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THE COMPLEXITY OF ENUMERATION AND
RELIABILITY PROBLEMS*
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Abstract. The class of #P-complete problems is a class of computationally eqivalent counting problems
(defined by the author in a previous paper) that are at least as difficult as the NP-complete problems. Here we
show, for a large number of natural counting problems for which there was no previous indication of
intractability, that they belong to this class. The technique used is that of polynomial time reduction with
oracles via translations that are of algebraic or arithmetic nature.
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1. Introduction. It is an empirical fact that for numerous combinatorial problems
the detection of the existence of a solution is easy, yet no computationally efficient
method is known for counting their number. The purpose of this paper is to show that
for a variety of well-known problems this phenomenon can be explained. We define the
class of #P-complete functions as in [20]. Typical members of this class are the
problems of counting the number of solutions of NP-complete problems. We show that
for many natural structures that are apparently unrelated to any NP-complete struc-
ture, the problem of counting them is nevertheless #P-complete. The notion of
reducibility used is that of polynomial time transduction with oracles. The reductions
themselves are characterized by being of an algebraic or arithmetic, rather than
combinatorial nature.

The more significant problems that are shown to be #P-complete are" counting
perfect matchings in bipartite graphs [20]; counting trees in a directed graph; counting
satisfying assignments to monotone Boolean formulae in 2-conjunctive normal form;
counting maximal cliques (i.e. nonextendable complete subgraphs); and evaluating the
probability that two given nodes in a probabilistic network are connected.

Many apparently difficult counting problems are probably not candidates for being
#P-complete. Among these are questions of the form: how many graphs of size n are
there that have property X? Since for each n there is just one input, these problems
correspond to NP computations over a single-letter input alphabet. We call this class
#P1 and exhibit a natural problem that is complete in it. A variant of the problem has
the additional curious property that while it is provably as complex as any #P1-
complete problem, it is not necessarily complete itself.

The completeness results have a direct bearing on the classical study of enumera-
tions. Note, however, that the notion of "effectively counting" that we use here is that of
polynomial time computability. Since discrete probabilistic problems can usually be
reformulated as counting problems, our techniques can also be applied to reliability
problems, of which connectedness is a typical example. A third field of application is to
"branch and bound" or search algorithms. Some simple examples of these essentially
enumerate some easily detectable structure (e.g. maximal cliques). Our results suggest
potential techniques for proving for such algorithms that the problem of predicting from
an input the runtime of the algorithm on that input is #P-complete.

2. Preliminaries. In the main we use the definitions introduced in [20]. A more
general schema of definitions and some discussion of them can be found there. For
background on NP-completeness see [1], [5], [10].
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DEFINITION. A counting Turing machine is a standard nondeterministic TM with
an auxiliary output device that (magically) prints in binary notation on a special tape the
number of accepting computations induced by the input. It has (worst-case) time-
complexity f(n) if the longest accepting computation induced by the set of all inputs of
size n takes f(n) steps (when the TM is regarded as a standard nondeterministic
machine with no auxiliary device).

DEFINITION. #P is the class of functions that can be computed by counting TMs of
polynomial time complexity. #P1 is defined similarly for TMs with a unary input
alphabet.

We denote the class of functions computed by deterministic polynomial time TMs
by FP, and the class of predicates by P. For convenience we shall often identify a class of
machines with the class of functions it computes. It will be assumed that objects are
represented in some standard economical manner as words over an alphabet Z (say
{0, 1}). Ix[ will denote the size of x if x is a set, and its leng[h if x is a string. A function

f: Y_,* Y,* (or a relation R
_
Z* x Z*) is polynomial bounded iff there is a polynomial p

such that for all x, [f(x)]<p(]x]) (or such that R(x, y) =:),ly[ <p(lxl)).
The notion of reduction used is one by oracles, in a similar sense to Cook [5] except

that the oracles cannot only be predicates but also arbitrary polynomial bounded
functions. An oracle TM is a TM with a query tape, an answer tape, and some working
tapes. To consult the oracle the TM prints a word on the query tape, it goes into a special
query state and returns an answer in unit time on the answer tape, and it enters a special
answer state. An oracle TM is said to be in P (or FP, or NP, or #P, etc.) iff for all
polynomial bounded oracles it behaves like a machine in P (or FP, or NP or #P, etc.).

