄ predated this idea, but the idea yields a simpler proof.
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The bound was improved slightly in [3℄ by showing that for triangle-

free graphs, after a relatively short period, most verti
es will tend to have

many repeated 
olours in their neighbourhoods. Thus, their lists of available


olours will tend to be somewhat greater than C � �, and this leads to a

gain in the above 
al
ulations. The same idea played a key role in [5℄.

In [2℄, Dyer and Frieze showed that for graphs with large girth and max-

imum degree, after O(n logn) steps, with high probability every vertex will

have a list of size at least roughly qe

�1=q

�. If X;W are su
h that all verti
es

have lists of this size, then this yields that the probability of X;W di�ering

on a se
ond 
olour is at most

�

n

�

1

qe

�1=q

�

. Sin
e q is 
hosen so that qe

�1=q

> 1,

this probability is less than

1

n

.

The key new idea used in this paper is to show that, after O(n logn) steps,

many neighbours u of v will satisfy L

X

(u) = L

W

(u). If we make the simplify-

ing assumption that the graph is �-regular, then with high probability, there

will be roughly (1� e

�1=q

)

2

� su
h neighbours. This improves our bound on

the probability ofX;W di�ering on a se
ond 
olour to

(1�(1�e

�1=q

)

2

)�

n

�

1

qe

�1=q

�

,

whi
h is less than

1

n

for q > q

�

.

1.1 Uniform-like 
olour sets

Suppose that G is �-regular and that every vertex in N(v) is assigned an

independent uniform 
olour from f1; :::; Cg. Then the probability that some


olour 
 does not appear on any neighbour of v is (1� 1=C)

�

= e

�1=q

+ o(1).

Thus we would expe
t that ea
h list would have size roughly C � e

�1=q

=

qe

�1=q

�. This explains, at least intuitively, the lower bound that Dyer and

Frieze obtain.

Now suppose that every vertex of distan
e 2 from v is also assigned an

independent uniform 
olour from f1; :::; Cg. Suppose further that we 
hange

the 
olour of v in our 
olouring X to obtain another 
olouring W . For ea
h

u 2 N(v), L

X

(u) = L

W

(u) i� the 
olours X(v) and W (v) both appear on

N(u)� v. The probability that this o

urs is (1� e

�1=q

)

2

+ o(1), and so this

explains the result in this paper.

Of 
ourse, the 
olours appearing on the neighbours of v are far from

independent. But intuitively, sin
e there are few short 
y
les near v, after
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O(n logn) steps the 
olours on verti
es 
lose to v are \
lose enough" to being

independent. Mu
h of the work in this paper 
an be viewed as proving this

statement.

1.2 A re
ursive analysis

Our situation is somewhat more 
ompli
ated than that in [2℄. To illus-

trate this, suppose that N(v) = w

1

; :::; w

�

and 
onsider any assignment of


olours to the verti
es in N(w

1

); :::; N(w

�

). Now, assign to ea
h w

i

a uni-

form 
olour from amongst those not appearing on N(w

i

), independently of

the 
hoi
e for any other w

j

. It turns out, that for any assignment of 
olours

to N(w

1

); :::; N(w

�

), the expe
ted number of 
olours not appearing on N(v)

is at least qe

�1=q

� � o(�). Thus, Dyer and Frieze did not have to ensure

that the random 
olours appearing on N(w

1

); :::; N(w

�

) are 
lose to uniform.

Unfortunately, when analyzing our other parameter, we do not have this ad-

vantage, and we need to prove rather tight results on the distributions of the


olours appearing at distan
e 2 and 3 from v.

To do this, we require a 
ompli
ated iterative analysis. We'll introdu
e

that analysis now, in an oversimpli�ed setting, before formalizing it in the

next se
tion. First, it will be mu
h simpler to assume that G is regular and

so every vertex has degree �. We will also pretend that the time steps are

partitioned into a series of epo
hs, 	

0

;	

1

;	

2

; ::: and that every vertex is

re
oloured at least exa
tly on
e during ea
h epo
h.

We will be interested in two parameters. The �rst is the number of 
olours

available to ea
h vertex. We will 
reate a sequen
e L

0

> L

1

> L

2

> ::: su
h

that during epo
h 	

i

, the set L(v) of 
olours available to vertex v satis�es

jL(v)j � L

i

;

for every v. Furthermore, the same analysis as in [2℄ will yield that for i � 1,

at any time during epo
h 	

i

we have:

jL(v)j � (e

�1=q

� o(1))C = qe

�1=q

�� o(�):

The se
ond parameter has to do with the probability that a parti
ular
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olour 
 is in L

v

. For any 
olour 
 and vertex v, we de�ne

T (v; 
) =

X

w2N(v);
2L(w)

1

jL(w)j

:

Thus, if we were to 
hoose a random 
olour for ea
h neighbour of v in turn,

then T (v; 
) would be the expe
ted number of neighbours whi
h are assigned


. Furthermore, if we assume as in subse
tion 1.1 that these 
hoi
es are

independent, then the probability that no neighbours are assigned 
, i.e.

that at the end of these 
hoi
es we have 
 2 L(v) is roughly e

�T (v;
)

.

Of 
ourse, we need to be a bit 
areful here, be
ause the sets L(w) vary

with time and we are a
tually interested in their values at di�erent time

steps. But we will overlook su
h details now as we are just providing an

intuitive overview.

We will introdu
e sequen
es A

0

< A

1

< A

2

< ::: and B

0

> B

1

> B

2

> :::

su
h that during epo
h 	

i

, we have for every pair v; 
:

A

i

� T (v; 
) � B

i

:

We start with our re
ursive equation for A

i

. Suppose that we are in epo
h

	

i+1

and for ea
h neighbour w of v, let's pretend that the neighbours of w

were most re
ently 
oloured during epo
h 	

i

. At that time we had T (w; 
) �

B

i

and so the probability that 
 is now in L(w) is at least roughly e

�B

i

. We

also have jL(w)j � L

i

. This inspires us to de�ne:

A

i+1

= �� e

�B

i

=L

i

:

Similarly, we obtain

B

i+1

= �� e

�A

i

=(e

�1=q

C):

Finally, we 
onsider L

i+1

. Exp(jL(v)j) is roughly

P

C


=1

e

�T (v;
)

. Also, note

that

C

X


=1

T (v; 
) =

X

w2N(v)

X


2L(w)

1

jL(w)j

= �:

Thus, our expression for Exp(jL(v)j) is minimized when ea
h T (v; 
) is equal

to �=C, whi
h yields a non-re
ursive lower bound of C� e

��=C

= C� e

�1=q

,

as obtained in [2℄. Furthermore, the expression is maximized when the values
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of T (v; 
) are as disparate as possible. Sin
e ea
h T (v; 
) is between A

i

and

B

i

, we get a re
ursive upper bound by assuming that every T (v; 
) is either

A

i

or B

i

. Sin
e they sum to �, we must have (�� CB

i

)=(A

i

�B

i

) of them

equal to A

i

and (� � CA

i

)=(B

i

� A

i

) of them equal to B

i

. That gives an

upper bound of:

L

i+1

=

�� CB

i

A

i

�B

i

� e

�A

i

+

�� CA

i

B

i

� A

i

� e

�B

i

:

After 
hoosing appropriate initial values, it is straightforward to show

that these re
ursive equations have a limit of A

i

= B

i

= 1=q and L

i

=

C � e

�1=q

. Therefore, by running our Markov 
hain for enough epo
hs, we


an guarantee that for every v; 
 we have L(v) arbitrarily 
lose to e

�1=q

and

T (v; 
) arbitrarily 
lose to �=C. This goes a long way towards allowing us

to show that the intuitive analysis outlined in subse
tion 1.1 holds.

To transform this intuition into a proof, we need to be mu
h more pre
ise.

For one thing, we have to be 
areful about spe
ifying the time steps at whi
h

we are measuring L(v) in some of these quantities. We also 
an't assume

that every vertex is sele
ted exa
tly on
e per epo
h; it turns out that at

least on
e per epo
h will do, and we 
an a
hieve that by taking ea
h epo
h

to be of length O(n logn). Also, these re
ursive equations were obtained by

(impli
itly) assuming that in ea
h epo
h, every quantity will be equal to its

expe
ted value. In order to allow for the possibility that some quantities

di�er slightly from their expe
ted values, we de
rease ea
h A

i

and in
rease

ea
h B

i

; L

i

by a small amount; we also apply a 
on
entration inequality to

show that they don't di�er more-than-slightly from their expe
ted values.

Finally, we 
an't assume that every vertex has degree exa
tly �, and so we

have to allow our bounds on jL(v)j to be fun
tions of the degree of v.

All of the adjustments outlined in the pre
eding paragraph are straight-

forward, but tedious if we assume, as in subse
tion 1.1, that the random


olours assigned to the neighbours of a vertex are independent. Of 
ourse,

this assumption is not valid and so we need to prove that they are, in some

sense, 
lose to being independent. We do this by fo
ussing on \long-paths-

of-disagreement", whi
h will be des
ribed further in later se
tions.
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2 The main lemmas

As des
ribed in the opening part of Se
tion 1, our goal is essentially to show

that after O(n logn) steps, many neighbours u of v will satisfy L

X

(u) =

L

Y

(u). We must 
ompli
ate this 
ondition somewhat. First, for te
hni
al

reasons, we wish to make this hold independently of our 
hoi
e of the 
olours

v has in X; Y and so we make a statement that holds for every pair of


olours 


1

; 


2

. Also, we have to adjust our goal somewhat to deal with the


ase where v has neighbours of degree less than �. In fa
t, neighbours of very

small degree, less than �� for some small positive 
onstant � are parti
ularly

problemati
 and so have to be dealt with separately. Our main lemma is:

Lemma 2 For every �; � > 0, there exist 
onstants D; � su
h that with

probability at least 1 � O(n

�6

), for every vertex v, 
olours 


1

; 


2

and time

�n logn � t � n

2

, we have the following: De�ne � = �




1

;


2

(v) to be the

set of neighbours w of v with d(w) � �� and with at least one of 


1

; 


2

not

appearing in N(w)� v, and de�ne:

R




1

;


2

(v) =

X

w2�

1

jL(w)j

Then

R




1

;


2

(v) �

1� (1� e

�1=q

)

2

qe

�1=q

�

d(v)

�

+ �:

Note that, under the notation of Se
tion 1, if v has 


1

in X and 


2

in

Y , and if d(w) > �� and L

X

(w) = L

Y

(w) then w 2 �




1

;


2

(v). Thus, if the

graph is �-regular, then this lemma implies what we said our goal was in

the opening part of Se
tion 1.

In se
tion 3, we will strengthen this lemma and then show how it implies

Theorem 1. For ease of presentation, we �rst prove Lemma 2 and then show

how to adapt the proof to yield the stronger lemma.

We begin with a re
ursive de�nition. This is along the same lines as that

des
ribed in subse
tion 1.2, but modifed somewhat to fa
ilitate a formal

proof. For ea
h 0 � d � �:

� �

1

= 0; �

1

= 1=(q � 1); �

(d)

1

= q;
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� �

k+1

= e

��

k

=�

(�)

k

;

� �

k+1

= e

��

k

=(qe

�1=q

);

� �

(d)

k+1

=

q�

k

�1

�

k

��

k

e

��

k

d=�

+

1�q�

k

�

k

��

k

e

��

k

d=�

.

Lemma 3 lim

k!1

�

k

= lim

k!1

�

k

= 1=q; lim

k!1

�

(d)

k

= qe

�d=q�

.

We postpone the proof of Lemma 3 until later. But for now, we require

the following simple observation:

Lemma 4 For all k � 1 and 0 � d � �:

(a) �

k

< 1=q < �

k

, and

(b) qe

��

k

d=�

� �

(d)

k+1

� qe

��

k

d=�

.

Proof (b) follows sin
e �

(d)

k+1

is a linear 
ombination of qe

��

k

d=�

and

qe

��

k

d=�

. (a) follows from a simple indu
tion. 2

In subse
tion 1.2 we said that we have to adjust our sequen
es by a small

amount, in order to allow for the possibility that some terms di�er slightly

from their expe
ted values. We do so now:

Fix some small Æ to be named later, and 
hoose k

�

su
h that �

k

�

>

1

q

�Æ=2,

�

k

�

<

1

q

+Æ=2 and �

k

�

< qe

�1=q

+Æ=2 (su
h an k

�

exists by Lemma 3). Choose

a suÆ
iently small 
onstant � and 
onstants a

1

; :::; a

k

�

; b

1

; :::; b

k

�

; `

(0)

1

; :::; `

(�)

k

�

su
h that

(i) a

1

= �

1

; b

1

= �

1

; `

(d)

1

= �

(d)

1

;

(ii) � a

k+1

< e

�b

k

=`

(�)

k

� �;

� b

k+1

> e

�a

k

=(qe

�(1+�)=q

) + �;

� `

(d)

k+1

=

qb

k

�1

b

k

�a

k

e

�(1��)a

k

d=�

+

1�qa

k

b

k

�a

k

e

�(1��)b

k

d=�

(iv) a

k

�

>

1

q

� Æ; b

k

�

<

1

q

+ Æ:
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The existen
e of su
h 
onstants follows easily from the 
ontinuity of the

relevant fun
tions over the region a 6= b.