If a is a class of oracle-TMs and x an appropriate function for it (i.e. polynomial
bounded in the present context) then we denote the class of functions that can be
computed by oracle-TMs from a with oracles for x by a x. The class of functions that can
be computed by just a single call of the oracle for any input is denoted by a ’. A problem
y is #P-hard iff #P

_
FPy. It is #P-complete iff #P FP and y #P. In expressing

reductions between two problems it is useful to abbreviate x FP by x <- y and x FP
by x -<! y. Notice that both binary relations are transitive.

A relation R is P-enumerable iff there is a polynomial p such that for all x the set
{ylg(x, y)} can be enumerated in time [{ylR(x, y)}[" p(lx[).

3. Lemmas. Let SAT be the problem of counting the number of satisfying
assignments of a Boolean formula F in conjunctive normal form, and let 3-SAT be the
same problem for formulae with at most three disjuncts in each conjunct. Let TM-
COMP be the problem of counting the number of accepting computations given an
arbitrary polynomial time nondeterministic TM and an input for it. HAMILTONIAN
CIRCUITS is the problem of counting the number of such circuits in a graph. (N.B.
Here as elsewhere in the paper, graphs can be interpreted either as being directed or as
being undirected, unless otherwise indicated.)

FACT 1. TM-COMP_-<!SAT.

Proof. The transformation of Cook as given in [5] or [1] establishes this.
FACT 2. SAT<=!3SAT.
Proof. Suppose F has a clause with => 4 literals. If we replace in the clause any two

of these literals (e.g. xi, ) by a new variable (say y) and conjoin F with the CNF
formula for (x. v )= y (which has clearly at most 3 literals per clause) then the new
formula will have the same number of solutions as F. The result follows by
induction.

FACT. 3. SAT-<!HAMILTONIAN CIRCUITS.
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Proof. A direct reduction that preserves the number of solutions is given in 19] for
both the directed and undirected cases. 71

FACT 4. Given an n x n integer matrix with each entry bounded in magnitude by
the determinant and inverse can be computed in time polynomial in n and m.

Proof. Perform Gaussian elimination with arithmetic modulo 2, the smallest
power of 2 greater than 2 n !. As pivot always choose a number that has the fewest
factors of 2 in its prime decomposition. This ensures that eliminating with respect to that
row will multiply the matrix by various numbers coprime with 2. When an upper
diagonal matrix is achieved the value of the determinant can be computed by dividing
the products of the diagonal elements by the product of the multipliers.

The inverse can be computed as a rational number by the determinental rule for
example. El

In the remaining two facts the size of a rational number will be the sum of the
lengths of its numerator and denominator (assumed coprime).

FACT 5. (i) Ifp(x) is an n-th degree polynomial and its value is known ateach ofthe
rational points xa, , x,+, all ofsize at most m, then the coefficients ofp can be deduced
in time polynomial in n, rn and the size of the largest value.

(ii) If the value of

p(x, y)= piixiy
i= /=1

is known for all pairs ofpoints x Xh, y y for 1 <-- h <- q + 1 and 1 <- k <- r + 1 (all points
being ofsize bounded by m) then the value ofeach pii can be deduced in time polynomial in

q, r, rn and the size of the largest value.
i-1Proof. (i) Let X be the (n + 1) x (n + 1) matrix with Xii xi Then X is Vander-

monde and has an inverse, which, by Fact 4, can be computed fast. But if p is the vector

of coefficients of p and p(x) the vector of values at the n + 1 points then p(x) Xp and
hence p X-p(x).

(ii) For each value Xh use (i) to compute the value of piix h for each/’. Then use (i)
again to deduce each P0. 71

FACT 6. Let {ai} and {bi.} be sets ofpositive integers bounded byA > 2. Ifthe value of
any one ofthe followingfunctions is known ata suitable point Xo, or (Xo, yo), then the value
ofeach ai, or each bq can be deduced in time polynomial in n, m and in the sizes ofXo, yo
and the value.

(i) aix
o

if xo >- A2 or 0<Xo-<A-2,

(ii) aixi(1-x)n-i if O<xo <_-A -2,
0

=A- A-3n(iii) Y’. biixi(1-x)-iyi(1-y)m-i ifxo and O<yo<
i=0 /=0

Proof. (i) If Xo -> A2 then for each j

j--1

J0--1 -2 A-4aixo <A(x (1 +A + +...))
i=0

< 3A xo-a/2.