Note that we 
an assume that � is as small as we wish, as if Lemma 2

holds with � = �

1

then it 
learly holds with � = �

2

for any �

2

> �

1

. In

parti
ular, we will assume that

� 1=(q � �) < e

(1+��a

k

�
)=q

=q; and

� e

��=(q�1)

> e

1=q�b

k

�

.

We de�ne L

t

(v) to be the set of 
olours available for v at time t; we

sometimes omit the subs
ript t when it is not ne
essary. For any vertex u

and time t, we de�ne t(u; t) to be the last time before t that u is sele
ted.

To be pre
ise, we de�ne t(u; t) to be zero in the event that u is not sele
ted

before time t. This notation allows us to de�ne a more 
areful re�nement of

the vague quantity T (v; 
) from subse
tion 1.2:

T

t

(v; 
) =

X

w2N(v);
2L

t(w;t)

(w)

1

jL

t(w;t)

(w)j

:

Note that

C

X


=1

T

t

(v; 
) =

X

w2N(v)

X


2L

t(w;t)

(w)

1

jL

t(w;t)

(w)j

= d(v):

We will prove indu
tively that

Lemma 5 For ea
h 1 � k � k

�

, with probability at least 1� n

�6

, for every

v with d(v) > ��, 
olour 
 and 30kn logn � t � n

2

, we have:

(a) qe

�(1+�)d(v)=C

� � jL

t

(v)j � `

(d(v))

k

�;

(b) a

k

d(v)=� � T

t

(v; 
) � b

k

d(v)=�.

The lower bound in Part (a) is essentially Lemma 4.1 and (7) of Dyer and

Frieze[2℄, and our proof is similar to theirs.

Proof The proof is by indu
tion on k. The base 
ase k = 1 holds

trivially. So assume that it holds for some k and 
onsider k + 1.

10



Let the neighbours of v be w

1

; :::; w

d(v)

and for ea
h i let t

i

= t(w

i

; t)

be the last time before t that w

i

is sele
ted. For ea
h i, let N

w

i

� v =

fw

i;1

; :::; w

i;d(w

i

)�1

g and let t

i;j

= t(w

i;j

; t

i

) be the last time before t

i

that w

i;j

is sele
ted. Similarly, for ea
h i; j let N

w

i;j

�w

i

= fw

i;j;1

; :::; w

i;j;d(w

i;j

)�1

g and

let t

i;j;r

= t(w

i;j;r

; t

i;j

) be the last time before t

i;j

that w

i;j;r

is sele
ted. (If v

lies in some 
y
les of length at most 6, then some verti
es will re
eive more

than one label, but this does not 
reate a problem.)

The idea of fo
ussing on the 
olours assigned at these times was used by

Dyer and Frieze [2℄.

With high probability, ea
h t

i

� t � 10n logn. Indeed, the probability

that this is not true is at most �(1�

1

n

)

10n logn

< n

�9

. The same 
al
ulations

give the same bound on the probability that some t

i;j

is less than t�20n logn

or that some t

i;j;r

is less than t� 30n logn.

We start by proving part (a). Expose the values of t

1

; :::; t

d(v)

; t

1;1

; :::; t

d(v);d(w

d(v)

)�1

.

It would be ni
e if we 
ould say that the 
olours assigned to w

1

; :::; w

d(v)

were independent, as that would greatly simplify our 
al
ulations. However,

this is 
learly not the 
ase, sin
e the 
olour assigned to w

i

has an e�e
t on

the next 
olour assigned to a neighbour of w

i

, and this e�e
t 
an propagate

along a path whi
h eventually leads to some w

j

. This 
an be a very short

path, if it goes through v; we will deal with su
h paths later. Otherwise,

unless w

i

is one of the at most O(1) verti
es lying on a short 
y
le through

v, the path must have length at least D log�� 2. Our �rst 
on
ern will be

su
h long paths.

Consider the following pro
edure: GLAUB(i). It follows the usual Glauber

dynami
s, but after step t

i

, all neighbours of w

i

ignore w

i

. More spe
i�
ally,

for ea
h u 2 N(w

i

), L(u) is the set of 
olours whi
h do not appear on

N(u) � w

i

, and whenever u is sele
ted, u is assigned a uniformly random


olour from L(u). Thus, for example, w

i

might have the same 
olour as some

of its neighbours.

We use GLAUB to denote the usual Glauber dynami
s, and we 
onsider

the two pro
edures to be 
oupled in that ea
h has the same initial state and


hooses the same vertex at ea
h step. The 
olor 
hoi
e at ea
h step is 
oupled

maximally.
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A long path of disagreement from w

i

is a path P of length at least ` =

(D=3) log� beginning at w

i

and not going through v, su
h that the 
olour of

ea
h vertex in the path di�ers between GLAUB and GLAUB(i). (Su
h paths

were used in a slightly di�erent way by Dyer and Frieze [2℄ and earlier, in a

di�erent setting, by van den Berg and Steif[12℄.) We say that w

i

is in
uential

if there is a long path of disagreement from w

i

or if by 
hanging the 
olour

assigned to w

i

at time t

i

, and not 
hanging any future 
olour/vertex 
hoi
es

in GLAUB(i), it is possible to 
reate a long path of disagreement from w

i

.

We de�ne B to be the set of neighbours w

i

su
h that either w

i

lies in a


y
le through v of length less than D log� or w

i

is in
uential.

Lemma 6 With probability at least 1� n

�10

, jBj < �= log�.

Proof The set of neighbours whi
h lie on a short 
y
le through v is

at most 2!. Therefore, we only have to 
ount the in
uential verti
es whi
h

do not lie on any short 
y
le through v. Consider su
h a vertex w

i

; we will

bound the probability that it is in
uential.

We will bound this probability by the probability that either w

i

is in
uen-

tial, or t

i

< t� 20n log�. The probability of the latter is (1� 1=n)

20n log�

<

1

2

�

�11

.

If w

i

is in
uential and t

i

� t � 20n log�, then there is a path P : w

j

=

p

0

; p

1

; :::; p

`

, a 
olour 
 to assign to w

i

at time t

i

, and time steps t�20n log� <

s

1

< ::: < s

`

� t su
h that at step s

r

, p

r

is sele
ted and assigned di�erent


olours in the two pro
edures.

Suppose that P is the lexi
ographi
ally �rst su
h path formed. Thus, at

ea
h step s

r

, if the 
olours of some neighbour u of p

r

disagree in the two

pro
edures, then there is a path of disagreement from u to w

j

whi
h does

not go through p

r

. Sin
e that path has length less than `, then p

r

and u lie

in a 
y
le of length less than D log�. Sin
e p

r

lies in at most ! su
h 
y
les,

there 
an be at most 2! su
h neighbours. Thus, sin
e jL(p

r

)j is always at

least C � � = (q � 1)�, the probability that p

r


hooses a di�erent 
olour

for ea
h pro
edure, under the maximal 
oupling, is less than 2!=((q� 1)�).

Therefore, the probability that su
h a path is formed is at most:

�� (�� 1)

`

�

 

20n log�

`

!

�

 

2!

(q � 1)�

!

`

< ��

�

100e!

D

�

`

<

1

2

�

�11

;

12



for D suÆ
iently large and q near q

�

. Thus, after adding the probability that

t

i

< t� 20n log�, the probability that w

i

is in
uential is at most �

�11

.

Now 
onsider any 
olle
tion w

i

1

; :::; w

i

m

of m = �= log��2! neighbours

whi
h don't lie in short 
y
les through v. Using the fa
t that long paths of

disagreement from any two su
h neighbours must be disjoint, similar 
al
u-

lations yield that the probability of all m neighbours being in
uential is at

most (�

�11

)

m

. Therefore, the probability that at least m su
h neighbours of

v are in
uential is at most

 

�

m

!

��

�11m

< �

�10m

< n

�10

;

for D > 1. 2

Now, for ea
h i; j, we expose the 
olour assigned to u

i;j

at time t

i;j

. We

also expose the set B. We denote this set of information, along with the

values of t

1

; :::t

d(v)

; t

1;1

; :::t

d(v);d(w

d(v)

)�1

, by H. We say that H is good if every

t

i

; t

i;j

� t� 30n logn, if the sets of 
olour assignments satisfy the 
onditions

of Lemma 5 for k and if jBj � �= log�. We will show by indu
tion that the

probability of H not being good is at most O(n

�9

).

Lemma 7 For any good H, the 
onditional probability that, at a parti
ular

time t � 30(k + 1)n logn during MOD-GLAUB, jL(v)j � qe

�(1+�=2)d(v)=C

�

or jL(v)j � `

(d(v))

k+1

�� �=2 is at most n

�9

.

Proof Rather than analyzing jL(v)j dire
tly, we will fo
us on jL

�

(v)j,

the set of 
olours whi
h do not appear on any w

i

2 N(v) � B. Note that

jL

�

(v)j � jL(v)j � jL

�

(v)j � jBj = jL

�

(v)j � o(�).

Rather than dealing with GLAUB dire
tly, we 
onsider the pro
edure

MOD-GLAUB, whereby after time t� 30n logn, neighbours of v ignore the


olour on v.

The advantage of fo
ussing on jL

�

(v)j and MOD-GLAUB is that the


olour assignments to the verti
es in N(v) � B are independent. This is

be
ause no 
ombination of assignments to these verti
es 
an produ
e a long

path of disagreement from one su
h vertex to another, and, sin
e the verti
es

ignore the 
olour on v and no two lie on a short 
y
le through v, there are

no short paths of disagreement between these verti
es.

13



Furthermore, exposing the fa
t that w

i

=2 B, only exposes that w

i

is

not in
uential. Sin
e the de�nition of \in
uential" does not depend on the

parti
ular 
olour assigned to w

i

, this does not expose anything about that


hoi
e of 
olour.

So ea
h w

i

re
eives a uniformly random 
olour from amongst those 
olours

whi
h H di
tates to not appear on N(w

i

)� v at time t

i

, and the 
hoi
es for

w

1

; :::; w

�

are independent. Thus, for any 
olour 
 the 
onditional probability

that 
 belongs to L

�

(v) at time t is

Y

w2N(v)�B;
2L(w)

1�

1

L(w)

= exp(�T (v; 
)) + o(1);

sin
e every L(w) has size at least C �� = (q � 1)�, and sin
e jBj = o(�).

Therefore, the expe
ted size of L

�

(v) at time t is equal to

P




exp(�T (v; 
))+

o(�).

Re
all that

P




T (v; 
) = d(v). Furthermore, sin
e H is good, ea
h T (v; 
)

lies between a

k

d(v)=� and b

k

d(v)=�. Subje
t to these 
onstraints,

P




exp(�T (v; 
))

is easily seen to be minimized when every T (v; 
) = d(v)=C, and maximized

when every T (v; 
) is either a

k

d(v)=� or b

k

d(v)=�. In the latter 
ase, the fa
t

that there are C = q� di�erent T (v; 
) terms and they sum to d(v) implies

that �(qb

k

� 1)=(b

k

� a

k

) of them are equal to a

k

d(v)=� and the remaining

�(1� qa

k

)=(b

k

� a

k

) of them are equal to b

k

d(v)=�. This yields

qe

�d(v)=C

� � Exp(jL

�

(v)j) � ��

 

qb

k

� 1

b

k

� a

k

e

�a

k

d(v)=�

+

1� qa

k

b

k

� a

k

e

�b

k

d(v)=�

!

:

Note that these 
al
ulations 
an be used to show that for all d; k,

`

(d)

k

> qe

�d=q

: (1)

Sin
e the 
olour 
hoi
e for w

i


an a�e
t jL

�

(v)j by at most 1, Azuma's

Inequality implies that jL

�

(v)j is highly 
on
entrated and, in parti
ular, that

the probability of it di�ering from its expe
ted value by �(�) is e

��(�)

. Sin
e

d(v) > ��, this proves our bound on jL

�

(v)j in MOD-GLAUB.