Hence Xo > o aixo. It follows that an, an-,, ", ao can be computed in succession.
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The alternative case follows similarly by examining the reciprocal of x0.
(ii) Let l/x0, so that >A2. Then

aixo =t- ai(t-1)n-i

/+1 /+1

< 3t A(t- 1)-/2.

Hence (t- 1)"-i > i+1 ai(t- 1)n-i and ao, al, an can be computed in succession
(iii) The substitution for Xo gives the value, E b,i(A2 1)n-iyi(1 y)"-i.

Applying the argument of (ii) to the outer summation gives bii(A2-1)"-i. Applying it
again gives the coefficients.

FACT 7. Suppose R(x, y) is a polynomial bounded relation and the sets R
{(x, y)lR (x, y)} and R {(X, Ce)I3 {0, 1 }* s.t. R (x, a/3)} are both polynomial time
recognizable. Then R is P-enumerable.

Proof. A call, Enumerate (x, ), of the following recursive procedure clearly
suffices"

procedure Enumerate (x, a).
begin if R (x, a) then output a;

if Rl(x, a) then Enumerate (x, a0) and Enumerate (x, a 1);
end. i--!

4. Some #P-complete problems. Unless otherwise stated we shall denote a
graph, whether directed or undirected, by G =(V,E) where V =(Ul,’", u,) and
E (V V). O1--(Vl, El) is a subgraph of G if V1 V and E1

_
E. By F we shall

denote a Boolean formula in conjunctive normal form, with clauses Cl,’", Cr and
variables X {x 1, , xn}. F is monotone if no variable is negated. It is in k-form if each
conjunct has at most k disjuncts, x will denote an n-tuple from {0, 1}". F(x) denotes the
truth value of F when the ith component of x is substituted as the truth value of xi.

We shall first specify a list of counting problems (2-14). As can be verified easily
each one is in #P. Also, most of them are P-enumerable by virtue of Fact 7.

1. PERMANENT
Input: Integer matrix A.
Output" FIi--1 Ai,r(i) summed over all permutations r on {1,. ., n}.

2. PERFECT MATCHINGS
Input" Bipartite graph G with 2n nodes.
Output" Number of perfect matchings (i.e. sets of n edges such that no pair of edges

has a common node).
3. MONOTONE PRIME IMPLICANTS

Input: Monotone F in 2-form.
Output" [{Y

_
X[(/kxzX F) holds for Z Y but not for any Z Y}I.

4. MINIMAL VERTEX COVER
Input: G.
Output:l{V’ Vl"(u, v)cE
any A V’}].

5. MAXIMAL CLIQUES
Input: G
Output:
A V’}].

uA or v A" holds for A V’ but not for

(u, v) E" holds for A V’ but not for any
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6. IMPERFECT MATCHINGS
Input" Bipartite graph with 2n nodes.
Output" Number of matchings of any size.

7. MONOTONE 2-SAT
Input" F=ca JkC, 2Jk JkC, where Ci-=(Yil V Yi2) and yiiGX.
Output: I{xlF(x)true}l.

8. SAT’
Input: As for 7.
Output: I{(x, t)lt= (t,..., tn){1, 2}n; for 1 -<_i <-r, x makes

Yi, k true for k
9. SAT"

Input: As in 7.
Output" I{(x, t)[t= (t,..., t,)6 {{1}, {2}, {1, 2}}; for 1

x makes yi, true for each k
10. S-SET CONNECTEDNESS (directed and undirected)

Input" G;s6V; V’cV.
Output" Number of subgraphs of G in which for each u V’ there is a (directed)

path from s to u.
11. S-T CONNECTEDNESS (directed or undirected)

Input: G; s, V.
Output: Number of subgraphs of G in which there is a (directed) path from s to t.

12. $-T NODE CONNECTEDNESS (directed or undirected)
Input: G; s, 6 V.
Output" Number of subsets of V whose removal leaves a (directed) path from s to t.