Now we extend this bound to GLAUB. If the 
olour of w

i

di�ers in the two

pro
edures, then at some step after t�30n logn, w

i

is assigned a 
olour that

appears on v and on no other neighbour of w

i

. Sin
e jL(w

i

)j is always greater

14



than C �� = (q � 1)�, this o

urs with probability at most ((q � 1)n�)

�1

at any one time step, so the probability that it o

urs at least on
e is at most

30n logn=((q � 1)n�) < 100=D.

So the expe
ted number of verti
es in N(v) whi
h are a�e
ted in this way

is at most 100�=D = O(logn). A simple appli
ation of the Cherno� Bounds

shows that this number is highly 
on
entrated, and so the probability that

it is higher than �(�) is at most e

��(�)

< n

�10

, for � � D logn where D is

suÆ
iently large in terms of �. This proves the lemma. 2

Adding the probability of n

�10

+O(n

�9

) that H is not good, and multi-

plying by the n� n

2


hoi
es for v; t establishes part (a) of Lemma 5.

Part (b) follows in the same manner. We de�ne B

�

in a similar way to

B, with the ex
eption that a neighbour w

i

is in B

�

if (i) w

i

2 B, (ii) it is

possible, by 
hanging the 
olour assigned to a neighbour u of w

i

, to form

a long path of disagreement from u not passing through w

i

, or (iii) some

neighbour u of w

i

lies in a short 
y
le through w

i

. The same analysis shows

that Pr(jB

�

j > �= log�) < n

�11

. (An extra fa
tor of � appears in the

expe
ted number 
al
ulation, and this is not enough to raise that expe
ted

number signi�
antly.) We then restri
t our attention to

T

�

t

(v; 
) =

X

w2N(v)�B�;
2L

t(w;t)

(w)

1

jL

t(w;t)

(w)j

:

H exposes B

�

, all times t

i

; t

i;j

; t

i;j;r

and the 
olours assigned to ea
h u

i;j;r

at time t

i;j;r

. Then we modify our pro
edure as follows: All verti
es ignore

the 
olours on v; w

1

; :::; w

�

, and after time t

i;j

, the neighbours of w

i;j

ignore

the 
olour of w

i;j

. If some w

i;j

is adja
ent to w

i

0

;j

0

, then they ignore ea
h

other's 
olours. We refer to this modi�ed pro
edure as MOD-GLAUB2.

Consider any w

i

=2 B

�

and let I(w

i

; 
) be the indi
ator variable that


 2 L(w

i

) at time t

i

. Suppose that d(w

i

) > ��. As in the proof of part (a),

Pr(I(w

i

; 
) = 1) = exp(�T

t

i

(w

i

; 
)) + o(1): Therefore, using the bounds on

T

t

i

(w

i

; 
) and the list sizes from the fa
t that H is good, the expe
ted value

of I(w

i

; 
)=jL

t

i

(w

i

)j is at most

(e

�a

k

d(w

i

)=�

+ o(1))�

1

qe

�(1+�)d(w

i

)=C

�

�

1

�

� e

�a

k

=q

=(qe

�(1+�)=q

) + o(1);

sin
e the fa
t that a

k

< 1=q implies that the LHS is maximized at d(w

i

) = �.
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We must take more 
are in proving our lower bound. We use L to denote

jL(w

i

)j at time t

i

, we letR be the event that L � `

(d(v))

k+1

�, and we let I

R

be the

indi
ator variable for R. In part (a), we proved that Pr(I

R

= 0) = O(n

�9

).

Therefore,

Exp(

I(w

i

; 
)

L

) � Exp(

I(w

i

; 
)

L

� I

R

)

�

Pr(I(w

i

; 
) = 1)�Pr(I

r

= 0)

`

(d(v))

k+1

�

=

Pr(I(w

i

; 
))

`

(d(v))

k+1

�

+ o(1=�):

Furthermore, we have

`

d

k+1

=

1

b

k

� a

k

�

(qb

k

� 1)e

�(1��)a

k

d=�

+ (1� qa

k

)e

�(1��)b

k

d=�

�

<

1

b

k

� a

k

�

(qb

k

� 1)e

�(1��)a

k

+ (1� qa

k

)e

�(1��)b

k

�

� e

(1��)b

k

(1�d=D)

= `

(�)

k+1

� e

(1��)b

k

(1�d=D)

:

Thus, the expe
ted value of I(w

i

; 
)=jL(w

i

)j at time t is at least

(e

�b

k

d(w

i

)=�

+ o(1))�

1

`

(d(w))

k+1

�

�

1

�

�

e

�b

k

`

(�)

k+1

� e

(b

k

�(1��)b

k

)(1�d(w

i

)=�)

+ o(1)

�

1

�

�

e

�b

k

`

(�)

k+1

+ o(1)

�

1

�

�

e

�b

k

`

(�)

k

+ o(1):

If d(w

i

) � ��, then jL(w

i

)j is never less than C � �� = (q � �)�.

Therefore, by our assumptions on how small � is, the expe
ted value of

I(w

i

; 
)=jL(w

i

)j is at most

1

(q � �)�

<

1

�

� e

�a

k

=q

=(qe

�(1+�)=q

):
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Furthermore, sin
e no list is ever smaller than (q � 1)�, Pr(I(w

i

; 
)) �

(1�

1

(q�1)�

)

��

whi
h, by (1) and our assumptions on the size of �, is greater

than

C

�

�e

�b

k

=`

(�)

k

. Therefore, the expe
ted value of I(w

i

; 
)=jL(w

i

)j is again

at least

1

�

� e

�b

k

=`

(�)

k

.

This implies that the expe
ted value of T

�

t

(v; 
) is at most (a

k+1

��)d(v)=�

and at least (b

k+1

��)d(v)=�. By viewing the 
olour assignments to w

i;1

; :::; w

i;��1

as one single random 
hoi
e, we have � 
hoi
es, ea
h of whi
h 
an a�e
t

T

�

t

(v; 
) by at most 1=((q � 1)�), sin
e no L(u) 
an have size less than

(q � 1)�. Therefore by Azuma's Inequality, the probability that, under the

pro
edure MOD-GLAUB2, T

v;


di�ers from its expe
ted value by more than

(�=2)d(v)=� is at most e

��(�)

< n

�10

, for D suÆ
iently large in terms of �.

(Again, we use the fa
t that d(v) � ��.)

Virtually the same argument as that used for Part (a) proves that with

suÆ
iently high probability, T

�

t

(v; 
) in GLAUB is within (�=4)d(v)=C of its

value in MOD-GLAUB2. Furthermore, ifH is good then jT

�

t

(v; 
)�T

t

(v; 
)j <

(�= log�)� (1=(q � 1)�) = o(1). This proves part (b).

Finally, we need to note that, sin
e with probability at least 1� n

�9

we

have ea
h t

i

; t

i;j

� t�30n log n � 30kn logn, then we have by indu
tion that

the probability H is not good is at most 2n

�9

. 2

We now show that Lemma 2 follows from Lemma 5, upon taking Æ suf-

�
iently small when spe
ifying k

�

and thus obtaining a

k

; b

k

; `

d

k

�

suÆ
iently


lose to 1=q; 1=q; qe

�d=C

.

Proof of Lemma 2We prove Lemma 2 in the same way as the indu
tive

step for Lemma 5(b). We 
onsider the pro
edure MOD-GLAUB2. We expose

H and, by taking � � 30k

�

, we 
an assume it is (with probability at least

1�O(n

�6

)) su
h that for ea
h w

i

with d(w

i

) > ��,

(

1

q

� Æ)d(w

i

)=� < T (w

i

; 


1

); T (w

i

; 


2

) < (

1

q

+ Æ)d(w

i

)=�;

and

jL(w

i

)j � qe

�(1+�)d(v)=C

�;

and that jB

�

j < �= log�. This last assumption, along with the fa
t that

jL(u)j � C � q for every vertex u, implies that

P

w

i

2B

�

jL(w

i

)j

�1

= o(1).

Thus we 
an restri
t our attention to N(v)� B

�

.
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Now 
onsider any w

i

2 N(v) � B

�

with d(w

i

) > ��. Let E

1

(resp. E

2

)

be the event that 


1

(resp. 


2

) appears on N(w

i

) � v. Thus E

1

\ E

2

is the

event that w

i

=2 �. We will estimate Pr(E

1

\ E

2

) = 1�Pr(E

1

)�Pr(E

2

) +

Pr(E

1

\ E

2

). By our assumption on H, ea
h Pr(E

r

) is at most

exp(�T (w

i

; 


r

)) � exp(�(

1

q

� Æ)d(w

i

)=�):

Also, Pr(E

1

\ E

2

) is at least

Y

u2N(w

i

);


1

2L(u);


2

=2L(u)

 

1�

1

jL(u)j

!

�

Y

u2N(w

i

);


2

2L(u);


2

=2L(u)

 

1�

1

jL(u)j

!

�

Y

u2N(w

i

);


1

;


2

2L(u)

 

1�

2

jL(u)j

!

= exp(�T (w

i

; 


1

)� T (w

i

; 


2

)) + o(1)

� exp(�2(

1

q

+ Æ)d(w

i

)=�) + o(1):

For Æ suÆ
iently small in terms of �, this yieldsPr(E

1

\E

2

) > (1�e

�d(w

i

)=q�

)

2

�

�=2. Setting y = e

�d(w

i

)=q�

, note that (1 � (1 � y)

2

)=(yq�) = (2 � y)=(q�)

in
reases as y de
reases and so is maximized at d(w

i

) = �. Therefore, for �

suÆ
iently small in terms of �, we have:

Exp(R




1

;


2

(v)) � o(1) +

X

w2N(v)

(1� (1� e

�d(w

i

)=q�

)

2

) + �=2

qe

�(1+�)d(w

i

)=C

�

� �=2 +

X

w2N(v)

(1� (1� e

�d(w

i

)=q�

)

2

)

qe

�d(w

i

)=C

�

� �=2 +

(1� (1� e

�1=q

)

2

)

qe

�1=q

�

d(v)

�

:

It follows as in the proof of Lemma 5(b) that this sum is highly 
on
entrated

and so the probability that it di�ers from its expe
ted value by more than

�=4 is at most n

�10

for D suÆ
iently large.

It follows again as in the proof of Lemma 5(b) that the probability of it

di�ering by more than �=4 from GLAUB to MOD-GLAUB is at most n

�10

for D suÆ
iently large. This proves Lemma 2. 2
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We 
lose this se
tion with the proof of Lemma 3, thus 
ompleting the

proof of Lemma 2.

Proof of Lemma 3 Re
all that we 
an assume that q > q

�

is suÆ
iently

small, and so we will take q < 1:49.

It is straightforward to show that �

k

is stri
tly in
reasing and �

k

is

stri
tly de
reasing, and so by Lemma 4, � = lim

k!1

�

k

; � = lim

k!1

�

k

; � =

lim

k!1

�

(�)

k

exist. They must satisfy

� = e

��

=�

� = e

��

=(qe

�1=q

)

� =

q� � 1

� � �

e

��

+

1� q�

� � �

e

�b

We will prove that this system has no roots for 0 � � < 1=q. This, along

with Lemma 4, implies Lemma 3.

Rearranging the �rst equation of our system, we get f(�) = ���e

��

= 0.

We will bound the derivative of f with respe
t to �. We start by bounding

g(�) = 1� �q + � � ��q:

Clearly g(�) ! 0 as � ! 1=q. Also, noting that the derivative of � with

respe
t to � is ��, we have g

0

(�) = q� � � � q� + q�� = q�� � � < 0 for

� < 1=q. Therefore, g(�) > 0 for � < 1=q.

Now, using the fa
t that by (1) qe

�1=q

� � � qe

��

, we have:

f

0

(�) = �� �e

��

+

�

� � �

((1� 2�q)e

��

+ (� � q � ��q)e

��

+ (� + 1)�)

� �� �e

��

+

�e

��

� � �

(1� 2�q + � � q � ��q + q� + q)

+

e

��

� e

��

� � �

(�� 2��q)

� �� �e

��

+

e

��

� e

��

� � �

(�� 2�)

� qe

�1=q

� �e

��

� (e

��

� e

��

)� �

e

��

� e

��

� � �
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� qe

��

� �e

��

� (e

��

� e

��

)� �e

��

e

�(���)

� 1

� � �

� qe

��

� �e

��

� (e

��

� e

��

)� �e

��

(1 +

1

2

(� � �))

= (q � 2�)e

��

� (e

��

� e

��

)� (� � �)�e

��

:

As � ! 1=q, we get � ! � and so the latter two terms tend to 0. So this

allows us to bound f

0

(�) away from 0 when � is 
lose to the dis
ontinuity

at � = 1=q. In parti
ular, for 1:489 < q < 1:49 we have f

0

(�) > :01 when

:64 � a < 1=q and so f(�) has no roots in that range. Having dealt with

this dis
ontinuity, it is straightforward to 
he
k that for the same range of q,

f(�) has no roots in 0 � � � :58, thus proving the lemma. 2

3 Path 
oupling and the proof of Theorem 1

Here, we prove Theorem 1. We 
onsider a �xed small �; � to be named

later. We begin with a burn-in period of �n logn steps where � > 30 is as

in Lemma 2. All of our analysis will assume that �n logn < t < n

2

. For

now, we assume that for every vertex v, and pair of 
olours 


1

; 


2

, we have

(i) jL(v)j � Ce

�d(v)=C

� �� and (ii) v has fewer than 
d(v)� �� neighbours

w with d(w) � �� and 


1

; 


2

=2 L(w). Later we will a

ount for the O(n

�5

)

probability that this is not the 
ase.

We use the path 
oupling te
hnique of Bubley and Dyer[1℄. To do so, we


ouple two 
hains X

0

; X

1

; ::: and W

0

;W

1

; ::: with arbitrary initial 
olourings

X

0

;W

0

, and show that, with high probability, they 
oin
ide within O(n logn)

steps. To prove this fa
t using path 
oupling, at any time t, we 
onsider a

\path" of possibly improper 
olourings X

t

= Z

0

; Z

1

; :::; Z

h

= W

t

. We de�ne

this path as follows. Consider an arbitrary ordering of the verti
es v

1

; :::; v

n

.

To form Z

1

from Z

0

, we 
hange the 
olour of the �rst vertex on whi
h X

t

and W

t

di�er from its 
olour in X

t

to its 
olour in W

t

. To form Z

2

from Z

1

,

we 
hange the 
olour of the se
ond vertex on whi
h X

t

;W

t

di�er, and so on.

Thus, h is the Hamming distan
e between X

t

;W

t

, i.e. the number of verti
es

on whi
h they di�er. (If X

t

=W

t

then h = 0 and X

t

= Z

0

=W

t

.)

We 
ouple the 
hains as follows: We 
arry out a step of Z

0

= X

t

thus

obtaining Z

0

0

= X

t+1

. Then we maximally 
ouple a random 
hoi
e for Z

1

to
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the 
hoi
e for Z

0

, thus obtaining Z

0

1

. (Re
all that, even though Z

r

may not

be a proper 
olouring, we 
an apply a step of our pro
ess to it.) Repeatedly,

we maximally 
ouple Z

i

to Z

i�1

obtaining Z

0

i

, �nally yielding W

t+1

= Z

0

h

.

Re
all that in our key Lemma 2, verti
es of degree less than �� are not

in
luded in the sum R




1

;


2

(v). Be
ause of this, we need to modify the notion

of Hamming distan
e as follows.

Suppose that we are given a parti
ular � > 0. For any two (not ne
es-

sarily proper) 
olourings X;W , we de�ne their weighted Hamming distan
e

H

0

(X;W ) to be the number of verti
es v with d(v) > �� and X(v) 6= W (v)

plus 3� times the number of verti
es v with d(v) � �� and X(v) 6= W (v).

Note thatH

0

(X

t

;W

t

) =

P

h�1

i=0

H

0

(Z

i

; Z

i+1

). Note further thatH

0

(X

t+1

;W

t+1

) �

P

h�1

i=0

H

0

(Z

0

i

; Z

0

i+1

), sin
e if X

t+1

(v) 6= W

t+1

(v) then Z

0

i

(v) 6= Z

0

i+1

(v) for at

least one i.

We will prove that, after an O(n logn) burn-in period, the expe
ted value

of the 
hange of the weighted Hamming distan
e between any pair Z

r

; Z

r+1

is at most � =n for some 
onstant  > 0. Thus, the expe
ted value of

the 
hange of the weighted Hamming distan
e between X;W is at most

�h�  =n < � =n.

To prove this, we need to know that, with high probability, the bound in

Lemma 2 applies to ea
h Z

r

. So for ea
h 0 � s � n and step t, we de�ne

M

s

t

to be the (possibly improper) 
olouring in whi
h verti
es v

1

; :::; v

s

have

their 
olour from W

t

and v

s+1

; :::; v

n

have their 
olours from X

t

. Note that,

at time t, ea
h Z

r

is equal to M

s

t

for at least one value of s. At time t, for

ea
h vertex v and for ea
h 0 � s � n, we de�ne L

s

(v) to be the set of 
olours

whi
h do not appear inM

s

t

on the neighbourhood of v. L

X

(v) = L

0

(v) is the

set of 
olours whi
h do not appear in X on N(v), and L

W

(v) = L

n

(v) is the

set of 
olours whi
h do not appear in W on N(v).

Lemma 8 For every �; � > 0, there exist 
onstants D; � su
h that with prob-

ability at least 1 � n

�5

, for every vertex v, 
olours 


1

; 


2

, 0 � s � n and

time �n logn � t � n

2

, we have the following: De�ne � = �

s




1

;


2

(v) to be the

set of neighbours w of v with d(w) � �� and with at least one of 


1

; 


2

not

appearing in M

s

t

on N(w)� v, and de�ne:

R

s




1

;


2

(v) =

X

w2�

1

jL(w)j
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Then

R

s




1

;


2

(v) �

1� (1� e

�1=q

)

2

qe

�1=q

�

d(v)

�

+ �:

To prove Lemma 8, we de�ne

T

s

t

(v; 
) =

X

v

j

2N(v);j�s;
2L

W

t(v

j

;t)

(v

j

)

1

jL

W

t(v

j

;t)

(v

j

)j

+

X

v

j

2N(v);j>s;
2L

X

t(v

j

;t)

(v

j

)

1

jL

X

t(v

j

;t)

(v

j

)j

;

and we modify Lemma 5 to:

Lemma 9 For ea
h 1 � k � k

�

, with probability at least 1� n

�5

, for every

v with d(v) > ��, 
olour 
, 0 � s � n and 30kn logn � t � n

2

, we have at

time t:

(a) qe

�(1+�)d(v)=C

� � jL

X

(v)j; jL

W

(v)j � `

(d(v))

k

�;

(b) a

k

d(v)=� � T

s

t

(v; 
) � b

k

d(v)=�.