13. DIRECTED TREES
Input" Directed graph G.
Output" Number of sets of edges that form a rooted tree, with each edge directed

away from the root.
14. S-T PATHS (i.e. SELF-AVOIDING WALKS) (directed or undirected)

Input: G; s, .V.
Output" Number of (directed) paths from s to that visit every node at most once.
We note that several of these problems have been widely studied. Because of the

close resemblance between the permanent and the determinant the apparent compu-
tational discrepancy has been observed with surprise for a long time [16]. Despite
considerable efforts no general translation from the former to the latter has been found
[17], [14]. In special cases, however, such transformations do exist and lead to fast
algorithms (G. Borchardt (1855), see [3]), [11], [13], [15], [18]. The maximal cliques
problem arises in connection with the numerous algorithms that have been proposed for
enumerating them [4], [9]. $-T paths are discussed in [2], [12]. Problems 10-12 are
classical examples of reliability problems concerning networks, in the special case that
the probability associated with each node or edge is a half. It will be clear, however, that
the completeness results follow also for other fixed values (and of course for arbitrary
values). Such problems are discussed in [6], [7]. The directed trees problem is to be
contrasted with the directed spanning tree problem which can be counted fast via
determinants, in analogy with Kirchhott’s matrix-tree theorem [8], [22].

THEOREM 1. Problems 2-14 above are all #P-complete.
Proof. The result follows by transitivity from the following reductions.
1. 3-SAT _-<!PERMANENT. Proved in [20].
2. PERMANENT<-PERFECT MATCHINGS. Proved in [20].
3. PERFECT MATCHINGS_-<!PRIME IMPLICANTS.Given G with V=
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{u,..., U,, Vx," ", v}, E {(us, vi)ll i,/" <- n}, we construct G’= (V’, E’) with

V’={u ,,vll<=i<-n; l<=j<=k=2n},

and

E’= {(u /.))](u/, ;up) ( E" 1 < j, q < k}i,

We represent each edge of G’ by a separate Boolean variable in which truth will
denote the absence of the edge. The simultaneous presence of any pair of edges can then
be prohibited by the disjunction of the corresponding variables. We can therefore write
a polynomial length monotone formula F in 2-form that has the effect of prohibiting the
presence of any pair of edges in G’ that either arise from distinct edges of G that share a
node or themselves share a node in G’. Thus to each matching of size in G we intend
there to correspond (k !)i allowed matchings in G’. Note that any prime implicant of F
has IE’[- ik literals for some i.

Now if F(x) is true then at least IE’I-nk of the IE’I variables must be true (i.e.
representing at most nk edges). If exactly IE’I- nk are true then their conjunction must
be a prime implicant, and corresponds to some perfect matching in G’. If Ii is the
number of prime implicants of F with exactly IE’[-ik literals and Mi the number of
maximal matchings with edges in G, then

//= M(k !)’.

Hence if Ii is known then, by Fact 6(i), since k!=(2n)!>M2i, the value of M,, the

number of perfect matchings in G can be deduced.
4. PRIME IMPLICANTS-<_! MINIMAL VERTEX COVER. Given F construct

a G=(V,E) with V={ul,..., u,} and E={(ui, uj)l(xi vxj) is a clause of F}. Any
vertex cover of G is an implicant of F, and any minimal vertex cover is a prime
implicant.

5. MINIMAL VERTEX COVER_-<! MAXIMAL CLIQUES. A minimal vertex
cover in G corresponds to a maximal clique in the complement of G, in analogy with
[10].

6. PERFECT MATCHINGS <- IMPERFECT MATCHINGS. Given G V, E)
as in 3 we construct for each k (1-<_ k =< n + 1) a graph Gk that consists of G with
additional nodes {uii[1 <- <- n; 1 <= ] <= k} and additional edges {(uii, v,)ll -<_ <- n 1 <- ]
k}. If Ar is the number of matchings in G of size exactly n-r then these will be
contained in exactly Ar" (k + 1) imperfect matchings obtainable by adding only new
edges. Hence the number of matchings in Gk is Y"r=oAr (k + 1) r. If this could be
evaluated for k 1,. , n + 1, then, by Fact 5, we could compute A0, the number of
perfect matchings.

7. IMPERFECT MATCHINGS_-<!MONOTONE 2-SAT. For G as defined in 3
above represent (the abence of) each edge by a separate variable. Let F be the formula
that prohibits the presence of any pair of edges incident to the same node.