The proof of part (a) is essentially the same as in Lemma 5. To prove

part (b), for ea
h w

i

= v

j

, H exposes the 
olours that w

i;1;1

; :::; w

i;��1;��1

re
eive in the 
hain W if j � s, and exposes the 
olours they re
eive in X

otherwise. The rest of the proof is the same. The exponent of n in the

probability bound 
hanges from �6 to �5 be
ause of the extra n 
hoi
es for

s.

Then we prove Lemma 8 from Lemma 9 by de�ning H in the same way.

2

For now we assume that for every vertex v, 0 � s � n and pair of 
olours




1

; 


2

, we have

R

s




1

;


2

(v) �

1� (1� e

�1=q

)

2

qe

�1=q

d(v)

�

+ �:

Later we will a

ount for the O(n

�5

) probability that this is not the 
ase.

Now, 
onsider any Z

r

and Z

r+1

. They di�er on exa
tly one vertex, say v

whi
h has 
olour 


1

in Z

r

and 


2

in Z

r+1

. We apply one step of our pro
ess

to Z

r

and to Z

r+1

, 
oupled as des
ribed in the introdu
tion.
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Case 1: d(v) > ��.

The weighted Hamming distan
e between Z

r

and Z

r+1

de
reases by 1 i�

we sele
t v. This has probability 1=n of o

urring. The weighted Hamming

distan
e in
reases i� we 
hoose a neighbour u of v, and assign it 
olour 


1

in Z

r

and/or assign it 
olour 


2

in Z

r+1

. If d(u) > �� then it in
reases by

1, otherwise it in
reases by 3�. Thus, to in
rease by 1, we must 
hoose a

neighbour u 2 � and so the probability that it in
reases by 1 is R




1

;


2

(v)=n.

The probability that it in
reases by 3� is at most d(v)=(n(C��)). Therefore,

the expe
ted 
hange in the Hamming distan
e is at most

1

n

�

 

�1 +

1� (1� e

�1=q

)

2

qe

�1=q

� �

+ � +

3�

q � 1

!

whi
h is negative if we 
hoose � and � to be suÆ
iently small in terms of q,

sin
e we 
hose q su
h that (1� e

�1=q

)

2

+ qe

�1=q

> 1.

Case 2: d(v) � ��.

The weighted Hamming distan
e de
reases by 3� with probability

1

n

and

it in
reases with probability at most ��=(n(C��)). Sin
e it never in
reases

by more than 1, the expe
ted 
hange in the Hamming distan
e is at most

1

n

�

 

�3� +

�

q � 1

!

;

whi
h is negative for � suÆ
iently small sin
e q � 1 > 1=3 for q > q

�

.

Thus, in either 
ase, the expe
ted 
hange in the weighted Hamming dis-

tan
e is less than � =n for some  =  (q) > 0. This implies that with suf-

�
iently high probability, the weighted Hamming distan
e drops to 0 within

O(n logn) steps.

Now we still have to a

ount for theO(n

�5

) 
han
e that for some v; t; s; 


1

; 


2

,

R

s




1

;


2

(v) is too large. Let t

�

be the �rst time at whi
h this o

urs. Con-

sider the random variable H

�

(t) de�ned as follows. Until time t

�

, H

�

(t) =

H

0

(X

t

;W

t

). After time t

�

, if H

�

(t� 1) > 0 then H

�

(t) = H

�

(t� 1)� 1 with

probability

1

n

and H

�

(t) = H

�

(t�1)+1 with probability

1� 

n

; ifH

�

(t�1) = 0

then H

�

(t) = 0. H

�

(t) is a simple random walk with negative drift after time

t = �n logn, and it is straightforward to verify that with high probability,

H

�

(t) = 0 when t = O(n logn). Furthermore, with probability 1 � O(n

�4

),
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H

0

(X

t

;W

t

) = H

�

(t) for ea
h 1 � t � n

2

. Therefore, with high probability,

H

0

(X

t

;W

t

) = 0 when t = O(n logn). This is enough to prove Theorem 1.

See, for example, [4℄ for the standard argument. 2

4 Some �nal 
omments

In this se
tion, we note that this 
oupling argument 
annot be used for the


ase C = q� for any q < q

�

. To see this, 
onsider any polynomial n

x

and

any �-regular graph G with � � D logn and girth at least D log� for some

suÆ
iently large D in terms of x.

Note that Lemmas 2 to 9 hold for all q > 1:489 (and in fa
t, if needed,

we 
ould show that they hold for even smaller q). The only pla
e where we

required q > q

�

was in the Proof of Theorem 1 in Se
tion 3. Furthermore,

the upper bound t � n

2

in their statements 
an be easily in
reased to n

x

.

Therefore, if the Glauber dynami
s mixes rapidly, then a \typi
al" 
olouring

will satisfy that for all v; 
, jL

v

j is arbitrarily 
lose to Ce

�1=q

and T (v; 
) is

arbitrarily 
lose to 1=q. Thus, su
h a 
olouring must exist, 
all it 	.

Suppose that we 
hoose 	 as our initial 
olouring. Then for the �rst n

x

steps, with high probability, for all v; 
, jL

v

j is arbitrarily 
lose to Ce

�1=q

and

T (v; 
) is arbitrarily 
lose to 1=q. This implies that with high probability, for

any v; 


1

; 


2

, the number of neighbours of v whi
h have either 


1

or 


2

in their

list is arbitrarily 
lose to (1� (1� e

�1=q

)

2

)�. So if we 
ouple the 
olouring

arising at any time less than n

x

with another 
olouring whi
h di�ers in exa
tly

one vertex, then sin
e q < q

�

, the expe
ted 
hange in their Hamming distan
e

will be positive.

Furthermore, sin
e the graph has large girth, we 
annot apply the te
h-

nique from [5℄ and [9℄ where by analyzing the expe
ted total 
hange over a

few steps, we were able to get some gain from edges in N(v).

So in an extended abstra
t of this paper[10℄ the author raised the following

question:

Question: Is there any q < q

�

and D > 0 su
h that the Glauber dynami
s

for q�-
olourings mixes in polytime on graphs with girth at least D and

maximum degree � at least D logn?
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He noted that a positive answer would require a substantial new idea.

Very re
ently, Hayes and Vigoda[6℄ provided su
h an answer, proving that

any q > 1 will do even when the girth is as small as 9. Their substantial new

idea was to use a \non-Markovian 
oupling". We refer the reader to their

paper for a further des
ription.
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