8. MONOTONE 2-SAT <-!SAT’. Given F, denote F ^ F ^. ^ F, k times, by Fk.
If x satisfies exactly f clauses of F twice and the rest once, then it contributes 2t to SAT’
for F and 2kt for Fk. If At is the number of assignments that satisfy exactly f clauses of F
twice and the rest once, then the value of SAT’ for Fk is t=0 At(2k)" By choosing k
suitably large it follows from Fact 6(i) that At can be deduced.

9. MONOTONE 2-SAT <-! SAT". This is similar to 8.
10. SAT’<=!S-SET CONNECTEDNESS. Given F construct a graph G=
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(V, E1 LI E2) where

E1 {(xi, cj)lxi appears in clause c. in F} LI {(Xn, Cr+l), (n, Cr+l)},

E2 {(x,, Xi+x), (5,, i+1), (xi, g,+l), (g,, x+1)[1 -<_i -<_ n} {(s, Xa), (s, 1)}.

Suppose each edge in E1 is given probability p and each one in E2 probability q. Let Ai
be the number of distinct subsets of E11.3 E2 with exactly edges from E1 and/" from E2,
such that s is connected to each of c l, c2,-’-, Cr/I. Then the probability that s is
connected to each of Cl,. , Cr/l is

EE Aipi(1-p)2+2-iqi(1 q)4-2-i.

By Fact 6(iii), if we can evaluate this for sufficiently small p and q (e.g. p 2-2",
q 2-3m2 where m 4n + 2r) then we can compute {Ai}. Such probabilities as 2-2" can
be simulated simply by replacing the edge by a chain of 2m edges of probability 1/2.
The result follows since A+I, is the required solution to SAT’ for F. (N.B. The fact that
SAT’ is defined for monotone 2-form, rather than general 3-form, is inessential to this
proof.)

11. S-SET CONNECTEDNESS-<_ S-T CONNECTEDNESS. Given G (V, E)
and V’= {nl," , rig} construct G’ by adding to G a node and edges {(n, t)ll <_- _-< k}.
Suppose A is the number of subgraphs of G in which s is connected to exactly nodes
from V’. If each edge incident to is given probability 1-p and all the others
probability a half then the probability that s is connected to is 2-Izl. A(1- pi). It
follows from Fact 5 that by evaluating this at k + 1 points the value of Ak can be
deduced. The points can be taken as 1-p- 2-i for 1,..., k + 1 since chains of
suitable length can simulate these probabilities.

12. SAT’-<_S-T NODE CONNECTEDNESS.This is similar to 10 and 11
combined.

13. SAT’ _-< DIRECTED TREES. Given F we construct exactly the same G as in
11, with edges directed in the sense indicated by their definitions. Suppose Gpo is
obtained from G by giving each edge in E1 multiplicity p, and each in E2 multiplicity q.
Let A0 be the number of trees of G rooted as s with edges from E1 and f edges from
E2. Then the number of trees in Go rooted as s is

2r+2 4n--2

E , Aijp’q’.

Hence by Fact 5(ii), if this is evaluated for all pairs (p, q) with 1-<p-<2r+3 and
1 -< q _-< 4n 1 then the value of any mii can be deduced, including A/I., which is the
desired result for SAT’. Now note that Go can indeed be simulated by an ordinary
graph G’. G’ consists of G augmented by chains of length p starting from each ci, and
chains of length q starting at each xi and each i. Finally observe that if we could count
trees rooted arbitrarily, then by doing this for G’ and again for G’ with s removed, we
could count the number of trees rooted as s.

14. HAMILTONIAN CIRCUITS-< S-T PATHS. Given G for k 1,. , n + 1,
we generate a graph Gk by replacing each edge (ui, ui) by the graph with nodes
{ui, ui}U{u]i, "’, u} and edges {(Ui, U), (UI" ui)[q 1,.’., k}. Then each s-t paths of
length p in G corresponds to k p s-t paths in Gk. Hence if there are Aps-t paths of length
p in G then the number of s-t paths in Gk Y’-=0 Aok. From Fact 5 it follows that A,
can be deduced, which is the number of Hamiltonian paths from s to t. The cor-
respondence between Hamiltonian paths and cycles is immediate. (N.B. There is also a
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natural <=! reduction consisting of replacing each edge in G by a graph with exponen-
tially many paths through it. Note also that the case of s corresponds to enumerating
elementary cycles [22], [23].) [3

The reductions used above can be classified according to whether (a) there is
just one oracle call, or (b) there are several, but all the questions for it are
generated without calling the oracle. Note that reductions of the latter iype can always
be replaced by one for the former if the problem to which reduction is being exhibited is
appropriate: e.g. SAT, MONOTONE 2-SAT, SAT’, S-T CONNECTEDNESS, S-T
PATHS. These problems can all exploit Fact 6 by being able to simulate the necessary
arithmetic. We illustrate this for MONOTONE 2-SAT: Given F, to multiply its
solutions by a large constant 3 k, we simply introduce 2k new variables and k new
clauses containing two each. To multiply F1 and F2 we ensure that they have disjoint
alphabets and simply write F1 ^ F2. For addition of F and F2 consider F the con-
junction of F and F2 with

(xi v z)’’" (x,, v z)(z v t)(y v t)’’’ (Ym V t)

where the x’s and y’s are the variables of F and F2 respectively. Then s(F) the number
of solutions will equal s(F)+ s(F2)+ s(F)s(F2). Hence to add we first multiply by a
constant larger than the addends and perform this construction.

A further problem that can be shown to be #P-hard is that of counting the number
of Hamiltonian subgraphs of an arbitrary directed graph. This problem, however,
appears not to belong to #P. Corresponding problems for other NP-complete struc-
tures can also be formulated. Some of them appear surprisingly difficult to analyze.

For certain counting problems in #P for which no polynomial time algorithm is
known, it is possible to prove that they can be computed in polynomial time given an
oracle for some predicate in the Meyer-Stockmeyer hierarchy. An example is the
problem of counting graph isomorphisms. Such a result can be interpreted as circum-
stantial evidence that the problem is not #P-complete [21].

5. A. problem complete in #P1. Given a complete graph on n nodes and arbitrary
probabilities assigned to each edge, the probability that the graph has a Hamiltonian
circuit (or some other NP-complete substructure) is easily seen to be #P-complete. If,
however, we insist on all the probabilities being equal to a half then the corresponding
problems (i.e. of counting the number of Hamiltonian graphs, etc., of a given size) are all
open. Many of the classical graph enumeration problems are of this form [8]. Here we
shall give an illustrative example to show that some such problem is provably P1-
complete. We note that the arithmetic reduction needed here takes the form of the
"inclusion-exclusion" principle.

We assume a fixed collection of colours each associated with a number. By a
graph we shall here mean a "connected directed graph in which each edge and node is
assigned a colour, with the restriction that the number of edges meeting at a node has to
equal the number associated with the colour of the node". A pattern is such a graph
without the latter degree restriction. A pattern G, can be embedded in graph G2 iff there
is an injective mapping of the nodes of G into those of G2 such that all nodes and edges
map to corresponding colours, and edges preserve direction.

Let A {A,..., Ak} be an arbitrary collection of patterns, and consider the
following problem schemes:

A-PATTERNS
Input" Integer n in unary.
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Output: Number of labelled graphs with n nodes into which Ai can be embedded
for all (1 =< _<- k).
A-SUBSET-PATTERNS
Input: Integer n in unary; X

_
{1, , k}.

Output: Solution for A’-PATTERNS where A’ is the subset of A indexed by X.
THEOREM 2. There is a fixed collection B offixed patterns such that B-SUBSET-

PATTERNS is #Pa-complete.
COROLLARY. There is a fixed collection A of fixed patterns such that A-

PATTERNS FP: #P1 FP.
Proof. Set B must have a subset A (although we may not be able to identify it). 71

Proof of Theorem 2. The problem is obviously in #Px. To show that it is complete
we show how an arbitrary counting multi-tape TM, M, over a single letter input
alphabet can be simulated by it.

We first modify M so that all accepting computations on the input of size n run for
exactly S(n) steps where S is an easily computed polynomial. We do this by simulating
on an extra tape a binary counter that counts up to some simple polynomial that exceeds
the complexity of M. The runtime of such a counter (whatever the implementation
details) will clearly have some fixed value S(n) that is easily computed from n. In all
computation branches the modified machine M’ simply runs the counter and simulates
M in parallel until the former terminates. M’ accepts if and only if it has simulated an
accepting state of M at some time in the computation. It will be convenient to assume
from now on that M and M’ work on semi-infinite tapes.

We next modify M’ to M" so that M" has just one tape but retains the property that
all accepting computations have the same easily predetermined runtime. M" treats its
tape as a multiple-track tape.’It initially checks that the input is of the form lbS()--$
(where b and $ are special new symbols) and rejects otherwise. These S(n) squares are
designated as work-space. In each step of the simulation of M’ the workspace is scanned
in both directions so as to take a fixed amount of time.

Let M" have time complexity T(n) and space complexity S(n). We now claim that
there is a set C {C1,’’’, C} of compulsory graphs, and a set F-{F1,’’’, F} of
forbidden graphs such that the number of accepting computations of M" on input n is
just the number of (T(n)+ 1)(S(n)+ 1)-node graphs in which all the compulsory graphs
can be embedded but none of the forbidden ones. If we denote the number of graphs of
this size that contain all of C’ c__ C U F and none of F’

_
F as embedded subgraphs by

X(C’, F’), then clearly

X({Ca,..., C}, {F1,..., F}) X({Ca,..., C}, {F2,..., F.})
-X({C,, , C, F1}, {F2, ", F.}).

It follows by induction that if we can compute X({A}, ) for all A C LI F then we can
compute X(C, F). The theorem therefore follows.

To prove the claim we represent computations by connected rectangular grids as
shown in Fig. 1. Each horizontal line encodes a tape symbol and information about
whether the head is there and, if so, the state of the machine. We ensure that only
rectangular grids are counted by means of the following:

(i) Horizontal and vertical lines have disjoint colour sets H and V.
(ii) Nine distinct colours are used to distinguish from each other nodes that are

on the four corners, on the four sides and internal, respectively. They are each assigned
the number 2, 3 or 4 as appropriate.

(iii) We forbid internal nodes from having incident edges in any way other than
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the following"

Similar prohibitions are made for the other eight categories of nodes.
(iv) We ensure a grid structure by insisting that all appropriate chains of four

edges close. Thus the following scheme is forbidden:

(v) In any subgraph:

if a, b, c are internal we forbid d to be anything other than internal. Similar provisions
are made for the other cases.

(vi) A bottom left corner node is compulsory.
We further ensure that the grid represents a correct computation by:
(vii) insisting that the bottom left corner represents a head position and start state,

and forbidding anything else on the bottom boundary from representing a head
position;

(viii) forbidding illegal transitions;
(ix) insisting on an accepting state in the top right corner.

Finally it remains to observe that the theorem holds even for a fixed collection B
because it is sufficient to simulate just the following fixed TM, M, which is clearly
complete for PI: on unary input n, M first verifies that n 2pq (or 4pq) where p _-< q
and p and q are the ith and jth prime numbers respectively, and then simulates the ith
machine in #TIME(n) on input j (or vice versa), i-1

The corollary above is a natural example of a problem that is provably as hard as
any complete problem for the class containing it but not necessarily complete itself.
Note, however, that it proves only the existence of such a problem in the sense that we
cannot show A-PATTERNS to be in this category for any explicitly given A. It also
remains open to determine whether Theorem 2 or the corollary holds when A or B is a
singleton set.
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FIG.

6. Conclusion. We have shown that the notions of #P-completeness and of
algebraic or arithmetic polynomial time reducibilities are useful tools for classifying the
relative complexities of counting problems. The completeness class for #P appears to
be rivalled only by that for NP in relevance to naturally occurring computational
problems. Because of the richness of potential reductions it is reasonable to suppose
that many further ideas will be required before the classification of new counting
problems becomes a routine task.

Some possible next steps are the obvious omissions from this paper (e.g. maximal
matchings, undirected trees, connectivity of all points in a graph). A more general
question is that of tackling the large number of classical enumeration problems for
which there is just one input for each size. For example, we have as yet no evidence that
it is difficult to determine the number of Hamiltonian graphs of each size.

Acknowledgment. I am grateful to Dana Angluin for several helpful discussions.
The proof given for imperfect matchings is a simplification of one found by her earlier.
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